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Abstract In this paper, we first derive a monotonicity formula for the first eigen-
value of −� + a R (0 < a ≤ 1/2) on a closed surface with nonnegative scalar
curvature under the (unnormalized) Ricci flow. We then derive a general evolution
formula for the first eigenvalue under the normalized Ricci flow. As an application,
we obtain various monotonicity formulae and estimates for the first eigenvalue on
closed surfaces.
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1 Introduction

Let M ba a n-dimensional closed Riemannian manifold, for any Riemannian metric
g, in a given local coordinates {x1, x2, . . . , xn}, the Laplace-Beltrami operator � is
defined by

� = 1√
G

∑

i, j

∂

∂xi

(√
G · gi j ∂

∂xi

)
,

X. Cao (B)
Department of Mathematics, Cornell University, Ithaca, NY 14853-4201, USA
e-mail: cao@math.cornell.edu

S. Hou
Department of Applied Mathematics, College of Science, East Campus, China Agricultural University,
Beijing 100083, People’s Republic of China
e-mail: housb10@163.com

J. Ling
Department of Mathematics, Utah Valley University, Orem, UT 84058, USA
e-mail: lingju@uvu.edu

123



452 X. Cao et al.

where gi j = g( ∂
∂xi ,

∂
∂x j ), (gi j ) = (gi j )

−1 and G = det(gi j ). Since � is a self-adjoint
elliptic operator, it is well-known that � has discrete eigenvalues:

0 = λ0 < λ1 ≤ · · · ≤ λn ≤ · · · → ∞.

The study of the eigenvalues of the Laplace-Beltrami on a Riemannian manifold has
been an active subject of the last 40 years. In particularly, the estimates for lower
bounds and upper bounds of the first eigenvalue λ1 has been an appealing topic for
spectral geometry. We refer the readers to [1,5] and [24, Chapter 3] for more details.

The Ricci flow is first introduced by Hamilton [10] to study the geometry of positive
Ricci curvature on 3-manifolds. Given a 1-parameter family of Riemannian metrics
g(t) on M , defined on a time interval [0, T ), Hamilton’s Ricci flow is

∂

∂t
g = −2Rc, (1.1)

where Rc is the Ricci curvature of metric g. The Ricci flow has been a powerful tool in
studying the geometry and topology for lower dimensional manifolds. In dimension 2,
it is proved that starting with any initial metric, the solution to the Ricci flow converges
to a constant curvature metric, only depends on the Euler characteristic class of the
surface, by Hamilton [11] and Chow [6]. In dimension 3, Hamilton [10] proves that
if the initial metric has positive Ricci curvature, then the solution to the Ricci flow
converges to the constant curvature (round) metric on a 3-sphere. In a sequence of
papers [20,22] and [21], Perelman follows Hamilton’s program using Ricci flow with
surgery and proves the Poincaré conjecture and Thurston’s geometrization conjecture.

Let (M, g(t)), t ∈ [0, T ), be a smooth solution to the Ricci flow on a closed
Riemannian manifold M . There has been increasing attentions on the study of eigen-
values of geometric operators under the Ricci flow, which plays an important role in
understanding geometry and topology of the manifold itself. Perelman [20] studies
the first eigenvalue of the Laplace-Beltrami operator with potential R, here R (scalar
curvature of metric g) is trace of the Ricci curvature. More precisely, Perelman proves
that the first eigenvalue of −4�+R is nondecreasing along the Ricci flow. As an appli-
cation, he shows that there is no nontrivial steady or expanding breathers on closed
manifolds. The eigenvalues of the operator −4� + R also depend on the curvature,
even those of the operator � are defined independently from curvature. In general, the
eigenvalues λk are no longer differentiable in time t (for example, cf. [9]). But for the
first eigenvalue and first eigenfunction, following the eigenvalue perturbation theory,
one can always assume that the first eigenvalue λ(t) and first eigenfunction u(x, t) are
smooth (in t) along the Ricci flow (cf. [7,12,23]).

The first author [2] proves that the eigenvalues of −�+ 1
2 R are nondecreasing along

the Ricci flow on manifolds with nonnegative curvature operator. In [14], Li uses the
same technique to show that the monotonicity of the first eigenvalue of −� + 1

2 R
along the Ricci flow without assuming nonnegative curvature operator. A similar result
in the physics literature has been given by [19]. For the Laplace-Beltrami operator,
Ma [18] derives monotonicity formula of the first eigenvalue on domains with Dirich-
let boundary condition along the Ricci flow. In fact, following a remark in [6, Sec. 3],
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one can see that the determinant of Laplace-Beltrami operator is nondecreasing along
normalized Ricci flow (also see [13]). The third author [17] proves a comparison the-
orem of Faber-Krahn type and obtains a sharp bound for the first eigenvalue of the
Laplace-Beltrami operator under the normalized Ricci flow. In [16], the third author
shows that, although the first eigenvalue of the Laplace-Beltrami operator is not mono-
tonic along the normalized Ricci flow, an appropriate multiple is monotonic. In [3], the
first author derives the evolution formula of the first eigenvalues of −�+a R (a ≥ 1

4 )

and shows that they are nondecreasing along Ricci flow. This is also proved by Li
[14, Theorem 5.2] using various entropy functionals. Along normalized Ricci flow,
the first author [3] proves a monotonicity result for the case a = 1

4 and non-positive
average scalar curvature. Besides the study of the evolution of eigenvalues under the
Ricci flow, Chang and Lu [4] investigate the behavior of the Yamabe constant along
with the Ricci flow.

Most of the work mentioned above deals with the case of (unnormalized) Ricci flow,
while [3,13,15–17] deals with normalized Ricci flow. Notice that the eigenvalues of
both � and −4�+ R change under scaling by λ(cg) = 1

c λ(g),∀c > 0, this motivates
us to consider the evolution of the first eigenvalue under the normalized Ricci flow,

∂

∂t
g = −2Rc + 2r

n
g, (1.2)

where r = ∫
M Rdμ/

∫
M dμ is the average of scalar curvature R. Under the normalized

Ricci flow, the volume of (M, g(t)) is a constant for all t ∈ [0, T ).
The rest of this paper is organized as follows. In Sect. 2, we first derive the mono-

tonicity formula of the first eigenvalue of geometric operator −� + a R (0 < a ≤ 1
2 )

along the Ricci flow on a closed surface with nonnegative scalar curvature. In Sect. 3,
we derive a general evolution formula for the first eigenvalue under the normalized
Ricci flow for general dimensions. Then we obtain various monotonicity formulae and
bounds on the first eigenvalue on closed surfaces.

2 First eigenvalues on surfaces with nonnegative scalar curvature

In this section, we study the first eigenvalues of operators −� + a R (0 < a ≤ 1
2 )

on closed surfaces with nonnegative scalar curvature. In [3], the first author proved
that for any a ≥ 1

4 , the first eigenvalues of −� + a R are nondecreasing. When the
dimension n = 2, we have Rc = 1

2 Rg. Then the Ricci flow becomes a conformal flow
(see [11] and [6])

∂

∂t
g = −Rg. (2.1)

The evolution equation of the scalar curvature R is

∂

∂t
R = �R + R2,
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it follows that nonnegative scalar curvature is preserved by the Ricci flow. The volume
form dμ satisfies

∂

∂t
dμ = −Rdμ.

Let λ(t) be the first eigenvalue of −�+ a R (0 < a ≤ 1
2 ), and u = u(x, t) satisfies

−�u(x, t) + a Ru(x, t) = λ(t)u(x, t),

with
∫

M u2(x, t)dμ = 1. By a similar analysis as in [2] and [3], we have the following
theorem.

Theorem 2.1 Let (M2, g(t)), t ∈ [0, T ), be a solution of the Ricci flow on a closed
surface M2 with nonnegative scalar curvature. Let λ(t) and u(x, t) be defined as
above, 0 < a ≤ 1

2 , then we have

d

dt
λ(t) = 2a2

∫
R2u2dμ + (1 − 2a)λ

∫
Ru2dμ + 2a

∫
R|∇u|2dμ ≥ 0.

Proof By a direct calculation as in [2], we have

dλ

dt
= −2

∫
Ri j ui j udμ + a

∫
∂ R

∂t
u2dμ.

On a surface, ∂ R
∂t = �R + R2, hence it leads to

dλ

dt
= −2

∫
Ri j ui j udμ + a

∫
�Ru2dμ + 2a

∫
|Rc|2u2dμ.

Using �R = 2 div(div Rc), we obtain the desired equality,

dλ

dt
= −2

∫
Ri j ui j udμ + 4a

∫
Ri j (ui u j + ui j u)dμ + 2a

∫
|Rc|2u2dμ

= (4a − 2)

∫
Ri j ui j udμ + 4a

∫
Ri j ui u j dμ + 2a

∫
|Rc|2u2dμ

= (2a − 1)

∫
R�uudμ + 4a

∫
Ri j ui u j dμ + 2a

∫
|Rc|2u2dμ

= (2a − 1)

∫
R(a Ru − λu)udμ + 4a

∫
Ri j ui u j dμ + a

∫
R2u2dμ

= 2a2
∫

R2u2dμ + (1 − 2a)λ

∫
Ru2dμ + 2a

∫
R|∇u|2dμ ≥ 0.


�
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Remark 2.1 In [3], the first author proved a similar result for general dimension and
a ≥ 1

4 , without any curvature assumption, also see [14] for a different approach by
constructing entropy functionals.

Combining this result with Theorem 1.5 in [3], we obtain the following result,

Theorem 2.2 On a closed surface with nonnegative scalar curvature, ∀a > 0, the
first eigenvalue of −� + a R is nondecreasing under the Ricci flow.

3 Monotonic quantities along the normalized Ricci flow

In this section, we derive some monotonic quantities along the normalized Ricci flow
(1.2). When n = 2, by Gauss-Bonnet Theorem, the average scalar curvature

r =
∫

M Rdμ∫
M dμ

is a constant. The normalized Ricci flow again becomes a conformal flow

∂

∂t
g = −(R − r)g. (3.1)

As before, we use � to denote the Laplace-Beltrami operator and dμ to denote
the volume element of metric g(t). Let λ = λ(t) be the first eigenvalue of −� + a R
(a ∈ (0, 1/2]) and u = u(x, t) be the eigenfunction of λ, with

∫
M u2(x, t)dμ = 1,

i.e., we have

− �u + a Ru = λu. (3.2)

We first derive a general evolution equation for λ under the normalized Ricci flow.

Lemma 3.1 Let (Mn, g(t)), t ∈ [0, T ), be a solution to the normalized Ricci flow
(1.2) on a closed Riemannian manifold Mn. Let λ(t) and u = u(x, t) be defined as
above, 0 < a ≤ 1

2 , then λ evolves by

d

dt
λ =

(∫ [
(1 − 2a)R − 2

n
r

]
u2dμ

)
λ + a(2a − 1)

∫
R2u2dμ

+ (2a − 1)

∫
R|∇u|2dμ + 2a

∫
|Rc|2u2dμ +

∫
2Ri j∇i u∇ j u. (3.3)

Proof By taking derivative of (3.2), we derive that

d

dt
λ = −

∫ (
2u Ri j∇i∇ j u − 2r

n
u�u

)
dμ +

∫
au2

(
�R + 2|Rc|2 − 2

n
r R

)
dμ

= −
∫

2u Ri j∇i∇ j udμ −
∫

2r

n
(λ − a R)u2dμ

+
∫

au2�Rdμ +
∫

2au2|Rc|2dμ −
∫

2

n
rau2 Rdμ.
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Using integration by parts and contracted Bianchi identity, we have

−
∫

2u Ri j∇i∇ j u =
∫

(2u∇i Ri j )∇ j u +
∫

2Ri j∇i u∇ j u,

and

∫
(2∇i Ri j )u∇ j u =

∫
u(∇ j R)∇ j u = −

∫
Ru�u −

∫
R|∇u|2

=
∫

(λ − a R)Ru2 −
∫

R|∇u|2 = λ

∫
Ru2 −

∫
a R2u2 −

∫
R|∇u|2,

we arrive at

−
∫

2u Ri j∇i∇ j u = λ

∫
Ru2 −

∫
a R2u2 −

∫
R|∇u|2 +

∫
2Ri j∇i u∇ j u.

It is easy to see that

−
∫

2r

n
(λ − a R)u2dμ = −

∫
2r

n
λu2 +

∫
2r

n
a Ru2dμ

= −2r

n
λ

∫
u2dμ + 2r

n
a

∫
Ru2dμ,

and

∫
au2�R =

∫
a R(2u�u + 2|∇u|2)

= −2aλ

∫
Ru2dμ +

∫
(2a2 R2u2 + 2a R|∇u|2)dμ.

Therefore we have

d

dt
λ = λ

∫
Ru2 −

∫
a R2u2 −

∫
R|∇u|2 +

∫
2Ri j∇i u∇ j u − 2r

n
λ

− 2aλ

∫
Ru2dμ +

∫
(2a2 R2u2 + 2a R|∇u|2)dμ +

∫
2au2|Rc|2dμ

= λ

∫ [
(1 − 2a)R − 2

n
r

]
u2dμ + a(2a − 1)

∫
R2u2dμ + (2a − 1)

×
∫

R|∇u|2dμ + 2a
∫

|Rc|2u2dμ +
∫

2Ri j∇i u∇ j u.


�
As a consequence of the above lemma, we have the following result on a closed

surface with nonnegative scalar curvature.
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Theorem 3.1 Let (M2, g(t)), t ∈ [0, T ), be a solution to the normalized Ricci flow
on a closed surface M2 with nonnegative scalar curvature. λ(t) is the first eigenvalue
of −� + a R, (0 < a ≤ 1

2 ). Then ertλ is nondecreasing under the normalized Ricci
flow.

Proof Since R ≥ 0 is preserved by the normalized Ricci flow, it is easy to see that
λ ≥ 0. From (3.3), we have

d

dt
λ = −λr + 2a2

∫
R2u2dμ + λ(1 − 2a)

∫
Ru2dμ + 2a

∫
R|∇u|2dμ.

Hence we obtain d
dt (e

rtλ) ≥ 0, i.e., ertλ is nondecreasing. 
�

Remark 3.1 In [3], the first author proved a similar result for a ≥ 1
4 , but without any

curvature assumption.

In the rest of this paper, we derive some bounds for the first eigenvalue λ on closed
surfaces. Since dimension n = 2, the average scalar curvature r is a constant, indeed

r = 4πχ(M)/A,

where χ(M) and A are the Euler class and area of M . We first deal with the case that
the surface has negative Euler characteristic class.

Theorem 3.2 (r < 0) Let (M2, g(t)) be a solution to the normalized Ricci flow (3.1)
on a compact surface with negative Euler characteristic class. λ(t) is the first eigen-
value of −�+ a R, (0 < a ≤ 1

2 ). Let t0 be any time such that σ0 = maxM R|t=t0 < 0
(hence R < 0 for t ≥ t0), ρ0 = minM R|t=t0 . Then we have

(1) For t ≥ t0, the quantity

c(t)λ(t) − 2a2r(
1 − r

ρ0

)
b(t)

[
r

σ0
− 1 +

(
1 − r

ρ0

)2

er(t−t0)

]

is nonincreasing along the normalized Ricci flow. Moreover

λ(t) ≤ 1

c(t)

⎧
⎨

⎩c(t0)λ(t0) + 2a2r(
1 − r

ρ0

)
b(t)

[
r

σ0
− 1 +

(
1 − r

ρ0

)2

e−r t0 ert

]

− 2a2r(
1 − r

ρ0

)
b(t0)

[
r

σ0
− 1 +

(
1 − r

ρ0

)2
]⎫
⎬

⎭ ,

where p = ( r
ρ0

− 1)e−r t0 , q = ( r
σ0

− 1)e−r t0 , 0 < b(t) = 1 + pert < 1, and

c(t) = 1 + qert > 1.
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(2) Using the same notation as in part (1). Set t1 = 0 if ρ0 = σ0, or t1 = t0 −
1
r ln(1 − 2r

ρ0
+ r

σ0
) otherwise. Then for t ≥ max{t0, t1}, the quantity

b(t)λ(t) + 2a2r(
r
σ0

− 1
)

c(t)

[
−

(
1 − r

ρ0

)
+

(
r

σ0
− 1

)2

e−r t0 ert

]

is nondecreasing along the normalized Ricci flow. Moreover

λ(t) ≥ 1

b(t)

⎧
⎨

⎩b(t1)λ(t1) − 2a2r(
r
σ0

− 1
)

c(t)

[
−

(
1 − r

ρ0

)
+

(
r

σ0
− 1

)2

er(t−t0)

]

+ 2a2r(
r
σ0

− 1
)

c(t1)

[
−

(
1 − r

ρ0

)
+

(
r

σ0
− 1

)2

er(t1−t0)

]⎫
⎬

⎭ .

Proof Notice that in this case, we have λ < 0. Recall that R evolves by the equation

∂

∂t
R = �R + R2 − r R.

Compare R with the solution of ODE

d

dt
y = y2 − r y,

with the initial condition y|t=t0 = ρ0 and the initial condition y|t=t0 = σ0 respectively,
we get

r

b(t)
≤ R ≤ r

c(t)
for t ≥ t0. (3.4)

From (3.2), applying the divergence theorem, we have

∫

M

|∇u|2dμ = λ − a
∫

M

Ru2dμ. (3.5)

Substituting this into the evolution equation (3.3), which in dimension 2 takes a simpler
form

d

dt
λ =

{
(1 − 2a)

∫
Ru2dμ − r

}
λ + 2a

∫
R|∇u|2dμ + 2a2

∫
R2u2dμ, (3.6)

and using (3.4), then for t ≥ t0 we have

d

dt
λ ≤

{
(1 − 2a)

∫
Ru2dμ − r + 2ar

c(t)

}
λ + 2a2

∫
R(R − r

c(t)
)u2dμ.
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Using (3.4) again, we have

0 ≤ R2 − r

c(t)
R ≤ r2

( 1

b(t)2 − 1

b(t)c(t)

)
.

Together with the facts that λ < 0 and R ≥ r
c(t) , it follows that

d

dt
λ ≤

( 1

c(t)
− 1

)
rλ + 2a2r2

( 1

b(t)2 − 1

b(t)c(t)

)
. (3.7)

Multiplying the equation by c(t) > 0, we can rewrite the above inequality as

d

dt

(
c(t)λ(t)

)
+ 2a2r2

( 1

b(t)
− c(t)

b(t)2

)
≤ 0,

or

d

dt

{
c(t)λ(t) + 2a2r

pb(t)

(
q + p2ert

) }
≤ 0.

This yields that

d

dt

⎧
⎨

⎩c(t)λ(t) − 2a2r(
1 − r

ρ0

)
b(t)

[
r

σ0
− 1 +

(
1 − r

ρ0

)2

e−r t0 ert

]⎫
⎬

⎭ ≤ 0.

Hence we have

λ(t) ≤ 1

c(t)

⎧
⎨

⎩c(t0)λ(t0) + 2a2r(
1 − r

ρ0

)
b(t)

[
r

σ0
− 1 +

(
1 − r

ρ0

)2

e−r t0 ert

]

− 2a2r(
1 − r

ρ0

)
b(t0)

[
r

σ0
− 1 +

(
1 − r

ρ0

)2
]⎫
⎬

⎭ .

This proves (1).
To prove the second part, using (3.4), (3.5) and (3.6), we have

d

dt
λ ≥

( r

b(t)
− r

)
λ + 2a2

∫
R

(
R − r

b(t)

)
u2dμ.

Notice that if r
c(t) ≤ r

2b(t) , then the minimum of the polynomial P(R) = R2 − r
b(t) R

is achieved at the right endpoint R = r
c(t) on the interval [ r

b(t) ,
r

c(t) ].
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460 X. Cao et al.

We claim that it is indeed r
c(t) ≤ r

2b(t) . The last inequality is reduced to

(
1 − 2r

ρ0

+ r

σ0

)
er(t−t0) ≤ 1.

In the case of ρ0 = σ0, this is automatically true for all t ≥ t0. In the case of ρ0 < σ0,
which implies that 1− 2r

ρ0
+ r

σ0
> 0, the inequality is true for t ≥ max{t0, t0 − 1

r ln(1−
2r
ρ0

+ r
σ0

)}. So for t ≥ max{t0, t1}, using (3.4), we have

R

(
R − r

b(t)

)
≥ r

c(t)

(
r

c(t)
− r

b(t)

)
.

Therefore we arrive at

d

dt
λ ≥

( r

b(t)
− r

)
λ + 2a2r2

( 1

c(t)2 − 1

b(t)c(t)

)
. (3.8)

Since b(t) > 0, we can rewrite the above inequality as

d

dt

(
b(t)λ(t)

)
+ 2a2r2

( 1

c(t)
− b(t)

c(t)2

)
≥ 0,

or

d

dt

{
b(t)λ(t) + 2a2r

qc(t)

(
p + q2ert

)}
≥ 0.

This leads to

d

dt

⎧
⎨

⎩b(t)λ(t) + 2a2r(
r
σ0

− 1
)

c(t)

[
−

(
1 − r

ρ0

)
+

(
r

σ0
− 1

)2

e−r t0 ert

]⎫
⎬

⎭ ≥ 0,

and it follows that

λ(t) ≥ 1

b(t)

⎧
⎨

⎩b(t1)λ(t1) − 2a2r(
r
σ0

− 1
)

c(t)

[
−

(
1 − r

ρ0

)
+

(
r

σ0
− 1

)2

e−r t0 ert

]

+ 2a2r(
r
σ0

− 1
)

c(t1)

[
−

(
1 − r

ρ0

)
+

(
r

σ0
− 1

)2

e−r t0 ert1

]⎫
⎬

⎭

as desired. 
�
Next we deal with the case that M2 has positive Euler characteristic class.
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Theorem 3.3 (r > 0) Let (M2, g(t)) be a solution to the normalized Ricci flow (3.1)
on a closed surface with positive Euler characteristic class. λ(t) is the first eigenvalue
of −� + a R, (0 < a ≤ 1

2 ). Let t0 be any time such that the scalar curvature R is
positive and ρ0 = minM R|t=t0 > 0. Then the quantity

b(t)λ(t)

is nondecreasing along the normalized Ricci flow for t ≥ t0, where

b(t) = 1 −
(

1 − r

ρ0

)
er(t−t0).

Moreover, λ(t) has a time dependent lower bound, i.e.,

λ(t) ≥ b(t0)λ(t0)/b(t).

Proof Using (3.4), (3.5) and (3.6), it follows that

d

dt
λ ≥

( r

b(t)
− r

)
λ +

2a2
∫

R
(

R − r
b(t)

)
u2dμ

∫
u2dμ

≥
( r

b(t)
− r

)
λ.

Hence we have that

d

dt

[
b(t)λ(t)

] ≥ 0,

and

λ(t) ≥ b(t0)λ(t0)/b(t). 
�
At last we deal with the case that the surface M2 has vanishing Euler characteristic

class.

Theorem 3.4 (r = 0) Let (M2, g(t)) be a solution to the normalized Ricci flow (3.1)
on a closed surface with vanishing Euler characteristic class. λ(t) is the first eigen-
value of −� + a R, (0 < a ≤ 1

2 ). Then the quantity

(
1 − ρ0t

)
λ − a2ρ0

2
ln

(
1 − ρ0t

)

is nondecreasing along the normalized Ricci flow. Moreover, λ(t) has a time dependent
lower bound

λ(t) ≥ 1(
1 − ρ0t

)λ(0) + a2ρ0

2
(
1 − ρ0t

) ln
(
1 − ρ0t

)
,

where ρ0 = minM R|t=0.
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Proof For dimension 2 and Euler characteristic class χ = 0, the evolution equation
(3.3) becomes

d

dt
λ =

{
(1 − 2a)

∫
Ru2dμ

}
λ + 2a

∫
R|∇u|2dμ + 2a2

∫
R2u2dμ. (3.9)

Now the scalar curvature R evolves under the equation

∂

∂t
R = �R + R2.

We compare R with the solutions of the following ordinary differential equation

d

dt
y = y2,

with initial values ρ0 and σ0 respectively. By maximum principle (see [8]), we have

ρ0

1 − ρ0t
≤ R ≤ σ0

1 − σ0t
.

Substituting the above estimate into (3.9), we get

d

dt
λ ≥

{
(1 − 2a)

∫
Ru2dμ

}
λ + 2aρ0

1 − ρ0t

∫
|∇u|2dμ + 2a2

∫
R2u2dμ

=
{
(1 − 2a)

∫
Ru2dμ

}
λ + 2aρ0

1 − ρ0t
λ − 2a2ρ0

1 − ρ0t

∫
Ru2dμ + 2a2

∫
R2u2dμ

≥ ρ0

1 − ρ0t
λ + 2a2

∫ (
R − ρ0

1 − ρ0t

)
Ru2dμ,

where we used Eq. (3.5) in the last identity. Using the fact t2 −kt ≥ − 1
4 k2, we arrive at

d

dt
λ ≥ ρ0

1 − ρ0t
λ −

a2ρ2
0

2
(
1 − ρ0t

)2 .

This leads to

d

dt

[
(
1 − ρ0t

)
λ − a2ρ0

2
ln

(
1 − ρ0t

)
]

≥ 0.

Therefore we conclude that

λ(t) ≥ 1(
1 − ρ0t

)λ(0) + a2ρ0

2
(
1 − ρ0t

) ln
(
1 − ρ0t

)

as desired. 
�
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