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Abstract. We prove a differential Harnack inequality for the Endangered Species
Equation, which is a nonlinear parabolic equation. Our derivation relies on an idea
related to the parabolic maximum principle. As an application of this inequality,
we will show that positive solutions to this equation must blowup in finite time.

1. Introduction

We consider positive smooth solutions f(x, t) : Rn × [0,∞) → R to the following
Cauchy problem:

(1)

{
∂
∂t
f = ∆f + fp,

f(x, 0) = f0(x),

for p > 1. It is well known that solutions for (1) may blow up in finite time. There
are some early studies in [12, 6, 11] for certain quasi-linear parabolic equations that
show finite time blow up under suitable conditions. H. Fujita [7] studied equation (1)
as an example of a general quasi-linear parabolic partial differential equation whose
failure for long-time existence depends on both the spacial dimension n and the power
p, but not on the (positive) initial value f0, provided that 0 < n(p− 1) < 2. In [10],
R. Hamilton labeled (1) as the Endangered Species Equation (ESE) since one may
think of f(x, t) as the population density of a certain species evolving in time t. The
population evolves according to diffusion (the term ∆f), but the equation also incor-
porates an additional change (the term fp) in population that results from a pair’s
meeting.

Our main result Theorem 2.2 is a differential Harnack inequality (also known as a
Li-Yau type estimate). As an application, we find that any positive solution with pos-
itive initial condition becomes unbounded in finite time. So the population becomes
arbitrarily large no matter how endangered initially. Our approach thus provides a
new derivation of Theorem 1 in Fujita [7] (our Theorem 3.5). In addition, upon in-
tegrating this inequality along a space-time path, we can recover a classical Harnack
inequality (Corollary 3.6).
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The importance of parabolic Harnack inequalities, introduced in [14, 15], is well-
established. Classical applications include deriving Holder continuity, obtaining Gauss-
ian bounds for the heat kernel, and drawing many other conclusions about the un-
derlying geometry of the space. While the study of differential Harnack inequalities
and applications originated in P. Li and S.-T. Yau [13] (see also D. Aronson and P.
Bénilan [1] for a precursory form), this method was later brought into the study of
geometric flows by Hamilton and played an important role in the field, especially for
the study of the Ricci flow (see for example, [9]). A more sophisticated use of such
estimates for applications in geometry can be found in the details of the program for
three dimensional geometrization. This leads to G. Perelman’s differential Harnack
inequality [16, Corollary 9.3], which is a crucial step in his solution to the Poincaré
Conjecture. Since then, a systematic method to find Harnack inequality for geometric
evolution equations was developed in [2, 3].

One of the main motivations in writing this paper is to suggest that the method
developed in geometric flows can also be used for the study of long-time existence
(or non-existence) for nonlinear parabolic equations, especially for finite-time blow-
ups. In [1], the estimate was used to prove existence of solutions. For a probabilistic
analysis of the Dirichlet problem associated to the endangered species equation with
1 < p ≤ 2, see E.B. Dynkin [4, 5]. In his work, the solution f of (1) appears in the
expression for the Laplace functional of a certain measure-valued Markov process, a
so-called superprocess. Another goal of this paper is to generalize the estimate in
[10], which also partially answers a question of Hamilton.
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0648208, through the Research Experience for Undergraduates Program at Cornell
University. The authors would like to thank the referee and Dr. Hao Jia for their
helpful comments and suggestions on an earlier version of this article. They would
also like to thank Professor Robert Strichartz for his encouragement.

2. Harnack Estimate

In this section, we shall first derive our differential Harnack estimate. Let f(x, t) ∈
C∞(Rn × [0,∞)) be a positive solution to (1) and u := log f , then we have

ut = ∆u+ |∇u|2 + eu(p−1).

The main technical result, Theorem 2.2, relies upon calculation of the evolution of a
Harnack quantity and use of the parabolic maximum principle. The main object of
our study is the following Harnack quantity

(2) H := α∆u+ β |∇u|2 + ceu(p−1) + φ,

where α, β, c ∈ R and φ : Rn × [0,∞) → [0,∞) will be chosen suitably later. Our
first task is to compute the evolution of H.
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Lemma 2.1. Suppose f(x, t) is a positive solution to (1), u = log f and H is defined
as in (2). Then we have

Ht =∆H + 2∇H · ∇u+ (p− 1)eu(p−1)H + 2(α− β) |∇∇u|2

+ (α(p− 1) + β − cp) (p− 1)eu(p−1) | ∇u |2

− (p− 1)eu(p−1)φ+ φt −∆φ− 2∇φ · ∇u.(3)

Proof. The proof follows from direct calculation. First note the evolution equations:

∂t(| ∇u |2) = ∆ | ∇u |2 −2 | ∇∇u |2 +2∇ | ∇u |2 ·∇u+ 2(p− 1)eu(p−1) | ∇u |2,
and

∂t(∆u) = ∆(∆u) + ∆ | ∇u |2 +(p− 1)eu(p−1)∆u+ (p− 1)2eu(p−1) | ∇u |2 .
In the above, we use

(4) ∆ | ∇u |2= 2∇u · ∇∆u+ 2 | ∇∇u |2 .
Hence we have

Ht =α
[
∆(∆u) + ∆ |∇u|2 + (p− 1)eu(p−1)∆u+ (p− 1)2eu(p−1) |∇u|2

]
+ β

[
∆ |∇u|2 − 2 |∇∇u|2 + 2∇ |∇u|2 · ∇u+ 2(p− 1)eu(p−1) |∇u|2

]
+ c(p− 1)eu(p−1)

[
∆u+ |∇u|2 + eu(p−1)

]
+ φt.

Using (4) again, we arrive at

Ht =∆H + 2∇H · ∇u+ α[2|∇∇u|2 + (p− 1)eu(p−1)∆u+ (p− 1)2eu(p−1) |∇u|2]
+ β

[
2(p− 1)eu(p−1) |∇u|2 − 2 |∇∇u|2

]
+ c(p− 1)e2u(p−1)

− c(p− 1)eu(p−1) |∇u|2 − c(p− 1)2eu(p−1) |∇u|2 + φt −∆φ− 2∇φ · ∇u.
The lemma then follows upon expanding and reordering. �

Theorem 2.2. Suppose f(x, t) is a positive solution to (1) and u = log f . If α, β, a
and c satisfy

(5) α > β ≥ 0,
α(p− 1) + 2β

p
≥ c ≥ (p− 1)nα2

4(α− β)
,

and

(6) a ≥ nα2

2(α− β)
> 0,

then we have

(7) H0 ≡ α∆u+ β |∇u|2 + ceu(p−1) +
a

t
≥ 0

for all t.

Remark 2.3. Our conditions (5) allow us to choose β = 0 in (7). However, while
the argument in the proof below requires that β > 0 initially, we can let β → 0 at
the end.
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Remark 2.4. We will see that the inequality (14) in the proof below exhibits a
restriction on the power p with respect to the spacial dimension n similar to the
primary condition of Theorem 1 in Fujita [7].

Remark 2.5. This result also gives a partial answer to Question 4 in Hamilton [10].

Proof. Choose φR(x, t) so that it is defined on the n-rectangle R ⊂ Rn made up of
a cartesian product of n intervals [pi, qi] so that φR → ∞ if xi → pi, qi or if t → 0.
More explicitly, we may take

(8) φR(x, t) =
a

t
+

n∑
k=1

(
b

(xk − pk)2
+

b

(qk − xk)2

)
,

for t > 0 and x = (x1, . . . , xn) ∈ R = Πn
1 [pi, qi], and extend it to be ∞ elsewhere.

The corresponding Harnack quantity is

HR = α∆u+ β |∇u|2 + ceu(p−1) + φR(x, t).

Note that HR → H0 as the rectangle R = Πn
1 [pi, qi] exhausts Rn, and HR > 0 for

small t since φR →∞ as t→ 0.
For the sake of contradiction, assume that there exists a first time t0 and point

x0 ∈ R where HR(x0, t0) = 0. At (x0, t0), we have

(HR)t ≤ 0, ∇HR = 0, ∆HR ≥ 0,

and

∆u = − 1

α
(β |∇u|2 + ceu(p−1) + φR).

Applying Lemma 2.1 and Cauchy-Schwarz in the form |∇∇u|2 ≥ 1
n
(∆u)2 yields that

0 ≥2(α− β)

nα2
[β |∇u|2 + ceu(p−1) + φR]2 − (p− 1)eu(p−1)φR

+ [α(p− 1) + β − cp] (p− 1)eu(p−1) | ∇u |2 +(φR)t −∆φR − 2∇φR · ∇u.(9)

Set X = eu(p−1) and Y = |∇u|2. Expanding and combining terms gives

0 ≥2(α− β)

nα2
(c2X2 + β2Y 2) +

[
α(p− 1)− cp+ β +

4(α− β)βc

nα2(p− 1)

]
(p− 1)XY

+

[
4(α− β)c

nα2
− (p− 1)

]
φRX +

4(α− β)β

nα2
φRY(10)

+ (φR)t −∆φR − 2∇φR · ∇u+
2(α− β)

nα2
φ2
R.

We now claim that the right hand side is in fact positive, which will give us a contra-
diction. First note the quadratic inequality

4(α− β)β

nα2
φRY − 2∇φR · ∇u ≥

−nα2 | ∇φR |2

4(α− β)βφR
.
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Given (5), it follows that

(11) α(p− 1)− cp+ β +
4(α− β)βc

nα2(p− 1)
≥ 0,

4(α− β)c

nα2
− (p− 1) ≥ 0.

Dropping several nonnegative terms in the right hand side of (10), we arrive at

0 ≥ (φR)t −∆φR −
nα2 | ∇φR |2

4(α− β)βφR
+

2(α− β)

nα2
φ2
R.

We then compute

∆φR =
n∑
i=1

(
6b

(xk − pk)4
+

6b

(qk − xk)4

)
,

|∇φR|2 =
n∑
k=1

(
− 2b

(xk − pk)3
+

2b

(qk − xk)3

)2

,

and observe that

|∇φR|2

φR
=

n∑
k=1

(
− 2b

(xk − pk)3
√
φR

+
2b

(qk − xk)3
√
φR

)2

≤
n∑
k=1

(
2
√
b

(xk − pk)2
+

2
√
b

(qk − xk)2

)2

.(12)

Set

A :=
2(α− β)

nα2
> 0, B :=

nα2

4(α− β)β
> 0.

To arrive at a contradiction, it suffices to show that

(13) Aφ2
R −∆φR −B

| ∇φR |2

φR
+ (φR)t > 0.

Now we choose a as in (6), so that Aa2 − a ≥ 0. Next, plugging (12) and (8) into
(13), we conclude that it is sufficient to have b > 0 and

Ab2 − b(6 + 4B) > 0,

which reduces to

b >
1

A
(6 + 4B).

In summary, the conditions on a and b are

a ≥ nα2

2(α− β)
, b >

nα2

2(α− β)

[
6 +

nα2

(α− β)β

]
.

Recall that our constants α, β, c must satisfy α > β > 0 along with (11):

α(p− 1)− cp+ β +
4(α− β)βc

nα2(p− 1)
≥ 0,

4(α− β)c

nα2
− (p− 1) ≥ 0.
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These latter two inequalities can be satisfied as long as we choose c such that

α(p− 1) + 2β

p
≥ c ≥ (p− 1)nα2

4(α− β)
.

For given n, p, we may choose such c as long as we have

(14)
4(α(p− 1) + 2β)(α− β)

α2
≥ p(p− 1)n.

Our choice of constants α, β, a, c now implies that the right hand side of (10) is in
fact positive, which is a contradiction. Assuming the solution exists in all of space
Rn, we can let R → Rn so that φR → a/t. This completes the proof of Theorem
2.2. �

3. Applications

In this section, we shall give a few applications of Theorem 2.2. We first recover and
improve estimate in [10]; then we use it to study long time existence problem of (1);
finally we integrate along space-time curve to derive a classical Harnack inequality.

3.1. Hamilton’s result. In this subsection, we study the case of n = 1 and p = 2,
which was studied in [10] by Hamilton. In particular, we apply Theorem 2.2 with
n = 1 and p = 2 by picking α = 1, β = 0, c = 1

2
, and a = 2

3
, to conclude

∆u+
1

2
eu +

2

3t
≥ 0.

Recalling that u = log f , we recover [10, Theorem 5.1]:

Theorem 3.1 (Hamilton [10]). Let f be a positive solution to (1) with n = 1, p = 2.
Then

(15) ft +
2f

3t
≥ f 2

x

f
+
f 2

2
.

Furthermore, our proof in fact shows that (15) can be improved by picking a = 1
2

and c = 1
4

to get

∆u+
1

4
eu +

1

2t
≥ 0,

yielding

(16) ft +
f

2t
≥ f 2

x

f
+

3f 2

4
.

Remark 3.2. In [10], Hamilton asked if it’s possible to improve (15). The above (16)
gives an affirmative answer to that question.

If the dimension n = 2, and p = 2, a similar Harnack estimate can be derived by
picking α = 1, β = 0, a = 1 and c = 1

2
, which we state as our next theorem.

Theorem 3.3. Let f be a positive solution to (1) with n = 2, p = 2. Then

(17) ft +
f

2t
≥ f 2

x

f
+

3f 2

4
.



7

3.2. Finite-time Blow Up. In this subsection, we reprove Fujita’s result [7, Theo-
rem 1], which states that if 0 < n(p− 1) < 2, then any positive solution f to (1) will
blow up in finite time, however small the positive initial value may be. We remark
that Fujita also shows in the same paper that the condition n(p−1) > 2 implies there
exists some small positive initial data such that the solution exists for all time. For
blow up in the case n(p− 1) = 2, see V. Galaktionov [8].

We in fact start by proving the following weaker version. Recall that p > 1, so the
lower bound for n(p− 1) in the next statement is always satisfied.

Proposition 3.4. Suppose that f is a positive solution to (1), and c is a constant
satisfies that 0 < n(p− 1) ≤ c < 2. Then f blows up in finite time provided that

(18) f(x0, t0) ≥
(

4n

2− c

)1/(p−1)

at some point (x0, t0).

Proof. Picking α = 2, β = 1, a = 2n and c such that (p − 1)n ≤ c < 2 in Theorem
2.2 yields

2∆f − |∇f |
2

f
+ cfp +

2n

t
f ≥ 0.

Since ft = ∆f + fp, we have

2ft −
|∇f |2

f
+

2nf

t
≥ (2− c)fp.

Hence

2ft +
2nf

t
≥ (2− c)fp.

The above inequality implies that

(19) 2
∂

∂t

(
1

f

)
≤ 1

f

(
2n

t
− (2− c)fp−1

)
=

1

f 2−p

(
2n

tfp−1
− (2− c)

)
.

Without loss of generality, we may assume that f ≥ ( 4n
2−c)

1/(p−1) at the origin x0 = 0
for t0 = 1. This assumption together with (19) gives

2
∂

∂t

(
1

f

)
(0, t) ≤ 2− c

f 2−p(0, t)

(
1

2t
− 1

)
< 0,

so that f(0, t) is strictly increasing for t ≥ 1 provided that f(0, t) is finite.
Now if p > 2, then fp−2(0, t) ≥ fp−2(0, 1) for t ≥ 1 and (19) becomes

2
∂

∂t

(
1

f

)
(0, t) ≤ 2n

tf(0, 1)
− (2− c)fp−2(0, 1).

On the other hand, if 1 < p ≤ 2, manipulation of (19) yields

2

p− 1

∂

∂t

[(
1

f

)p−1]
(0, t) = 2f 2−p ∂

∂t

(
1

f

)
(0, t) ≤ 2n

tfp−1(0, 1)
− (2− c).
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In both cases, there exists δ > 0, when t is large enough, the right hand sides are less
than −δ < 0, so that 1

f
→ 0 in finite time. This proves our proposition. �

Intuitively, the above result says that if the population is ever large enough some-
where, then it will become unbounded in finite time. Through a parabolic rescaling
argument, without loss of generality, we can always assume a given positive solution f
satisfies the condition (18) of the previous proposition at some point. To see this, let

λ > 0 and δ ∈ R, define a new function f̃(x̃, t̃) := λδf(x, t), where x̃ := λx, t̃ := λ2t.

Then we can see that with the choice of δ := − 2
p−1 , f̃ also satisfies equation (1):

(20)
∂

∂t̃
f̃ = λδ−2

(
∂

∂t
f

)
= λδ−2(∆f) +

λδ−2

λδp
(λδf)p = ∆̃f̃ + f̃p.

In particular, λ > 0 is arbitrary and can be chosen so that condition (18) is met by

f̃ . Once λ is chosen and fixed, f̃ remains bounded in finite time if and only if f does.
We have thus proved the following theorem, which says that no matter how small the
initial population is, it will become unbounded in finite time.

Theorem 3.5 (Fujita [7]). Let 0 < n(p− 1) < 2. Then any positive solution f to the
equation (1) blows up in finite time.

3.3. Classical Harnack Inequality. In this subsection, we shall integrate our dif-
ferential Harnack (7) along a space-time path to derive a classical Harnack type
inequality, which provides a comparison of values of positive solutions at different
points in space-time.

Corollary 3.6. Let f be a positive solution to the generalized endangered species
equation (1) and u = log f . Let γ(t) = (x(t), t), t ∈ [t1, t2], be a space-time curve
joining two given points (x1, t1), (x2, t2) ∈ Rn × [0,∞) with 0 < t1 < t2. Assume

further that α ≥ 2β so c ≤ α, and a = nα2

2(α−β) ≤ nα. Then we have

(21) f(x1, t1) ≤ f(x2, t2)

(
t2
t1

)n
exp

[
|x2 − x1|2

2(t2 − t1)

]
.

Proof. Recall the evolution equation for u = log f is

ut = ∆u+ |∇u|2 + eu(p−1).

By our differential Harnack inequality (7), we have H ≥ 0, this yields that

∆u ≥ α−1(−β|∇u|2 − ceu(p−1) − a

t
).
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We then compute the evolution of u along γ:

d

dt
[u(x(t), t)] = ∇u · ẋ+ ut

= ∇u · ẋ+ ∆u+ |∇u|2 + eu(p−1)

≥ |∇u|2
(

1− β

α

)
+∇u · ẋ− a

αt
+ eu(p−1)

(
1− c

α

)
≥ |∇u|2

(
1

2
− β

α

)
− 1

2
|ẋ|2 − a

αt
+ eu(p−1)

(
1− c

α

)
≥ −1

2
|ẋ|2 − a

αt
,

where we have used the assumption α ≥ 2β with c ≤ α for the last inequality. Hence,
we have

(22)
d

dt
[−u(x(t), t)] ≤ 1

2
|ẋ|2 +

n

t
.

Integrating the above inequality (22) along γ, and taking the infimum over all such
space-time paths yields

u(x1, t1)− u(x2, t2) ≤ inf
γ(t)=(x(t),t)

∫ t2

t1

[
1

2
|ẋ|2 +

n

t

]
.

Recalling that u = log f , we arrive at (21). �
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