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These notes, originally written in the 1980’s, were intended as the beginning of

a book on 3 manifolds, but unfortunately that project has not progressed very far

since then. A few small revisions have been made, but much more remains to be

done, both in improving the existing sections and in adding more topics. In particular

an exposition of Haken manifolds was planned for §3.2. For any future updates which

may be written, the reader should check my webpage:

http://www.math.cornell.edu/˜hatcher

The three chapters here are to a certain extent independent of each other. The

main exceptions are that the beginning of Chapter 1 is a prerequisite for almost ev-

erything else, while some of the later parts of Chapter 1 are used in Chapter 2.
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Chapter 1. Canonical Decomposition

The first section of this chapter is devoted to what was historically the first general

result on 3 manifolds, Kneser’s theorem that every compact orientable 3 manifold M

decomposes uniquely as a connected sum M = P1 ♯ ··· ♯ Pn of 3 manifolds Pi which

are prime in the sense that they can be decomposed as connected sums only in the

trivial way Pi = Pi ♯ S
3 .

After the prime decomposition, we turn in the second section to the canonical

torus decomposition due to Jaco-Shalen and Johannson.

We will work in the C∞ category throughout. Some basic results about differen-

tiable manifolds will be needed. In particular this includes:

— Tubular neighborhoods: submanifolds have neighborhoods that are diffeomor-

phic to their normal bundles, and these neighborhoods are unique up to isotopy.

— Isotopy extension: an isotopy of a submanifold can be extended to an isotopy of

the ambient manifold.

— Transversality: a submanifold of codimension p can be perturbed by a small

isotopy to intersect another submanifold of codimension q transversely, and then

the intersection is a submanifold of codimension p + q .

— Triangulability: a smooth manifold is homeomorphic to a simplicial complex

whose simplices are smoothly embedded.

Convention: All manifolds in this chapter are assumed to be compact and connected,

possibly with boundary, unless otherwise stated or constructed. Often we restrict

attention to orientable 3 manifolds, although extensions to the nonorientable case

are usually not too difficult.

1. Prime Decomposition

Implicit in the prime decomposition theorem is the fact that S3 is prime, other-

wise one could only hope for a prime decomposition modulo invertible elements, as

in algebra. The fact that S3 is prime is a consequence of Alexander’s theorem, our

first topic.

Alexander’s Theorem

This quite fundamental result was one of the earliest theorems in the subject:

Theorem 1.1. Every embedded 2 sphere in R3 bounds an embedded 3 ball.
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The version of this that Alexander proved, in the 1920s, was slightly different:

a piecewise linearly embedded sphere in R
3 bounds a topological ball. It would not

have been difficult for him to improve the conclusion to say that the ball was piece-

wise linear as well. The famous example of the Alexander horned sphere, which he

constructed at about the same time, shows that a topological sphere need not bound

a topological ball. The proof we give for smooth spheres follows the same general

strategy as Alexander’s proof for piecewise linear spheres, namely, to cut the given

sphere along horizontal planes to produce simpler spheres and apply an induction

argument. Alexander cut along horizontal planes passing through vertices of the tri-

angulated sphere. In the smooth category one cuts instead along horizontal planes

that are transverse to the sphere. In order to have a nice starting point for the induc-

tion we will do a preliminary isotopy of the sphere to arrange that the projection of

the sphere onto the z -axis is a morse function, so we will assume the reader knows

a little Morse theory. This could be avoided by using a more direct construction as at

the beginning of [Hatcher 1983], but this would slow down the exposition.

The proof will also use the analogous result in one lower dimension, that a smooth

circle in R
2 bounds a smooth disk. This can be proved by a similar but simpler

inductive argument, and it would be a good exercise for the reader to work this out.

In two dimensions it is even true that a topologically embedded circle in R2 bounds

a topological disk, the Schoenflies theorem, but the proof is more difficult since a

simple inductive argument is not possible.

There is a simple proof due to M. Brown in 1960 that a smoothly embedded Sn−1

in Rn bounds a topological ball, for arbitrary n . The ball is known to be a smooth ball

for all n except n = 4 where this question remains open. For n ≥ 5 this follows from

the h-cobordism theorem (plus surgery theory in the case n = 5). Brown’s theorem

in fact has a weaker hypothesis than smoothness, just that the embedding is locally

flat, so near each point of the embedded sphere there is a local coordinate system for

R
n in which the sphere becomes a linearly embedded Rn−1 ⊂ Rn .

Proof of Alexander’s Theorem: Let S ⊂ R
3 be an embedded closed surface, with

h :S→R the height function given by the z coordinate. The first step is to arrange

that h is a morse function, as follows. We can approximate h arbitrarily closely by a

morse function, and the linear path between h and the approximation gives a small

homotopy of h . Keeping the same x and y coordinates for S , this gives a small

homotopy of S in R3 . Since embeddings are open in the space of all maps (with the

C∞ topology), if this homotopy is small enough, it will be an isotopy. By a further
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small isotopy we can also assume the finitely many critical points of h (local maxima,

minima, and saddles) all have distinct critical values.

Let a1 < ··· < an be noncritical values of h such that each interval (−∞, a1) ,

(a1, a2) , ··· ,(an,∞) contains just one critical value. For each i , h−1(ai) consists of

a finite number of disjoint circles in the level z = ai . By the two-dimensional version

of Alexander’s theorem, each circle of h−1(ai) bounds a disk in the plane z = ai .

Let C be a circle of h−1(ai) which is innermost in the plane z = ai , so the disk D it

bounds in this plane is disjoint from all the other circles of h−1(ai) . We can use D

to surger S along C . This means that for some small ε > 0 we first remove from S

the open annulus A consisting of points near C between the two planes z = ai ± ε ,

then we cap off the resulting pair of boundary circles of S −A by adding to S −A the

disks in z = ai±ε which these circles bound. The result of this surgery is thus a new

embedded surface, with perhaps one more component than S , if C separated S .

This surgery process can now be iterated, taking at each stage an innermost re-

maining circle of h−1(ai) , and choosing ε small enough so that the newly introduced

horizontal cap disks intersect the previously constructed surface only in their bound-

aries.

After surgering all the circles of h−1(ai) for all i , the original surface S becomes a

disjoint union of closed surfaces Sj , each consisting of a number of horizontal caps

together with a connected subsurface S′j of S containing at most one critical point

of h .

The surgery construction as we have described it produces surfaces in R
3 that

are not smooth along the curves bounded by the horizontal caps since they have two

distinct tangent planes at each point of these curves, one tangent plane being hori-

zontal and the other one not horizontal. It would be easy to modify the definition of

surgery to round these corners and make all the surgeries produce genuinely smooth

surfaces. There will be many other occasions throughout the book where manifolds

with corners arise, and we will let the smoothing of these corners be implicit.
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Lemma 1.2. Each surface Sj ⊂ S is isotopic to one of seven models: the four shown

below plus three more obtained by turning these upside down. Hence each Sj is a

sphere bounding a ball in R3 .

Proof: Consider the case that Sj has a saddle, say in the level z = a . First isotope

Sj in a neighborhood of this level so that for some δ > 0 the subsurface Sδj of Sj
lying between the planes z = a + δ and z = a − δ is vertical, with vertical tangent

planes, except in a neighborhood of the saddle where Sj has the standard form of the

saddles in the models. Next, isotope Sj so that its subsurface S′j , the complement of

the horizontal caps, lies in Sδj . This is done by pushing its horizontal caps to lie near

z = a , innermost caps first, keeping the caps horizontal throughout the deformation.

After this has been done, Sj is entirely vertical except for the standard saddle and

the horizontal caps. Viewed from above, Sj minus its horizontal caps then looks like

two smooth circles, possibly nested, joined by a 1 handle, a neighborhood of an arc

joining the two circles.

Since these circles bound disks, they can be isotoped to the standard position of one

of the models, yielding an isotopy of Sj to one of the models.

The remaining cases, when S′j has a local maximum or minimum or no critical

points, are similar but simpler so we leave these cases to the reader. ⊔⊓
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Now we can finish the proof of Alexander’s Theorem, where the surface S is a

sphere. Since every circle in a sphere separates the sphere into two components, each

surgery splits one sphere into two spheres. Reversing the sequence of surgeries, we

then start with a collection of spheres Sj bounding balls. The inductive assertion is

that at each stage of the reversed surgery process, we have a collection of spheres

each bounding a ball. For the inductive step we have two balls A and B bounded by

the spheres ∂A and ∂B resulting from a surgery. Letting the ε for the surgery go to

0 isotopes A and B so that ∂A∩ ∂B equals the horizontal surgery disk D . There are

two cases, up to changes in notation:

(i) A∩ B = D , with pre-surgery sphere denoted ∂(A+ B)

(ii) B ⊂ A , with pre-surgery sphere denoted ∂(A− B) .

Since B is a ball, the lemma below implies that A and A±B are diffeomorphic. Then

since A is a ball, so is A± B , and the inductive step is completed. ⊔⊓

Lemma 1.3. Given an n manifold M and a ball Bn−1 ⊂ ∂M , let the manifold N be

obtained from M by attaching a ball Bn via an identification of a ball Bn−1 ⊂ ∂Bn

with the ball Bn−1 ⊂ ∂M . Then M and N are diffeomorphic.

Proof: Any two codimension-zero balls in a connected manifold are isotopic. Ap-

plying this fact to the given inclusion Bn−1 ⊂ ∂Bn and using isotopy extension, we

conclude that the pair (Bn, Bn−1) is diffeomorphic to the standard pair. So there is an

isotopy of ∂N to ∂M in N , fixed outside Bn , pushing ∂N−∂M across Bn to ∂M−∂N .

By isotopy extension, M and N are then diffeomorphic. ⊔⊓

Existence and Uniqueness of Prime Decompositions

Let M be a 3 manifold and S ⊂ M a surface which is properly embedded, i.e.,

S ∩ ∂M = ∂S , a transverse intersection. For the moment we do not assume S is con-

nected. Deleting a small open tubular neighborhood N(S) of S from M , we obtain a

3 manifold M ||S which we say is obtained from M by splitting along S . The neigh-

borhood N(S) is an interval-bundle over S , so if M is orientable, N(S) is a product

S×(−ε, ε) if and only if S is orientable.

Now suppose that M is connected and S ⊂ M is a separating sphere, meaning

that M ||S has two components, M′
1 and M′

2 . Let Mi be obtained from M′
i by filling

in its boundary sphere corresponding to S with a ball. In this situation we say M

is the connected sum M1 ♯ M2 . We remark that Mi is uniquely determined by M′
i

since any two ways of filling in a ball B3 differ by a diffeomorphism of ∂B3 , and any
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diffeomorphism of ∂B3 extends to a diffeomorphism of B3 . This last fact follows

from the stronger assertion that any diffeomorphism of S2 is isotopic to either the

identity or a reflection (orientation-reversing), and each of these two diffeomorphisms

extends over a ball.

The connected sum operation is commutative by definition and has S3 as an

identity since a decomposition M = M ♯ S3 is obtained by choosing the sphere S

to bound a ball in M . The connected sum operation is also associative, since in a

sequence of connected sum decompositions, e.g., M1 ♯ (M2 ♯ M3) , the later splitting

spheres can be pushed off the balls filling in earlier splitting spheres, so one may

assume all the splitting spheres are disjointly embedded in the original manifold M .

Thus M = M1 ♯ ··· ♯ Mn means there is a collection S consisting of n − 1 disjoint

spheres such that M ||S has n components M′
i , with Mi obtained from M′

i by filling

in its boundary spheres corresponding to spheres of S with balls.

A connected 3 manifold M is called prime if M = P♯Q implies P = S3 or Q = S3 .

For example, Alexander’s theorem implies that S3 is prime, since every 2 sphere in S3

bounds a 3 ball. The latter condition, stronger than primeness, is called irreducibility:

M is irreducible if every 2 sphere S2 ⊂ M bounds a ball B3 ⊂M . The two conditions

are in fact very nearly equivalent:

Proposition 1.4. The only orientable prime 3 manifold which is not irreducible is

S1×S2 .

Proof: If M is prime, every 2 sphere in M which separates M into two components

bounds a ball. So if M is prime but not irreducible there must exist a nonseparating

sphere in M . For a nonseparating sphere S in an orientable manifold M the union

of a product neighborhood S×I of S with a tubular neighborhood of an arc joining

S×{0} to S×{1} in the complement of S×I is a manifold diffeomorphic to S1×S2

minus a ball. Thus M has S1×S2 as a connected summand. Assuming M is prime,

then M = S1×S2 .

It remains to show that S1×S2 is prime. Let S ⊂ S1×S2 be a separating sphere,

so S1×S2 ||S consists of two compact 3 manifolds V and W each with boundary a

2 sphere. We have Z = π1(S
1×S2) ≈ π1V ∗π1W , so either V or W must be simply-

connected, say V is simply-connected. The universal cover of S1×S2 can be identified

with R3−{0} , and V lifts to a diffeomorphic copy Ṽ of itself in R3−{0} . The sphere

∂Ṽ bounds a ball in R
3 by Alexander’s theorem. Since ∂Ṽ also bounds Ṽ in R

3

we conclude that Ṽ is a ball, hence also V . Thus every separating sphere in S1×S2

bounds a ball, so S1×S2 is prime. ⊔⊓
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Theorem 1.5. Each compact, connected, orientable 3 manifold M has a decompo-

sition M = P1 ♯ ··· ♯ Pn with each Pi prime, and this decomposition is unique up to

insertion or deletion of S3 ’s and permutations of the factors Pi .

Proof: The existence of prime decompositions is harder than the uniqueness, so let us

tackle the existence first. If M contains a nonseparating S2 , this gives a decomposition

M = N ♯ S1×S2 as we saw in the proof of Proposition 1.4. We can repeat this step

of splitting off an S1×S2 summand as long as we have nonseparating spheres, but

the process cannot be repeated indefinitely since each S1×S2 summand gives a Z

summand of H1(M) , which is a finitely generated abelian group since M is compact.

Thus it suffices to prove the existence of prime decompositions in the case that each

2 sphere in M separates. Each 2 sphere component of ∂M corresponds to a B3

summand of M , so we may also assume ∂M contains no 2 spheres.

We shall prove the following assertion, which clearly implies the existence of

prime decompositions:

Basic Fact. There is a bound on the number of spheres in a system S of finitely many

disjoint spheres in M such that :

(∗) No component of M ||S is a punctured 3 sphere, i.e., a compact manifold obtained

from S3 by deleting the interiors of finitely many disjoint balls.

Before proving this we make a preliminary observation. Suppose the sphere system S

satisfies (∗) and we do surgery on a sphere Si of S using a disk D ⊂M with D∩S =

∂D ⊂ Si to produce a pair a spheres S′i and S′′i . Then



at least one of the systems S′ and S′′ obtained from S

by replacing Si with S′i or S′′i again satisfies (∗) . To

see this, first perturb S′i and S′′i to be disjoint from Si
and each other, with Si , S

′
i , and S′′i together bounding

a 3 punctured sphere P . On the other side of Si from

P we have a component A of M ||S , while the spheres S′i and S′′i split the component

of M ||S containing P into pieces B′ , B′′ , and P . Note that B′ and B′′ are distinct,

otherwise S′i and S′′i would be nonseparating spheres in M . If both B′ and B′′ were

punctured spheres, then the component B′ ∪ B′′ ∪ P of M ||S would be a punctured

sphere, contrary to hypothesis. So one of B′ and B′′ , say B′ , is not a punctured sphere.

If A∪ P ∪B′′ were a punctured sphere, this would force A to be a punctured sphere,

by Alexander’s theorem. This is also contrary to hypothesis. So we conclude that

neither component of M ||S
′ adjacent to S′i is a punctured sphere, hence the sphere

system S′ satisfies (∗) .
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Now we begin to prove the assertion that the number of spheres in a system S

satisfying (∗) is bounded. Choose a smooth triangulation T of M . This has only

finitely many simplices since M is compact. The given system S can be perturbed

to be transverse to all the simplices of T . This perturbation can be done inductively

over the skeleta of T : First make S disjoint from vertices, then transverse to edges,

meeting them in finitely many points, then transverse to 2 simplices, meeting them

in finitely many arcs and circles.

For a 3 simplex τ of T , we can make the components of S ∩ τ all disks, as

follows. Such a component must meet ∂τ by Alexander’s theorem and condition

(∗) . Consider a circle C of S ∩ ∂τ which is innermost in ∂τ . If C bounds a disk

component of S ∩ τ we may isotope this disk to lie near ∂τ and then proceed to a

remaining innermost circle C . If an innermost remaining C does not bound a disk

component of S ∩ τ we may surger S along C using a disk D lying near ∂τ with

D ∩ S = ∂D = C , replacing S by a new system S′ satisfying (∗) , in which either C

does bound a disk component of S′∩τ or C is eliminated from S′∩τ . After finitely

many such steps we arrive at a system S with S ∩ τ consisting of disks, for each τ .

In particular, note that no component of the intersection of S with a 2 simplex of T

can be a circle, since this would bound disks in both adjacent 3 simplices, forming a

sphere of S bounding a ball in the union of these two 3 simplices, contrary to (∗) .

Next, for each 2 simplex σ we eliminate arc components of S ∩ σ having both

endpoints on the same edge of σ . Such an arc α cuts off a disk D from σ which

meets only one edge of σ . We may choose α to be ‘edgemost’, so that D contains no

other arcs of S∩σ , and hence D∩S = α since circles of S∩σ have been eliminated in

the previous step. By an isotopy of S supported near α we then push the intersection

arc α across D , eliminating α from S∩σ and decreasing by two the number of points

of intersection of S with the 1 skeleton of T .

After such an isotopy decreasing the number of points of intersection of S with

the 1 skeleton of T we repeat the first step of making S intersect all 3 simplices in

disks. This does not increase the number of intersections with the 1 skeleton, so after

finitely many steps we arrive at the situation where S meets each 2 simplex only in
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arcs connecting adjacent sides, and S meets 3 simplices only in disks.

Now consider the intersection of S with a 2 simplex σ .

With at most four exceptions the complementary regions of

S ∩σ in σ are rectangles with two opposite sides on ∂σ and

the other two opposite sides arcs of S ∩ σ . Thus if T has

t 2 simplices, then all but at most 4t of the components of

M ||S meet all the 2 simplices of T only in such rectangles.

Let R be a component of M ||S meeting all 2 simplices only in rectangles. For a

3 simplex τ , each component of R∩∂τ is an annulus A which is a union of rectangles.

The two circles of ∂A bound disks in τ , and A together with these two disks is a

sphere bounding a ball in τ , a component of R ∩ τ which can be written as D2×I

with ∂D2×I = A . The I fiberings of all such products D2×I may be assumed to agree

on their common intersections, the rectangles, to give R the structure of an I bundle.

Since ∂R consists of sphere components of S , R is either the product S2×I or the

twisted I bundle over RP2 . (We can view R as the mapping cylinder of the associated

∂I subbundle, a union of spheres which is a two-sheeted covering space of a connected

base surface.) The possibility R = S2×I is excluded by (∗) . Each I bundle R is thus

the mapping cylinder of the covering space S2→RP2 . This is just RP3 minus a ball, so

each I bundle R gives a connected summand RP3 of M , hence a Z2 direct summand

of H1(M) . Thus the number of such components R of M ||S is bounded. Since the

number of other components was bounded by 4t , the number of components of M ||S

is bounded. Since every 2 sphere in M separates, the number of components of M ||S

is one more than the number of spheres in S . This finishes the proof of the existence

of prime decompositions.

For uniqueness, suppose the nonprime M has two prime decompositions M =

P1 ♯ ··· ♯ Pk ♯ ℓ(S
1×S2) and M = Q1 ♯ ··· ♯Qm ♯n(S

1×S2) where the Pi ’s and Qi ’s

are irreducible and not S3 . Let S be a disjoint union of 2 spheres in M reducing M to

the Pi ’s, by which we mean that the components of M ||S are the manifolds P1, ··· , Pk
with punctures, plus possibly some punctured S3 ’s. Such a system S exists: Take

for example a collection of spheres defining the given prime decomposition M =

P1 ♯ ··· ♯ Pk ♯ ℓ(S
1×S2) together with a nonseparating S2 in each S1×S2 . Note that

if S reduces M to the Pi ’s, so does any system S′ containing S .

Similarly, let T be a system of spheres reducing M to the Qi ’s. If S ∩ T 6= ∅ ,

we may assume this is a transverse intersection, and consider a circle of S ∩T which

is innermost in T , bounding a disk D ⊂ T with D ∩ S = ∂D . Using D , surger the

sphere Sj of S containing ∂D to produce two spheres S′j and S′′j , which we may
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take to be disjoint from Sj , so that Sj , S′j , and S′′j together bound a 3 punctured

3 sphere P . By an earlier remark, the enlarged system S ∪ S′j ∪ S
′′
j reduces M to the

Pi ’s. Deleting Sj from this enlarged system still gives a system reducing M to the

Pi ’s since this changes only one component of M ||S ∪ S
′
j ∪ S

′′
j by attaching P to one

of its boundary spheres, which has the net effect of simply adding one more puncture

to this component.

The new system S′ meets T in one fewer circle, so after finitely many steps of

this type we produce a system S disjoint from T and reducing M to the Pi ’s. Then

S ∪T is a system reducing M both to the Pi ’s and to the Qi ’s. Hence k =m and the

Pi ’s are just a permutation of the Qi ’s.

Finally, to show ℓ = n , we have M = N ♯ℓ(S1×S2) = N ♯n(S1×S2) , so H1(M) =

H1(N)⊕Z
ℓ = H1(N)⊕Z

n , hence ℓ = n . ⊔⊓

The proof of the Prime Decomposition Theorem applies equally well to manifolds

which are not just orientable, but oriented. The advantage of working with oriented

manifolds is that the operation of forming M1 ♯M2 from M1 and M2 is well-defined:

Remove an open ball from M1 and M2 and then identify the two resulting boundary

spheres by an orientation-reversing diffeomorphism, so the orientations of M1 and

M2 fit together to give a coherent orientation of M1 ♯M2 . The gluing map S2→S2 is

then uniquely determined up to isotopy, as we remarked earlier.

Thus to classify oriented compact 3 manifolds it suffices to classify the irre-

ducible ones. In particular, one must determine whether each orientable irreducible

3 manifold possesses an orientation-reversing self-diffeomorphism.

To obtain a prime decomposition theorem for nonorientable manifolds requires

very little more work. In Proposition 1.4 there are now two prime reducible manifolds,

S1×S2 and S1×̃S2 , the nonorientable S2 bundle over S1 , which can also arise from

a nonseparating 2 sphere. Existence of prime decompositions then works as in the

orientable case. For uniqueness, one observes that N ♯ S1×S2 = N ♯ S1×̃S2 if N

is nonorientable. This is similar to the well-known fact in one lower dimension that

connected sum of a nonorientable surface with the torus and with the Klein bottle

give the same result. Uniqueness of prime decomposition can then be restored by

replacing all the S1×S2 summands in nonorientable manifolds with S1×̃S2 ’s.

A useful criterion for recognizing irreducible 3 manifolds is the following:

Proposition 1.6. If p : M̃→M is a covering space and M̃ is irreducible, then so is M .

The converse is also true, but its proof is more difficult and will be given in §3.1.
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Proof: For a sphere S ⊂ M the covering space p−1(S)→S consists of disjoint lifts S̃

of S projecting homeomorphically to S . Each of these lifts bounds a ball in M̃ since

M̃ is irreducible. For a lift S̃ bounding a ball B in M̃ , any other lift of S in the interior

of B bounds a ball in B by Alexander’s Theorem, so we may choose S̃ so that it is

innermost in B , with no other lifts of S in the new ball B that it bounds.

We claim that p :B→p(B) is a covering space. To verify the covering space prop-

erty, consider first a point x ∈ p(B) − S , with U a small ball neighborhood of x

disjoint from S . Then p−1(U) is a disjoint union of balls in M̃ − p−1(S) , and the

ones of these in B provide a uniform covering of U for the projection B→p(B) . Now

consider a point x ∈ S . For a small ball neighborhood U of x meeting S in a disk,

p−1(U) is a disjoint union of balls, only one of which, Ũ say, meets B since no lifts

of S lie in the interior of B and p is one-to-one on S̃ . Therefore p restricts to a

homeomorphism of Ũ ∩ B onto a neighborhood of x in p(B) . Thus the projection

p :B→p(B) is a covering space. This covering space is single-sheeted on S̃ , hence on

all of B since p(B) is connected, so p :B→p(B) is a homeomorphism with image a

ball bounded by S . ⊔⊓

By the proposition, manifolds with universal cover S3 are irreducible. This in-

cludes RP3 and more generally each 3 dimensional lens space Lp/q , which is the

quotient space of S3 under the free Zq action generated by the rotation (z1, z2)֏
(e2πi/qz1, e

2pπi/qz2) , where S3 is viewed as the unit sphere in C2 .

For a product M = S1×F2 , or more generally any surface bundle F2→M→S1 ,

with F2 a compact connected surface other than S2 or RP2 , the universal cover of

M − ∂M is R3 , so such an M is irreducible.

One might wonder whether there is an analogue of Proposition 1.6 with ‘irre-

ducible’ replaced by ‘prime’, but there is a counterexample to this since S1×S2 is a

2 sheeted covering space of RP3 ♯RP3 . Namely, RP3 ♯RP3 is the quotient of S1×S2

under the identification (x,y) ∼ (ρ(x),−y) with ρ a reflection of the circle. This

quotient can also be described as the quotient of I×S2 where (x,y) is identified

with (x,−y) for x ∈ ∂I . In this description the 2 sphere giving the decomposition

RP3 ♯RP3 is {1/2}×S
2.

Exercises

1. Prove the smooth Schoenflies theorem in R
2 : An embedded circle in R

2 bounds

an embedded disk.

2. Show that for compact 3 manifold M there is a bound on the number of 2 spheres

Si which can be embedded in M disjointly such that no Si bounds a ball and no two
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Si ’s bound a product S2×I .

3. Use the method of proof of Alexander’s theorem to show that every torus T ⊂ S3

bounds a solid torus S1×D2 ⊂ S3 on one side or the other. (This result is also due to

Alexander.)

4. Develop an analogue of the prime decomposition theorem for splitting a compact

irreducible 3 manifold along disks rather than spheres. In a similar vein, study the

operation of splitting nonorientable manifolds along RP2 ’s with trivial normal bun-

dles.

5. Show: If M3 ⊂ R3 is a compact submanifold with H1(M) = 0, then π1(M) = 0.

2. Torus Decomposition

Beyond the prime decomposition, there is a further canonical decomposition of

irreducible compact orientable 3 manifolds, splitting along tori rather than spheres.

This was discovered only in the mid 1970’s, by Johannson and Jaco-Shalen, though

in the simplified geometric version given here it could well have been proved in the

1930’s. (A 1967 paper of Waldhausen comes very close to this geometric version.)

Perhaps the explanation for this late discovery lies in the subtlety of the uniqueness

statement. There are counterexamples to a naive uniqueness statement, involving a

class of manifolds studied extensively by Seifert in the 1930’s. The crucial observa-

tion, not made until the 1970’s, was that these Seifert manifolds give rise to the only

counterexamples. It then becomes possible to get a unique decomposition by treating

the Seifert submanifolds in a given manifold as pieces that are to be left intact, and

not decomposed.

Existence of Torus Decompositions

In this section and in later chapters we will often be dealing with surfaces in

3 manifolds, where by a surface in a 3 manifold M we will generally mean a compact

connected surface S that is properly embedded in M , so S ∩ ∂M = ∂S , a transverse

intersection. A surface S ⊂M is said to be 2-sided if its normal bundle is trivial, and

1-sided if its normal bundle is nontrivial. The ‘sides’ of S then correspond to the

components of the complement of S in a tubular neighborhood.

For the torus decomposition of an irreducible manifold M the aim is to split M

along a collection T of disjoint tori in M so that the resulting components of M ||T are

simpler than M . To do this we must impose some conditions on the tori, otherwise
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the components of M ||T could be more complicated than M rather than simpler. For

example if one takes a knotted embedded of S1 in S3 and splits S3 along the torus

boundary T of a tubular neighborhood of the knot, then one component of S3 ||T

will be a solid torus S1×D2 but the other component can be a fairly complicated

nonsimply-connected manifold with torus boundary.

Examples like this will be excluded by the following general definition. A 2 sided

surface S other than S2 or D2 in a 3 manifold M is incompressible if for each disk

D ⊂M with D ∩ S = ∂D there is a disk D′ ⊂ S with ∂D′ = ∂D .

Thus, surgery on S along a disk in M cannot produce a simpler surface, but only

splits off an S2 from S , leaving a diffeomorphic copy of S as the other piece resulting

from the surgery. A disk D with D∩S = ∂D will sometimes be called a compressing

disk for S , whether or not a disk D′ ⊂ S with ∂D′ = ∂D exists. If S were a sphere

or disk then the disk D′ would always exist so every sphere or disk would satisfy

the incompressibility condition, but it seems best to avoid this situation by excluding

spheres and disks in the definition of incompressibility.

Before focusing our attention on incompressible tori we first develop a few basic

facts about incompressible surfaces in general.

(1) A surface S ⊂ M which is not a sphere or disk is incompressible if the map

π1(S)→π1(M) induced by inclusion is injective. This is because if D is a compressing

disk for S then ∂D is nullhomotopic in M , hence also in S if the map π1(S)→π1(M)

is injective. Then it is a standard fact in surface theory that a nullhomotopic embed-

ded circle in a surface must bound a disk in the surface. This argument also works

if one just assumes that the two inclusions of S into M ||S on either side of S are

injective on π1 .

The converse of (1) is true as well, but this is a more difficult result that will

be proved in Chapter 3 as Corollary 3.3. For 1 sided surfaces these two conditions

for incompressibility are no longer equivalent, π1 injectivity being strictly stronger

in general; see the exercises. However, the definition we have given requires incom-

pressible surfaces to be 2 sided, so there should be no confusion on this point.

(2) There are no incompressible surfaces in R3 or, equivalently, in S3 . This is imme-
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diate from the converse to (1), but can also be proved directly, as follows. As we saw

in the proof of Alexander’s theorem, after isotopically perturbing a surface S ⊂ R
3

to make the height function a morse function with all critical points lying in different

levels, there is a sequence of surgeries on S along horizontal disks converting S into

a disjoint union of spheres. Surgery on an incompressible surface S in S3 using a

compressing disk D splits S into two surfaces one of which is a sphere. This sphere

bounds a ball on each side in S3 , and we can use the ball that is on the same side

of S as D to isotope S to the other surface produced by the surgery. This surface

is therefore incompressible. This argument applies to each of the surgeries that re-

duce the original incompressible surface S to a collection of spheres, so it follows

that S is isotopic to one of these spheres, making S itself a sphere. However, the

definition of incompressibility does not allow spheres, so we conclude that there are

no incompressible surfaces in S3 or R3 .

(3) A 2 sided torus T in a 3 manifold M is compressible if it bounds a solid torus

S1×D2 ⊂ M or lies in a ball in M . The converse is also true if M is irreducible: A

compressible torus in an irreducible manifold must either bound a solid torus or lie

in a ball. For if T ⊂ M is a compressible torus there is a surgery on T along some disk

D which turns T into a sphere. This sphere bounds a ball B ⊂M if M is irreducible.

There are now two cases: If B ∩D = ∅ then reversing the surgery glues two disks in

∂B together to create a solid torus bounded by T . The other possibility is that D ⊂ B ,

and then T ⊂ B .

If M = S3 the ball B can be chosen disjoint from D , so the alternative D ⊂ B is

not needed. Thus using statement (2) above we obtain the result, due to Alexander,

that a torus in S3 bounds a solid torus on one side or the other.

(4) If S ⊂ M is a finite collection of disjoint incompressible surfaces, then M is ir-

reducible if and only if M ||S is irreducible. To see this, suppose first that M is irre-

ducible. Then a 2 sphere in M ||S bounds a ball in M , and this ball must be disjoint

from S by statement (2) above, so the sphere bounds a ball in M ||S and M ||S is ir-

reducible. Conversely, given a sphere S2 ⊂ M which we may assume is transverse

to S , consider a circle of S ∩ S2 which is innermost in S2 , bounding a disk D ⊂ S2

with D ∩ S = ∂D . By incompressibility of the components of S , ∂D bounds a disk

D′ ⊂ S . The sphere D∪D′ bounds a ball B ⊂ M if M ||S is irreducible. We must have

B ∩ S = D′ , otherwise a component of S would be contained in B , contrary to state-

ment (2). Isotoping S by pushing D′ across B to D and slightly beyond eliminates

the circle ∂D from S ∩ S2 , along with any other circles of S ∩ S2 which happen to lie
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in D′ . For the new S it is still true that M ||S is irreducible since it is diffeomorphic

to the old M ||S by isotopy extension. We can then repeat this process of eliminating

circles of S ∩ S2 until we eventually get S ∩ S2 = ∅ , or in other words S2 ⊂ M ||S .

Since M ||S is irreducible, S2 then bounds a ball in M ||S and therefore also in M .

(5) If S ⊂ M is a finite collection of disjoint, properly embedded surfaces that are

either incompressible or spheres or disks, then a surface T in M disjoint from S

is incompressible in M if and only if it is incompressible in M ||S . It is obvious that

incompressibility in M implies incompressibility in M ||S . For the less trivial converse,

let D ⊂ M be a compressing disk for T . If this intersects S , we can assume the

intersection is transverse, so D ∩ S consists of circles in the interior of D . If any

of these circles bound disks in S , we can take such a circle that is innermost in S ,

bounding a disk D0 ⊂ S with D0∩D = ∂D0 . We can use D0 to surger D , producing a

new disk D intersecting S in fewer circles. After repeating this step a finite number of

times, we may assume D∩S contains no circles that bound disks in S . If there are any

remaining circles in D∩S , choose one that is innermost in D , bounding a disk D0 ⊂ D

with D0 ∩ S = ∂D0 . Since the components of S are either incompressible or spheres

or disks, the circle ∂D0 must bound a disk in S , contrary to what we have arranged

by the earlier surgery. Thus we must have D ∩ S = ∅ . Since T is incompressible in

M ||S , the circle ∂D then bounds a disk in T . This shows T is incompressible in M .

Proposition 1.7. For a compact irreducible manifold M there is a bound on the

number of components in a system S = S1∪···∪Sn of disjoint closed incompressible

surfaces Si ⊂ M such that no component of M ||S is a product T×I with T a closed

surface.

Proof: This follows the scheme of the proof of existence of prime decompositions.

First, perturb S to be transverse to a triangulation of M and perform the follow-

ing two steps repeatedly to simplify the intersections of S with 2 simplices σ 2 and

3 simplices σ 3 :

(1) Make all components of S ∩ σ 3 disks. In the proof of prime decomposition, this

was done by surgery, but now the surgeries can be achieved by isotopy. Namely, given

a surgery disk D ⊂ M with D ∩ S = ∂D , incompressibility gives a disk D′ ⊂ S with

∂D′ = ∂D . The sphere D ∪D′ bounds a ball B ⊂ M since M is irreducible. We have

B∩S = D′ , otherwise a component of S would lie in B . Then isotoping S by pushing

D′ across B to D and a little beyond replaces S by one of the two surfaces produced

by the surgery.
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Note that Step (1) eliminates circles of S ∩ σ 2 , since such a circle would bound

disks in both adjacent σ 3 ’s, producing a sphere component of S .

(2) Eliminate arcs of S∩σ 2 with both endpoints on the same edge of σ 2 . This can be

done by isotopy of S just as in the prime decomposition theorem.

After these simplifications, components of M ||S meeting 2 simplices only in rect-

angles are I bundles as before. Trivial I bundles are ruled out by hypothesis. The

nontrivial I bundles are bounded by surfaces Si and are tubular neighborhoods of

1 sided surfaces S′i . A surface Si cannot have I bundles on both sides since the union

of these two I bundles would be all of M , which is impossible since the I bundles

contain no vertices of the triangulation of M .

Replacing each Si bounding an I bundle by the corresponding S′i converts S

into a new system S′ such that the components of M ||S
′ are exactly the components

of M ||S that are not I bundles. The number of components of M ||S
′ is therefore

bounded by four times the number of 2 simplices of the triangulation. Consider now

the following exact sequence:

H3(M, S
′;Z2)→H2(S

′;Z2)→H2(M ;Z2)

By excision the first group can be replaced by H3(M ||S
′, ∂(M ||S

′) − ∂M ;Z2) . This

is a vector space over Z2 of dimension bounded by the number of components of

M ||S
′ since, after triangulating M ||S

′ , there is at most one nontrivial simplicial relative

3 cycle with Z2 coefficients in each component of M ||S
′ . Thus the first and third terms

of the exact sequence have dimensions bounded by numbers depending only on M ,

not S . By exactness the dimension of the middle term H2(S
′;Z2) ≈ H2(S;Z2) is also

bounded. Thus the number of components of S′ is bounded, and this is the same as

the number of components of S . ⊔⊓

A properly embedded surface S ⊂ M is called ∂ parallel if it is isotopic, fixing

∂S , to a subsurface of ∂M . By isotopy extension this is equivalent to saying that S

splits off a product S×[0,1] from M with S = S×{0} . An irreducible manifold M is

called atoroidal if every incompressible torus in M is ∂ parallel.

Corollary 1.8. In a compact connected irreducible M there exists a (possibly empty)

finite collection T of disjoint incompressible tori such that each component of M ||T

is atoroidal.

Proof: If M is atoroidal we take T = ∅ . Otherwise, let T1 be an incompressible torus

in M that is not ∂ parallel. If M ||T1 is atoroidal we take T = T1 , and otherwise we
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let T2 be an incompressible torus in M ||T1 that is not ∂ parallel. This process can be

repeated as long as we do not obtain a splitting into atoroidal components, but this

cannot be done infinitely often, otherwise we would have an arbitrarily large collection

T of disjoint incompressible tori in M with no component of M ||T a product of a torus

with I , contradicting the previous proposition. ⊔⊓

Now we describe an example of an irreducible M where this torus decomposition

into atoroidal pieces is not unique, the components of M ||T for the two splittings

being in fact nonhomeomorphic.

Example. For i = 1,2,3,4, let Mi be a solid torus whose boundary torus is decom-

posed as the union of two annuli Ai and A′i each winding qi > 1 times around the S1

factor of Mi . The union of these four solid tori, with each A′i glued to Ai+1 (subscripts

mod 4), is the manifold M . This contains two tori T1 = A1 ∪ A3 and T2 = A2 ∪ A4 .

The components of M ||T1 are M1 ∪M2 and M3 ∪M4 , and the components of M ||T2

are M2 ∪M3 and M4 ∪M1 .

The fundamental group of Mi ∪ Mi+1 has presentation 〈xi, xi+1 | x
qi
i = x

qi+1

i+1 〉 .

The center of this amalgamated free product is cyclic, generated by the element

x
qi
i = x

qi+1

i+1 . Factoring out the center gives quotient Zqi ∗ Zqi+1
, with abelianization

Zqi⊕Zqi+1
. Thus if the qi ’s are for example distinct primes, then no two of the mani-

folds Mi ∪Mi+1 are homeomorphic.

Results from later in this section will imply that M is irreducible, T1 and T2

are incompressible, and the four manifolds Mi ∪Mi+1 are atoroidal. So the splittings

M ||T1 and M ||T2 , though quite different, both satisfy the conclusions of the Corollary.

Manifolds like the ones in this example that are obtained by gluing together solid

tori along annuli in their boundaries that are not contractible in the solid tori belong

to a very special class of manifolds called Seifert manifolds, which we now define.

A model Seifert fibering of S1×D2 is a decomposition of S1×D2 into disjoint cir-

cles, called fibers, constructed as follows. Starting with [0,1]×D2 decomposed into

the segments [0,1]×{x} , identify the disks {0}×D2 and {1}×D2 via a 2πp/q ro-

tation, for p/q ∈ Q with p and q relatively prime. The segment [0,1]×{0} then
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becomes a fiber S1×{0} , while every other fiber in S1×D2 is made from q segments

[0,1]×{x} . A Seifert fibering of a compact connected 3 manifold M is a decompo-

sition of M into disjoint circles, the fibers, such that each fiber has a neighborhood

diffeomorphic, preserving fibers, to a neighborhood of a fiber in some model Seifert

fibering of S1×D2 . A Seifert manifold is one which possesses a Seifert fibering.

Each fiber circle C in a Seifert fibering of a 3 manifold M has a well-defined

multiplicity, the number of times a small disk transverse to C meets each nearby

fiber. For example, in the model Seifert fibering of S1×D2 with 2πp/q twist, the

fiber S1×{0} has multiplicity q while all other fibers have multiplicity 1. Fibers

of multiplicity 1 are regular fibers, and the other fibers are multiple (or singular, or

exceptional). The multiple fibers are isolated and lie in the interior of M . The quotient

space B of M obtained by identifying each fiber to a point is a surface, compact if

M is compact, as is clear from the model Seifert fiberings. The projection π :M→B
is an ordinary fiber bundle on the complement of the multiple fibers. In particular,

π : ∂M→∂B is a circle bundle, so ∂M consists of tori and Klein bottles, or just tori if

M is orientable.

Somewhat surprisingly, Seifert manifolds account for all the nonuniqueness in

torus decompositions of orientable 3 manifolds, according to the following theorem

which will be the main result of this section.

Theorem 1.9. For a compact irreducible orientable 3 manifold M there exists a col-

lection T ⊂M of finitely many disjoint incompressible tori such that each component

of M ||T is either atoroidal or a Seifert manifold, and a minimal such collection T is

unique up to isotopy.

Here ‘minimal’ means minimal with respect to inclusions of such collections. Note

the strength of the uniqueness: up to isotopy, not just up to homeomorphism of M ,

for example. The orientability assumption can be dropped if splittings along incom-

pressible Klein bottles are also allowed and the definition of ‘atoroidal’ is modified

accordingly. For simplicity we will stick to the orientable case, however.

Incompressible Surfaces in Seifert Manifolds

We have already proved the existence statement in the preceding theorem, where

Seifert manifolds are unnecessary. We will prove the uniqueness statement using var-

ious facts about incompressible surfaces in Seifert manifolds which will be proved in

this subsection. To state these we first need another definition. A properly embedded

surface S ⊂ M is ∂ incompressible if for each disk D ⊂M such that ∂D∩S is an arc
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α in ∂D and ∂D −α ⊂ ∂M (such a D is called a ∂ compressing disk for S ) there is

a disk D′ ⊂ S with α ⊂ ∂D′ and ∂D′ −α ⊂ ∂M .

Analogously to the situation for incompressibility, S is ∂ incompressible if the map

π1(S, ∂S)→π1(M, ∂M) induced by inclusion is injective for all choices of basepoint

in ∂S .

A surface which is either incompressible and ∂ incompressible, or a sphere not

bounding a ball, or a disk that is not ∂ parallel, will be called an essential surface.

For an essential surface S in an irreducible manifold M no circle of ∂S can bound a

disk in ∂M since an innermost such disk could be push into the interior of M to give

a compressing disk for S , forcing S itself to be a disk since surfaces are assumed to

be connected, and then irreducibility of M would force the disk S to be ∂ parallel.

Lemma 1.10. The only essential surfaces in S1×D2 are disks isotopic to meridian

disks {x}×D2 .

Proof: Let S be an essential surface in M = S1×D2 . No circles of ∂S can bound disks

in ∂M since an innermost such circle bounding a disk D ⊂ ∂M would bound a disk

D′ ⊂ S since S is essential, so S = D′ and the sphere D∪ S would bound a ball in M

since M is irreducible, making S a ∂ parallel disk. Thus we may isotope S so that all

the circles of ∂S are either meridian circles {x}×∂D2 or transverse to all meridian

circles. By a small perturbation S can also be made transverse to a fixed meridian

disk D0 . Circles of S ∩D0 can be eliminated by pushing the disk D ⊂ S bounded by

an innermost such circle C across the ball bounded by D and the disk in D0 bounded

by C .

After this has been done, consider an edgemost arc α of S ∩D0 . This cuts off a

∂ compressing disk D from D0 , so α also cuts off a disk

D′ from S , meeting ∂M in an arc β . The existence of D′

implies that the two ends of β lie on the same side of D0

in ∂M . But this is impossible since β is transverse to all

meridians and therefore proceeds monotonically through

the meridian circles of ∂M . Thus we must have S disjoint from D0 , so ∂S consists of

meridian circles. Each circle of ∂S bounds a disk in the boundary sphere of the ball
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M ||D0 . Pushing this disk slightly into the interior of the ball yields a compressing disk

for S so since S is essential it must be a disk. It follows from Alexander’s theorem

that any two disks in a ball having the same boundary are isotopic fixing the boundary,

so S is isotopic to a meridian disk in M . ⊔⊓

Lemma 1.11. An incompressible surface S in an irreducible 3 manifold M with

∂S contained in torus boundary components of M is either ∂ incompressible or a

∂ parallel annulus.

Proof: Suppose S is incompressible but ∂ compressible, with a ∂ compressing disk

D meeting S in an arc α which does not cut off a disk from

S . Let β be the arc D ∩ ∂M , lying in a torus component T

of ∂M . The circles of ∂S in T do not bound disks in T ,

as noted before Lemma 1.10. Thus β lies in an annulus

component A of T ||∂S . If β were trivial in A , cutting off a

disk D′ , incompressibility applied to the disk D ∪D′ would imply that α cuts off a

disk from S , contrary to assumption. Therefore β must join the two components of

∂A .

If both components of ∂A come from the same circle of ∂S then S ∩ T consists

of a single circle. Since S is 2 sided, it has a nonvanishing normal vector field that

points into D along α . These normals point into β at the endpoints of α and hence

they point into A along the two circles of ∂A . But this is impossible if the two circles

of ∂ give the same circle of ∂S .

Thus the endpoints of β must lie in different circles of ∂S , and we have the

configuration shown in the figure at the right. Let

N be a neighborhood of ∂A∪α in S , a 3 punctured

sphere. The circle ∂N−∂S bounds an obvious disk

in the complement of S lying near D∪A , so since S

is incompressible this boundary circle also bounds

a disk in S . Thus S is an annulus. Surgering the

torus S ∪ A via D yields a sphere, which bounds a ball in M since M is irreducible.

Hence S ∪A bounds a solid torus and S is ∂ parallel. ⊔⊓

Proposition 1.12. If M is an irreducible Seifert-fibered manifold, then every essential

surface in M is isotopic to a surface which is either vertical, i.e., a union of regular

fibers, or horizontal, i.e., transverse to all fibers.

Proof: Let C1, ··· , Cn be fibers of the Seifert fibering which include all the multiple
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fibers together with at least one regular fiber if there are no multiple fibers. Let M0 be

M with small fibered open tubular neighborhoods of all the Ci ’s deleted. Thus M0 is

a circle bundle M0→B0 over a compact surface B0 with nonempty boundary. Choose

disjoint arcs in B0 whose union splits B0 into a disk, and let A be the pre-image in

M0 of this collection of arcs, a union of disjoint vertical annuli in M0 . The manifold

M1 = M0
||A is then a circle bundle over a disk, hence a solid torus.

Let S be an essential surface in M , possibly a disk that is not ∂ parallel, but not a

sphere since M is irreducible. The circles of ∂S are nontrivial in ∂M as noted before

Lemma 1.10. The circles of ∂S can then be isotoped to be either vertical or horizontal

in each component torus or Klein bottle of ∂M . Vertical circles of ∂S can be perturbed

by isotopy to be disjoint from A . We may assume S meets the fibers Ci transversely,

and hence meets the neighborhoods of these fibers in disks transverse to fibers. So

the surface S0 = S ∩ M0 also has each of its boundary circles either horizontal or

vertical.

Circles of S ∩A bounding disks in A can be eliminated by isotopy of S as usual.

Arcs of S ∩A with both endpoints on the same component of ∂A can be eliminated

as follows. An edgemost such arc α cuts off a disk D from A . If the two endpoints

of α lie in a component of ∂M0 − ∂M , then S can be isotoped across D to eliminate

two intersection points with a fiber Ci . The other possibility, that the two endpoints

of α lie in ∂M , cannot occur, for if it did, the disk D would be a ∂ compressing disk

for S in M , a configuration ruled out by the monotonicity argument in Lemma 1.10,

with the role of meridians in that argument now played by vertical circles.

So we may assume the components of S∩A are either vertical circles or horizontal

arcs. If we let S1 = S0
||A in the solid torus M1 =M0

||A , it follows that ∂S1 consists of

horizontal or vertical circles in the torus ∂M1 . Obviously both types of circles cannot

be present simultaneously. We may assume the components of S1 are incompressible

in M1 . For let D ⊂M1 be a compressing disk for a component S1 . After a perturbation

this will intersect the other components of S1 transversely in circles in the interior

of D , so let C be an innermost such circle. This bounds a disk D0 in S . If D0 is

contained in M1 then we can use it to modify D to eliminate C from D∩ S1 . If D0 is

not contained in M1 we can use it to isotope S to eliminate some components of ∂S1 .

Repeating this argument, we can isotope S so that each component of S1 is either

incompressible in M1 or a disk. In the latter case the disk cannot be ∂ parallel since

its boundary is vertical or horizontal in ∂M1 .

Since the non-disk components of S1 are incompressible, each such component

is either a ∂ parallel annulus or essential in M1 , hence isotopic to a meridian disk by
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Lemma 1.10. If S1 contains a ∂ parallel annulus with horizontal boundary, then this

annulus has a ∂ compressing disk D with D ∩ ∂M1 a vertical arc in ∂M0 . As in the

earlier step when we eliminated arcs of S∩A with endpoints on the same component

of ∂A , this leads to an isotopy of S removing intersection points with a fiber Ci . So we

may assume all components of S1 are either ∂ parallel annuli with vertical boundary

or disks with horizontal boundary.

Since vertical circles in ∂M1 cannot be disjoint from horizontal circles, S1 is either

a union of ∂ parallel annuli with vertical boundary or a union of disks with horizontal

boundary. In the former case S1 can be isotoped to be vertical, staying fixed on ∂S1

where it is already vertical. This isotopy gives an isotopy of S to a vertical surface.

In the opposite case that S1 consists of disks with horizontal boundary, isotopic to

meridian disks in M1 , we can isotope S1 to be horizontal fixing ∂S1 , and this gives an

isotopy of S to a horizontal surface. ⊔⊓

Vertical surfaces are easy to understand: They are circle bundles since they are

disjoint from multiple fibers by definition, hence they are either annuli, tori, or Klein

bottles.

Horizontal surfaces are somewhat more subtle. For a horizontal surface S the

projection π :S→B onto the base surface of the Seifert fibering is a branched cover-

ing, with a branch point of multiplicity q for each intersection of S with a singular

fiber of multiplicity q . (To see this, look in a neighborhood of a fiber, where the map

S→B is equivalent to the projection of a number of meridian disks onto B , clearly

a branched covering.) For this branched covering π :S→B there is a useful formula

relating the Euler characteristics of S and B ,

χ(B)− χ(S)/n =
∑

i

(1− 1/qi)

where n is the number of sheets in the branched cover and the multiple fibers of

M have multiplicities q1, ··· , qm . To verify this formula, triangulate B so that the

images of the multiple fibers are vertices, then lift this to a triangulation of S . Count-

ing simplices would then yield the usual formula χ(S) = nχ(B) for an n sheeted

unbranched cover. In the present case, however, a vertex in B which is the image

of a fiber of multiplicity qi has n/qi pre-images in S , rather than n . This yields a

modified formula χ(S) = nχ(B) +
∑
i(−n + n/qi) , which is equivalent to the one

above.

There is further structure associated to a horizontal surface S in a Seifert-fibered

manifold M . We may assume S is 2 sided since if it is 1 sided, it has an I bundle
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neighborhood whose boundary is a horizontal 2 sided surface. The projection S→B
is onto so S meets all fibers of M , and M ||S is an I bundle. (The local triviality of

this I bundle is clear if one looks in a model-fibered neighborhood of a fiber.) The

associated ∂I subbundle consists of two copies of S , so the I bundle is the mapping

cylinder of a 2 sheeted covering projection S∐S→T for some possibly disconnected

surface T . There are two cases, according to whether S separates M or not:

(1) If M ||S is connected, so is T , and S ∐ S→T is the trivial covering S ∐ S→S , so

M ||S = S×I and hence M is a bundle over S1 with fiber S . The surface fibers of this

bundle are all horizontal surfaces in the Seifert fibering.

(2) If M ||S has two components, each is a twisted I bundle over a component Ti of T ,

the mapping cylinder of a nontrivial 2 sheeted covering S→Ti , i = 1,2. The parallel

copies of S in these mapping cylinders, together with T1 and T2 , are the leaves of a

foliation of M . These leaves are the ‘fibers’ of a natural projection p :M→I , with T1

and T2 the pre-images of the endpoints of I . This ‘fiber’ structure on M is not exactly a

fiber bundle, so let us give it a new name: a semi-bundle. Thus a semi-bundle p :M→I
is the union of two twisted I bundles p−1[0, 1/2] and p−1[1/2,1] glued together by a

homeomorphism of the fiber p−1(1/2). For example, in one lower dimension, the Klein

bottle is a semi-bundle with fibers S1 , since it splits as the union of two Möbius bands.

More generally, one could define semi-bundles with base any manifold with boundary.

The techniques we have been using can also be applied to determine which Seifert

manifolds are irreducible:

Proposition 1.13. A Seifert-fibered manifold M is irreducible unless it is S1×S2 ,

S1×̃S2 , or RP3 ♯RP3 .

Proof: We begin by observing that if M is reducible then there is a horizontal sphere

in M not bounding a ball. This is proved by imitating the argument of the preceding

proposition, with S now a sphere not bounding a ball in M . The only difference is

that when incompressibility was used before, e.g., to eliminate trivial circles of S∩A ,

we must now use surgery rather than isotopy. Such surgery replaces S with a pair of

spheres S′ and S′′ . If both S′ and S′′ bounded balls, so would S , as we saw in the

proof of Alexander’s theorem, so we may replace S by one of S′ , S′′ not bounding a

ball. With these modifications in the proof, we eventually get a sphere which is either

horizontal or vertical, but the latter cannot occur since S2 is not a circle bundle.

If S is a horizontal sphere in M , then as we have seen, M is either a sphere bundle

or a sphere semi-bundle. The only two sphere bundles are S1×S2 and S1×̃S2 . A
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sphere semi-bundle is two copies of the twisted I bundle over RP2 glued together via

a diffeomorphism of S2 . Such a diffeomorphism is isotopic to either the identity or

the antipodal map. The antipodal map extends to a diffeomorphism of the I bundle

RP2×̃I , so both gluings produce the same manifold, RP3 ♯RP3 . ⊔⊓

The manifolds S1×S2 , S1×̃S2 , and RP3 ♯ RP3 have Seifert fiberings. This is

obviously true for S1×S1 , while for S1×̃S2 we can regard this as S2×I with the two

ends identified via the antipodal map of S2 , so the I bundle structure on S2×I gives

S1×̃S2 a circle bundle structure. For RP3 ♯ RP3 , the I bundle structures on the two

halves RP2×̃I of RP3 ♯RP3 are glued together by the identity so they give RP3 ♯RP3

a circle bundle structure too.

Now we can give a converse to Proposition 1.12:

Proposition 1.14. Let M be an irreducible Seifert-fibered 3 manifold. Then every

2 sided horizontal surface S ⊂ M is essential. The same is true of every 2 sided

vertical surface except:

(a) a torus bounding a solid torus with a model Seifert fibering, containing at most

one multiple fiber, or

(b) an annulus cutting off a solid torus from M with the product fibering on this solid

torus.

Proof: For a 2 sided horizontal surface S we have noted that the Seifert fibering

induces an I bundle structure on M ||S , so M ||S is the mapping cylinder of a 2 sheeted

covering S ∐ S→T . In the special case that S is a disk, the only 2 sheeted covering

D2∐D2→T is the trivial covering D2∐D2→D2 so the I -bundle M ||S is D2×I . Since

S does not separate M it cannot be ∂ parallel, so S is essential in this case.

If S is a horizontal surface other than a disk we need to show that it is incom-

pressible and ∂ incompressible. The covering space projection S∐ S→T is injective

on π1 for all choices of a basepoint in S∐S , so the inclusion of the ∂I subbundle into

the I bundle is also injective on π1 , which implies that S is incompressible. Similarly,

∂ incompressibility follows from injectivity of relative π1 ’s.

Now let S be a 2 sided vertical surface, so S is a circle bundle over a 1 manifold,

hence a torus, Klein bottle, or annulus. Suppose first that S is a torus or Klein bottle.

If S is compressible, choose a compressing disk D with ∂D not bounding a disk in S .

Then D is essential in M ||S . The components of the Seifert-fibered manifold M ||S

are irreducible by Proposition 1.13 since they have nonempty boundary, so D can be

isotoped in M ||S to be horizontal by Proposition 1.12, as a disk cannot be vertical.
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The Euler characteristic formula in the component of M ||S containing D takes the

form χ(B) − 1/n =
∑
i(1 − 1/qi) where n is the number of sheets in the branched

cover D→B and there is one term in the summation for each multiple fiber. The

summation is non-negative so χ(B) > 0. Since ∂B is nonempty, B must then be a

disk with χ(B) = 1. Each term 1−1/qi is at least 1/2, so there can be at most one such

term, and so there is at most one multiple fiber. This component of M ||S is therefore

a solid torus with a model Seifert fibering, and S is its torus boundary.

In the case that S is a vertical annulus, a compressing disk D with ∂D not bound-

ing a disk in S can be isotoped to have ∂D vertical in S . Then D is essential in M ||S

and so can be isotoped in M ||S to be horizontal, so in particular ∂D becomes hori-

zontal, but this is impossible since ∂D is vertical. Thus S must be incompressible. If

it is ∂ compressible it must be ∂ parallel by Lemma 1.11, cutting off a Seifert-fibered

solid torus from M . The Seifert fibering of this solid torus is a model Seifert fibering

as we argued in the preceding paragraph, but it cannot contain a multiple fiber since

the annulus S in its boundary wraps around the solid torus only once, as the solid

torus is S× I with S = S×{0} . This shows that if S is not essential, it cuts off a solid

torus from M with the product fibering. ⊔⊓

The Euler characteristic argument in this proof showed the following fact:

Corollary 1.15. The only Seifert fiberings of S1×D2 are the model Seifert fiberings.

Uniqueness of Torus Decompositions

For the proof of the uniqueness statement in Theorem 1.9 we will need three

preliminary lemmas.

Lemma 1.16. An essential annulus in a Seifert-fibered manifold M can be isotoped

to be vertical, after possibly changing the Seifert fibering if M is an I bundle over

the torus or Klein bottle.

Proof: By Proposition 1.12 an essential annulus A in M can be isotoped to be either

horizontal or vertical, so let us assume A is horizontal. If A does not separate M

then M ||A is the product A×I , so M is a bundle over S1 with fiber A , the mapping

torus A×I/{(x,0) ∼ (ϕ(x),1)} of a diffeomorphism ϕ :A→A . We can view A×I as

a cube with left and right faces identified by translation and then M is obtained by

further identifying the top and bottom faces via ϕ . The top and bottom faces become

the annulus A . There are only four isotopy classes of diffeomorphisms of A = S1×I ,
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obtained as the composition of either the identity or a reflection in each factors, so

M can be obtained as the mapping torus one of these four diffeomorphisms. Since

these diffeomorphisms preserve the product structure on A = S1×I , we can construct

another Seifert fibering of M by fibering the cube by parallel line segments joining the

left and right faces. In this fibering of M the annulus A is vertical. Fibering the cube

by segments joining the front and back faces then gives an I bundle structure on M .

The four choices of diffeomorphisms of A give the two I bundles over the torus and

the two I bundles over the Klein bottle.

If A is separating, M ||A consists of two copies of the twisted I bundle B over

a Möbius band obtained from a cube by identifying the left and right faces by a 180

degree twist. The annulus A is formed by the top and bottom faces of the cube. All

four possible gluings of the two copies of B yield the same manifold M since the

gluing maps extend over B . The fibering of the cube by segments joining the left and

right faces gives a model Seifert fibering of the solid torus B with a multiple fiber of

multiplicity 2. After gluing the two copies of B together one has a Seifert fibering of M

in which A is vertical. (This Seifert fibering has base space a disk with two multiple

fibers of multiplicity 2.) Fibering the two cubes by segments joining the front and

back faces makes M the twisted I bundle over the Klein bottle obtained by gluing

two Möbius bands together along their boundaries. ⊔⊓

Lemma 1.17. If M is a Seifert manifold then the restrictions to ∂M of any two Seifert

fiberings of M are isotopic unless M is S1×D2 or an I bundle over the torus or Klein

bottle.

Proof: Let M be Seifert-fibered with ∂M 6= ∅ . First we note that M contains an

essential vertical annulus A unless M = S1×D2 . Namely, take A = π−1(α) where α

is an arc in the base surface B which is disjoint from the images of the multiple fibers

and is either nonseparating (if B 6= D2) or separates the images of multiple fibers (if

B = D2 and there are at least two multiple fibers). This guarantees that A is essential

by Proposition 1.14. If M is not an I bundle over the torus or Klein bottle then by

Lemma 1.16, A is isotopic to a vertical annulus in any other Seifert fibering of M , so

the two Seifert fiberings can be isotoped to agree on ∂A , hence on the components of

∂M containing ∂A . Since α could be chosen to meet any component of ∂B , the result

follows. ⊔⊓

Lemma 1.18. If M is compact, orientable, irreducible, and atoroidal, and M con-

tains an essential annulus meeting only torus components of ∂M , then M is a Seifert

manifold.
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Proof: Let A be an annulus as in the hypothesis. Since we assume M is orientable

there are just three possibilities:

(a) A meets two different tori T1 and T2 in ∂M , and A∪T1∪T2 has a neighborhood

N which is a product of a 2 punctured disk with S1 .

(b) A meets only one torus T1 in ∂M , the union of A with either annulus of T1
||∂A

is a torus, and A∪T1 has a neighborhood N which is a product of a 2 punctured

disk with S1 .

(c) A meets only one torus T1 in ∂M , the union of A with either annulus of T1
||∂A

is a Klein bottle, and A∪T1 has a neighborhood N which is an S1 bundle over a

punctured Möbius band.

In all three cases N has the structure of a circle bundle N→B with A vertical.

By hypothesis, the tori of ∂N − ∂M must either be compressible or ∂ parallel

in M . Suppose D is a nontrivial compressing disk for ∂N − ∂M in M , with ∂D a

nontrivial loop in a component torus T of ∂N − ∂M . If D ⊂ N , then N would be a

solid torus S1×D2 by Proposition 1.14, which is impossible since N has more than

one boundary torus. So D∩N = ∂D . Surgering T along D yields a 2 sphere bounding

a ball B3 ⊂ M . This B3 lies on the opposite side of T from N , otherwise we would

have N ⊂ B3 with T the only boundary component of N . Reversing the surgery, B3

becomes a solid torus outside N , bounded by T .

The other possibility for a component T of ∂N − ∂M is that it is ∂ parallel in

M , cutting off a product T×I from M . This T×I cannot be N since π1N is non-

abelian, the map π1N→π1B induced by the circle bundle N→B being a surjection

to a free group on two generators. So T×I is an external collar on N , and hence can

be absorbed into N .

Thus M is N with solid tori perhaps attached to one or two tori of ∂N−∂M . The

meridian circles {x}×∂D2 in such attached S1×D2 ’s are not isotopic in ∂N to circle

fibers of N , otherwise A would be compressible in M (recall that A is vertical in N) .

Thus the circle fibers wind around the attached S1×D2 ’s a nonzero number of times

in the S1 direction. Hence the circle bundle structure on N extends to model Seifert

fiberings of these S1×D2 ’s, and so M is Seifert-fibered. ⊔⊓
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Proof of Theorem 1.9: Only the uniqueness statement remains to be proved. Let

T = T1 ∪ ··· ∪ Tm and T ′ = T ′1 ∪ ··· ∪ T
′
n be two minimal collections of disjoint

incompressible tori splitting M into manifolds Mj and M′
j , respectively, which are

either atoroidal or Seifert-fibered. We may suppose T and T ′ are nonempty, otherwise

the theorem is trivial since if T is empty for example, M itself would be Seifert-fibered

or atoroidal and the minimality of T ′ would force it to be empty as well. We can also

assume no torus of T is isotopic to a torus of T ′ , otherwise we could extend this

isotopy to an ambient isotopy of M and in particular of T , to make T and T ′ have a

torus in common, then split M along this torus and appeal to induction on the number

of tori in T and T ′ .

After perturbing T to meet T ′ transversely, we can isotope T or T ′ to elimi-

nate circles of T ∩ T ′ which bound disks in T or T ′ by the usual argument using

incompressibility and irreducibility.

For each component Mj of M ||T the components of T ′ ∩ Mj are then tori or

annuli. To see that the annulus components are incompressible in Mj , let D be a

compressing disk in Mj for an annulus component A of T ′ ∩Mj . After perturbing

D to be transverse to T ′ , it might have circles of intersection with T ′ in its interior,

but these can be eliminated, innermost first, by an isotopy of D in M fixing ∂D since

the components of T ′ are incompressible in M . After this has been done, D will

be a compressing disk for A in M and hence also for the component torus of T ′

containing A . This torus is incompressible in M , so ∂D bounds a disk D′ in T ′ .

This disk must be disjoint from T since we have eliminated trivial circles of T ∩ T ′ .

Thus D′ is contained in Mj . It must in fact be contained in A , otherwise A would be

contained in D′ and T ∩ T ′ would contain a circle that is trivial in T ′ . This shows A

is incompressible in Mj . If it is ∂ compressible then it is ∂ parallel by Lemma 1.11,

so it can be eliminated by an isotopy of T ′ decreasing the number of circles of T ∩T ′ .

Thus we can assume all annulus components of T ′∩Mj are essential in Mj for all j .

A circle C of T ∩ T ′ lies in the boundary of annulus components Aj of T ′ ∩Mj
and Ak of T ′ ∩Mk (possibly Aj = Ak if Mj = Mk) . By Lemma 1.18 Mj and Mk are

Seifert-fibered. Our next goal is to use minimality of the collection T to show that it

must now be disjoint from T ′ . To do this we distinguish several cases:

1. If Mj 6= Mk , Lemma 1.16 implies that we can choose Seifert fiberings of Mj and

Mk in which Aj and Ak can be isotoped to be vertical. Extending these isotopies

to ambient isotopies and reversing the time parameter gives isotopies of the Seifert

fiberings to new Seifert fiberings in which the original Aj and Ak are vertical. These
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Seifert fiberings both have C as a fiber, so they can be isotoped to agree on the torus

component Ti of T containing C . This means that the collection T is not minimal

since Ti could be deleted from it. Thus the case Mj ≠ Mk cannot occur.

2. The same argument works if Mj = Mk and Aj = Ak , so we may assume now that

Mj = Mk and Aj ≠ Ak .

3. If Mj is not one of the I bundles in Lemma 1.16 then Aj can be isotoped to be

vertical in Mj , and the same is true for Ak . Restricting these two isotopies to the two

copies of C in Mj on either side of Ti , we then have two isotopic circles in Ti that

are vertical in the Seifert fibering of Mj . This implies that the Seifert fibering can be

isotoped to extend across Ti and so the collection T would again fail to be minimal.

4. If Mj is one of the I bundles in Lemma 1.16 it can only be the trivial bundle

S1×S1×I since Mj is orientable and has at least two boundary components, coming

from the two sides of Ti . If Mj = S
1×S1×I and we have to rechoose the Seifert

fibering of Mj to make Aj vertical, then as we saw in the proof of Lemma 1.16, the

new fibering is the trivial circle bundle over S1×I . The annulus Aj , being vertical in

this fibering and essential in Mj , must then join the two boundary tori of Mj since

its projection to the base surface S1×I of the circle bundle must be an arc joining

the two boundary components of S1×I . The boundary circle of Tk coming from C

is disjoint from Aj so it can be isotoped in Ti to be vertical. This implies that the

Seifert fibering of Mj can be isotoped, fixing Aj , first to make this boundary circle of

Tk vertical and then to make the two fiberings of Ti coming from either side in Mj
agree, so Ti could be omitted from T . The same argument would work if the roles of

Tj and Tk are reversed.

5. The only remaining possibility is that Mj = S
1×S1×I and both Tj and Tk can be

isotoped to be vertical in Mj . The argument in Case 3 then applies.

Thus we may assume T ∩ T ′ = ∅ . If any component Ti of T lies in an atoroidal

M′
j it must be isotopic to a component T ′i of T ′ , a situation we have already excluded.

Thus we may assume each Ti lies in a Seifert-fibered M′
j , and similarly, each T ′i lies in

a Seifert-fibered Mj . These Seifert-fibered manifolds all have nonempty boundary, so

they contain no horizontal tori. Thus we may assume all the tori Ti ⊂ M
′
j and T ′i ⊂ Mj

are vertical.

We can also assume all the Mj ’s and M′
j ’s are Seifert-fibered by the following

argument. An atoroidal Mj , for example, would have to lie entirely within an M′
j , as

Mj contains no T ′i ’s. This M′
j would have to be Seifert-fibered since it contains the
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Ti ’s in ∂Mj . Then since the Ti ’s in ∂Mj are vertical in M′
j , the Seifert-fibering of M′

j

restricts to a Seifert-fibering of Mj .

The Ti ’s and T ′i ’s together cut M into pieces Np . Each Np has two possibly

different Seifert-fiberings, the one from the Mj which contains it, the other from the

M′
j which contains it. Consider a torus Ti . This has four fiberings from the two

Seifert-fiberings on the Np and Nq on either side of it (possibly Np = Nq ). Two of

these fiberings of Ti must be equal since they come from the same M′
j containing Ti .

We will show that the Seifert-fiberings of the Mj containing Np and the Mk containing

Nq (possibly Mj = Mk ) can be made to agree on Ti . But this would contradict the

minimality of the collection T since Ti could be deleted from it.

In most cases the two Seifert-fiberings of Np can be made to agree on Ti by an

isotopy of the Seifert-fibering of Mj supported near Ti by Lemma 1.17. Since we

assume M is orientable, the exceptional cases are:

— Np = S
1×D2 . This would have Ti as its compressible boundary, so this case

cannot occur.

— Np = S
1×S1×I . One boundary component of this is Ti . If the other is a T ′i , then

Ti and T ′i would be isotopic, contradicting an earlier assumption. Thus both tori

of ∂Np come from tori in T . If these tori in T are distinct then Np gives an

isotopy between them so one of them could be omitted from T , contradicting

the minimality of T . There remains the possibility that both tori of ∂Np must

come from the same Ti , but this would mean T ′ is empty, a case excluded at the

beginning. Thus the case Np = S
1×S1×I cannot occur.

— Np is the twisted I bundle over a Klein bottle. This has only one boundary com-

ponent, so Np = Mj ⊂ M
′
j and we can change the Seifert-fibering of Mj to be the

restriction of the Seifert-fibering of M′
j .

The same reasoning applies with Nq and Mk in place of Np and Mj . The conclusion

is that we have Seifert-fiberings of Mj and Mk that agree on Ti since they agree with

the fibering from M′
j . This means Ti can be omitted from T , contrary to minimality,

and the proof is complete. ⊔⊓

Exercises

1. Show: If S ⊂ M is a 1 sided connected surface, then π1S→π1M is injective if and

only if ∂N(S) is incompressible, where N(S) is a twisted I bundle neighborhood of

S in M .

2. Call a 1 sided surface S ⊂ M geometrically incompressible if for each disk D ⊂ M
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with D ∩ S = ∂D there is a disk D′ ⊂ S with ∂D′ = ∂D . Show that if H2M = 0 but

H2(M ;Z2) 6= 0 then M contains a 1 sided geometrically incompressible surface which

is nonzero in H2(M ;Z2) . This applies for example if M is a lens space Lp/2q . Note

that if q > 1, the resulting geometrically incompressible surface S ⊂ Lp/2q cannot be

S2 or RP2 , so the map π1S→π1Lp/2q is not injective. (See [Frohman] for a study of

geometrically incompressible surfaces in Seifert manifolds.)

3. S is ∂ incompressible if π1(S, ∂S)→π1(M, ∂M) is injective for all choices of base-

point in ∂S .

4. Develop a canonical torus and Klein bottle decomposition theorem for irreducible

nonorientable 3 manifolds.
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Chapter 2. Special Classes of 3-Manifolds
In this chapter we study prime 3 manifolds whose topology is dominated, in one

way or another, by embedded tori. This can be regarded as refining the results of the

preceding chapter on the canonical torus decomposition

1. Seifert Manifolds

Seifert manifolds, introduced in the last chapter where they play a special role in

the torus decomposition, are among the best-understood 3 manifolds. In this section

our goal is the classification of orientable Seifert manifolds up to diffeomorphism.

We begin with the classification up to fiber-preserving diffeomorphism, which is fairly

straightforward. Then we show that in most cases the Seifert fibering is unique up to

isotopy, so in these cases the diffeomorphism and fiber-preserving diffeomorphism

classifications coincide. But there are a few smaller Seifert manifolds, including some

with nonunique fiberings, which must be treated by special techniques. Among these

are the lens spaces, which we classify later in this section.

The most troublesome Seifert fiberings are those with base surface S2 and three

multiple fibers. These manifolds are too large for the lens space method to work

and too small for the techniques of the general case. They have been classified by a

study of the algebra of their fundamental groups, but a good geometric classification

has yet to be found, so we shall not prove the classification theorem for these Seifert

manifolds.

All 3 manifolds in this chapter are assumed to be orientable, compact, and con-

nected. The nonorientable case is similar, but as usual we restrict to orientable man-

ifolds for simplicity.

Classification of Seifert Fiberings

We begin with an explicit construction of Seifert fiberings. Let B be a compact

connected surface, not necessarily orientable. Choose disjoint disks D1, ··· ,Dk in the

interior of B , and let B′ be B with the interiors of these disks deleted. Let M′→B′

be the circle bundle with M′ orientable. Thus if B′ is orientable M′ is the product

B′×S1 , and if B′ is nonorientable, M′ is the twisted product in which circles in B′

are covered either by tori or Klein bottles in M′ according to whether these circles are

orientation-preserving or orientation-reversing in B′ . Explicitly, B′ can be constructed

by identifying pairs of disjoint arcs ai and bi in the boundary of a disk D2 , and then

we can form M′ from D2×S1 by identifying ai×S
1 with bi×S

1 via the product of
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the given identification of ai and bi with either the identity or a reflection in the S1

factor, whichever makes M′ orientable.

Let s :B′→M′ be a cross section of M′→B′ . For example, we can regard M′ as the

double of an I bundle, that is, two copies of the I bundle with their sub ∂I bundles

identified by the identity map, and then we can choose a cross section in one of the

I bundles. The cross section s together with a choice of orientation for the manifold

M′ allows us to speak unambiguously of slopes of nontrivial circles in the tori of

∂M′ . Namely, we can choose a diffeomorphism ϕ of each component of ∂M′ with

S1×S1 taking the cross section to S1×{y} (slope 0) and a fiber to {x}×S1 (slope

∞ ). An orientation of M′ induces an orientation of ∂M′ , and this determines ϕ up

to simultaneous reflections of the two S1 factors, which doesn’t affect slopes. We are

assuming the standard fact that each nontrivial circle in S1×S1 is isotopic to a unique

‘linear’ circle which lifts to the line y = (p/q)x of slope p/q in the universal cover

R
2 .

From M′ we construct a manifold M by attaching k solid tori D2×S1 to the torus

components Ti of ∂M′ lying over ∂Di ⊂ ∂B
′ , attaching by diffeomorphisms taking a

meridian circle ∂D2×{y} of ∂D2×S1 to a circle of some finite slope αi/βi ∈ Q in

Ti . The k slopes αi/βi determine M uniquely, since once the meridian disk D2×{y}

is attached to M′ there is only one way to fill in a ball to complete the attaching of

D2×S1 . The circle fibering of M′ extends naturally to a Seifert fibering of M via a

model Seifert fibering on each attached D2×S1 , since the fibers of M′ in Ti are not

isotopic to meridian circles of the attached D2×S1 . Namely, fibers have slope ∞ ,

meridians have slope αi/βi 6= ∞ . Note that the singular fiber in the ith D2×S1 has

multiplicity βi since the meridian disk of D2×S1 is attached to a slope αi/βi circle

and hence meets each fiber of ∂M′ βi times. Recall that the multiplicity of a singular

fiber is the number of times a transverse disk meets nearby regular fibers.

We use the notation M(±g,b;α1/β1, ··· , αk/βk) for this Seifert-fibered manifold

M , where g is the genus of B , with the sign + if B is orientable and − if B is

nonorientable, and b is the number of boundary components of B . Here ‘genus’

for nonorientable surfaces means the number of RP2 connected summands. Revers-

ing the orientation of M(±g,b;α1/β1, ··· , αk/βk) has the effect of changing it to

M(±g,b;−α1/β1, ··· ,−αk/βk) .

We say two Seifert fiberings are isomorphic if there is a diffeomorphism carrying

fibers of the first fibering to fibers of the second fibering.
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Proposition 2.1. (a) Every orientable Seifert-fibered manifold is isomorphic to one of

the models M(±g,b;α1/β1, ··· , αk/βk) .

(b) Seifert fiberings M(±g,b;α1/β1, ··· , αk/βk) and M(±g,b;α′1/β
′
1, ··· , α

′
k/β

′
k)

are isomorphic by an orientation-preserving diffeomorphism if and only if the follow-

ing two conditions are satisfied:

(i) After possibly permuting indices, αi/βi ≡ α
′
i/β

′
i mod 1 for each i .

(ii)
∑
iαi/βi =

∑
iα

′
i/β

′
i in the special case b = 0 .

This gives the complete isomorphism classification of Seifert fiberings since the

numbers ±g and b are determined by the isomorphism class of a fibering, which

determines the base surface B , and the Seifert fiberings M(±g,b;α1/β1, ··· , αk/βk)

and M(±g,b;α1/β1, ··· , αk/βk,0) are the same.

Proof: Given an oriented Seifert-fibered manifold M , let M′ be the complement of

open solid torus model-fibered neighborhoods of fibers C1, ··· , Ck including all multi-

ple fibers. Choose a section s of the circle bundle M′→B′ . As before, this determines

slopes for circles in ∂M′ , and we see that M has the form M(±g,b;α1/β1, ··· , αk/βk) .

It remains to see the effect on the αi/βi ’s of choosing a different section s .

Let a be an arc in B′ with endpoints in ∂B′ . Above this in M′ lies an annulus

A . We can rechoose s near A so that instead of simply crossing A transversely, it

winds m times around A as it crosses. See Figure 2.1. The effect of this change in s

is to add m to all slopes in the boundary torus of M′ at one edge of A and subtract

m from all slopes in the boundary torus at the other edge of A . In particular, if both

ends of A lie in the same boundary torus there is no change in boundary slopes.

Figure 2.1

Thus if b 6= 0 we can choose A connecting the boundary torus near the fiber Ci
with a torus in ∂M , and then change αi/βi by any integer, keeping all other αj/βj ’s

fixed. Similarly, if b = 0 we can add and subtract an integer m from any two αi/βi ’s,

so we can change the αi/βi ’s to any fractions which are congruent mod 1, subject

only to the constraint that
∑
iαi/βi stays constant.

We claim that any two choices of the section s are related by a sequence of ‘twist’
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modifications near vertical annuli A as above, together with homotopies through sec-

tions, which have no effect on slopes. To see this, take disjoint vertical annuli Aj
splitting M′ into a solid torus. Any two sections can be homotoped, through sec-

tions, to coincide outside a neighborhood of the Aj ’s. Then it is clear that near the

Aj ’s the two sections can be homotoped to coincide, after inserting the appropriate

number of twists. ⊔⊓

In the case of Seifert fiberings M(±g,0;α1/β1, ··· , αk/βk) of closed manifolds,

the invariant
∑
iαi/βi is called the Euler number of the fibering. When there are no

multiple fibers we can take k = 1 and then the Euler number, which is an integer, is

the obstruction to the existence of a section B→M , i.e., the Euler number vanishes if

and only if such a section exists. (Exercise.) More generally:

Proposition 2.2. Let M be an orientable Seifert-fibered manifold.

(a) If ∂M 6= ∅ , horizontal surfaces exist in M .

(b) If ∂M = ∅ , horizontal surfaces exist if and only if the Euler number of the fibering

is zero.

Proof: In (a), view M as a circle bundle M0 with model-fibered solid tori Mi attached,

each Mi attaching along an annulus in its boundary. Namely, these annuli in M project

to arcs in the base surface cutting off disks each containing the image of one multiple

fiber. Given a positive integer n there is a horizontal surface S0 ⊂ M0 meeting each

fiber in n points. To see this, we can regard M0 as a quotient of a trivially fibered

solid torus S1×D2 in which certain vertical annuli in S1×∂D2 are identified. Each

identification can be chosen to be either the identity or a fixed reflection in the S1

factor. Taking n points xj ∈ S
1 which are invariant (as a set) under the reflection,

the n meridian disks {xj}×D
2 in S1×D2 give the desired surface S0 in the quotient

M0 .

Now let n be a common multiple of the multiplicities qi of the multiple fibers in

the solid tori Mi attached to M0 . In Mi let Si be the union of n/qi meridian disks,

so Si meets each regular fiber in n points. We can isotope Si through horizontal

surfaces so that its n arcs of intersection with the vertical annulus M0∩Mi match up

with the n arcs of S0 in M0 ∩Mi . Then the union of S0 with the Si ’s is a horizontal

surface in M .

For (b), let M = M(±g,0;α1/β1, ··· , αk/βk) , with section s :B′→M′ as before.

Let M0 be M with a fibered solid torus neighborhood of a regular fiber in M′ deleted.

Suppose S0 is a horizontal surface in M0 .
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Claim. The circles of ∂S0 in ∂M0 have slope equal to e(M) , the Euler number of M .

This easily implies (b): By (a), such a surface S0 exists. If e(M) = 0, S0 extends via

meridian disks in M −M0 to a horizontal surface S ⊂ M . Conversely, if a horizontal

surface S ⊂ M exists, the surface S0 = S∩M0 must have its boundary circles of slope

0 since these circles bound disks in M −M0 . So e(M) = 0.

To prove the Claim, let M′
0 = M0 ∩ M

′ and S′0 = S0 ∩ M
′ . The circles of ∂S′0

in ∂M′ have slopes αi/βi , and we must check that the circles of ∂S′0 in ∂M0 have

slope
∑
iαi/βi . This we do by counting intersections of these circles with fibers and

with the section s . Since S′0 is horizontal, it meets all fibers in the same number of

points, say n . Intersections with s we count with signs, according to whether the

slope of ∂S′0 near such an intersection point is positive or negative. The total number

of intersections of ∂S′0 with s is zero because the two intersection points at the end

of an arc of s ∩ S′0 have opposite sign. Thus the number of intersections of ∂S′0 with

s in ∂M0 equals the number of intersections in ∂M′ . The latter number is
∑
inαi/βi

since the slope of ∂S′0 near the ith deleted fiber is αi/βi , which must equal the ratio

of intersection number with s to intersection number with fiber; the denominator of

this ratio is n , so the numerator must be nαi/βi .

Thus the slope of ∂S0 is (
∑
inαi/βi)/n =

∑
iαi/βi = e(M) . ⊔⊓
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Classification of Seifert Manifolds

Here is a statement of the main result:

Theorem 2.3. Seifert fiberings of orientable Seifert manifolds are unique up to iso-

morphism, with the exception of the following fiberings:

(a) M(0,1;α/β) , the various model Seifert fiberings of S1×D2 .

(b) M(0,1; 1/2,
1/2) =M(−1,1; ), two fiberings of S1×̃S1×̃I .

(c) M(0,0;α1/β1, α2/β2) , various fiberings of S3 , S1×S2 , and lens spaces.

(d) M(0,0; 1/2,
−1/2, α/β) = M(−1,0;β/α) for α,β 6= 0 .

(e) M(0,0; 1/2,
1/2,

−1/2,
−1/2) =M(−2,0; ), two fiberings of S1×̃S1×̃S1 .

The two Seifert fiberings of S1×̃S1×̃I in (b) are easy to see if we view S1×̃S1×̃I

as obtained from S1×I×I by identifying S1×I×{0} with S1×I×{1} via the diffeo-

morphism ϕ which reflects both the S1 and I factors. One fibering of S1×̃S1×̃I then

comes from the fibers S1×{y}×{z} of S1×I×I and the other comes from the fibers

{x}×{y}×I ; in the latter case the two fixed points of ϕ give multiplicity-two fibers.

Figure 2.2

Note that the examples in (a) and (b) generate the remaining examples: The fiber-

ings in (c) are obtained by gluing together two model fiberings from (a); (d) is obtained

by gluing a model fibering into each of the two fiberings in (b); and (e) is simply the

double of (b).

In most cases the Theorem is a consequence of the following:

Proposition 2.4. If M1 and M2 are irreducible orientable Seifert-fibered manifolds

which are diffeomorphic, then there is a fiber-preserving diffeomorphism provided

that M1 contains vertical incompressible, ∂ incompressible annuli or tori, and M2

contains no horizontal incompressible, ∂ incompressible annuli or tori.

Proof: First we do the case of closed manifolds. In the base surface B1 of M1 choose

two transversely intersecting systems C and C′ of disjoint 2 sided circles not passing
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through singular points (projections of singular fibers), such that:

(1) No circle of C or C′ bounds a disk containing at most one singular point.

(2) The components of B1
||(C ∪C

′) are disks containing at most one singular point.

(3) No component of B1
||(C ∪C

′) is a disk bounded by a single arc of C and a single

arc of C′ , and containing no singular point.

For example, one can choose C to be a single circle, then construct C′ from suitably

chosen arcs in B1
||C , matching their ends across C . (Details left as an exercise.) Let

T and T ′ be the collections of incompressible vertical tori in M1 lying over C and C′ .

Let f :M1→M2 be a diffeomorphism. Since M2 contains no incompressible hor-

izontal tori, we may isotope f to make f(T) vertical in M2 by Proposition 1.12. The

circles of T ∩ T ′ are nontrivial in T , so we may isotope f to make the circles of

f(T ∩ T ′) vertical or horizontal in each torus of f(T) . By condition (3) the annuli of

T ′ ||(T ∩T
′) are incompressible and ∂ incompressible in M1

||T , so we may isotope f ,

staying fixed on T , to make the annuli of f(T ′)||f(T ∩ T
′) vertical or horizontal in

M2 . If any of these were horizontal, they would be part of horizontal tori in M2 , so we

now have f(T ∪ T ′) vertical in M2 . Since f(T ∩ T ′) is vertical, we can can isotope f

to be fiber-preserving on T ∪T ′ , and then make f fiber-preserving in a neighborhood

M′
1 of T ∪ T ′ .

By condition (2) the components of M1−M
′
1 are solid tori, so the same is true for

M2−M
′
2 , where M′

2 = f(M
′
1) . Choose an orientation for M1 and a section for M′

1→B
′
1 .

Via f these choices determine an orientation for M2 and a section for M′
2→B

′
2 . Note

that f induces a diffeomorphism of B′1 onto B′2 , so the closed surfaces B1 and B2

are diffeomorphic. The fractions αi/βi for corresponding solid tori of M1 −M
′
1 and

M2 = M
′
2 must be the same since these are the slopes of boundary circles of meridian

disks, and f takes meridian disks to meridian disks (up to isotopy). Thus M1 and

M2 have the same form M(±g,0;α1/β1, ··· , αk/βk) , completing the proof for closed

manifolds.

For nonempty boundary the proof is similar but easier. Let T be a collection of

incompressible, ∂ incompressible vertical annuli splitting M1 into solid tori. Isotope

f first to make f(T) vertical, then to make f fiber-preserving in a neighborhood of

T ∪ ∂M1 . The rest of the argument now proceeds as in the closed case. ⊔⊓

Let us see how close Proposition 2.4 comes to proving the Theorem. Consider

first the case of irreducible manifolds with nonempty boundary. Then vertical incom-

pressible, ∂ incompressible annuli exist except in the model fiberings M(0,1;α/β) .

To see when horizontal annuli exist we apply the Euler characteristic formula χ(B)−
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χ(S)/n =
∑
i(1 − 1/βi) . In the present case S is an annulus, so we have χ(B) =∑

i(1 − 1/βi) ≥ 0, so B is a disk, annulus, or Möbius band. If B = D2 , we have

1 =
∑
i(1− 1/βi) , a sum of terms 1/2,

2/3,
3/4, ···, so the only possibility is 1 = 1/2 +

1/2
and the fibering M(0,1; 1/2,

1/2). If B = S1×I , we have 0 =
∑
i(1 − 1/βi) so there are

no multiple fibers and we have a product fibering M(0,2; ) of S1×S1×I . Similarly,

if B = S1×̃I we have the fibering M(−1,1; ) of S1×̃S1×̃I . The manifolds S1×S1×I

and S1×̃S1×̃I are not diffeomorphic since they deformation retract onto a torus and

a Klein bottle, respectively, and so are of distinct homotopy types. Thus the Theorem

follows in the case of irreducible manifolds with nonempty boundary.

For closed irreducible manifolds the analysis is similar but more complicated.

Incompressible vertical tori exist unless the base surface B is S2 and there are at

most three multiple fibers, or B is RP2 and there is at most one multiple fiber. If

horizontal tori exist we must have χ(B) ≥ 0, so there are the following cases:

— B = S2 and 2 =
∑
i(1 − 1/βi) . Since 1/2 ≤ 1 − 1/βi < 1 there must be either

three or four multiple fibers. With four multiple fibers, the multiplicities must

all be 2, so we have the fibering M(0,0; 1/2,
1/2,

−1/2,
−1/2) since the Euler number

must be zero. With three multiple fibers we have 1/β1 + 1/β2 + 1/β3 = 1 so

(β1, β2, β3) = (2,3,6) , (2,4,4) , or (3,3,3) , up to permutations. We leave it for

the reader to check that the fibering must be isomorphic to M(0,0; 1/2,
−1/3,

−1/6),

M(0,0; 1/2,
−1/4,

−1/4), or M(0,0; 2/3,
−1/3,

−1/3), allowing orientation-reversing iso-

morphisms.

— B = RP2 and 1 =
∑
i(1− 1/βi) , implying just two multiple fibers, of multiplicity

2. Since the Euler number is zero the fibering must be M(−1,0; 1/2,
−1/2).

— B = S1×S1 or S1×̃S1 with no multiple fibers and Euler number zero, the fiberings

M(1,0; ) and M(−2,0; ) .

Thus we have the following six manifolds:

M1 = M(1,0; ) = S1×S1×S1

M2 = M(−2,0; ) = M(0,0; 1/2,
1/2,

−1/2,
−1/2) = S

1×̃S1×̃S1

M3 = M(0,0; 2/3,
−1/3,

−1/3)

M4 = M(0,0; 1/2,
−1/4,

−1/4)

M5 = M(0,0; 1/2,
−1/3,

−1/6)

M6 = M(−1,0; 1/2,
−1/2)

Each of these seven fiberings has Euler number zero, hence does in fact contain a

horizontal surface S . By the Euler characteristic formula, χ(S) = 0, so S is either a
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torus or Klein bottle. In the latter case S is one-sided, and the boundary of a tubular

neighborhood of S is a horizontal torus. So horizontal tori exist in all seven Seifert

fiberings. As we saw in §1.2 following Proposition 1.12, this implies the manifolds

M1 M6 are torus bundles or torus semi-bundles.

There remains the case of reducible Seifert manifolds. As shown in the proof

of Proposition 1.14 there must exist a horizontal sphere in this case, which implies

that the manifold is closed and the Euler number of the Seifert fibering is zero. By

the Euler characteristic formula the base surface B must be S2 or RP2 , with at most

three multiple fibers in the first case and at most one multiple fiber in the second

case. In the latter case there is in fact no multiple fiber since the Euler number is

zero, so we have the Seifert fibering M(−1,0; ) , and it is not hard to see that this

manifold is RP3 ♯ RP3 . In the case B = S2 it is an exercise with fractions to rule

out the possibility of three multiple fibers, using the Euler characteristic formula and

the fact that the Euler number is zero. Then if there are at most two multiple fibers,

we are in the exceptional case (c) of the classification theorem, with a Seifert fibering

M(0,0;α/β,−α/β) of S1×S2 .

To complete the main classification theorem, there remain three things to do:

(1) Show the manifolds M1 M6 above are all distinct, and have only the seven Seifert

fiberings listed.

(2) Classify the Seifert manifolds which possess fiberings over S2 with at most two

multiple fibers.

(3) Show that the different Seifert fiberings over S2 with three multiple fibers are all

distinct manifolds, distinct also from the manifolds in (2).

We shall do (2) in the following subsection, and in §2.2 we shall do (1) as part of a

general classification of torus bundles and torus semi-bundles. As for (3), the only

way which seems to be known for doing this is to show these manifolds are all distin-

guished by their fundamental groups, apart from a few special cases where geometric

techniques are available. We shall not cover this in the present version of these notes;

see [Orlik] for a proof.

Classification of Lens Spaces

Let Lp/q be the manifold obtained by attaching two solid tori S1×D2 together by

a diffeomorphism ϕ :S1×∂D2→S1×∂D2 sending a meridian {x}×∂D2 to a circle of

slope p/q , where we use the convention that a meridian has slope ∞ and a longitude

S1×{y} has slope 0. The fraction p/q determines Lp/q completely since circles in
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S1×∂D2 are determined up to isotopy by their slopes, and once the meridian disk

of the second S1×D2 has been attached to the first S1×D2 there is only one way

to attach the remaining 3 ball. Note that L1/0 = S
1×S2 , and L0/1 = S

3 since S3 =

∂(D2×D2) = ∂D2×D2 ∪D2×∂D2 .

The manifolds Lp/q are Seifert-fibered in many ways, by taking model fiberings

on the two S1×D2 ’s whose restrictions to S1×∂D2 correspond under ϕ ∈ SL2(Z) ; a

model fibering on the second S1×D2 with boundary fibers of slope u/v extends to

a model fibering on the first S1×D2 provided ϕ(u/v) 6= 1/0. These Seifert fiberings

have base surface S2 and at most two multiple fibers. Conversely, such a Seifert-

fibered manifold is the union of two solid tori with boundaries identified, hence is an

Lp/q .

We shall exclude the special case L1/0 = S
1×S2 from now on.

The manifold Lp/q can also be obtained as the quotient space S3/Zq where Zq is

the group of rotations of S3 generated by ρ(z1, z2) = (e
2πi/qz1, e

2πip/qz2) , where S3

is regarded as the unit sphere in C2 . This action can be pictured in R3 , with the point

at infinity added to get S3 = S1×D2 ∪ D2×S1 , as a 1/q rotation of the first factor

and a p/q rotation of the second factor.

Figure 2.3

Each quotient S1×D2/Zq and D2×S1/Zq is a solid torus, so the quotient S3/Zq has

the form Lp′/q′ . To see that p′/q′ = p/q , note that slope p circles on the common

boundary torus S1×S1 are invariant under ρ , hence become longitudes in S1×D2/Zq .

The boundary circle of a meridian disk of D2×S1/Zq then intersects the longitude of

S1×D2/Zq p times and the meridian q times, hence has slope p/q , up to a sign

determined by orientations.

In particular π1Lp/q ≈ Zq . This can also be seen directly from the definition of
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Lp/q since the meridian disk of the second solid torus is attached to S1×D2 along a

circle which wraps around the S1 factor q times, and the subsequent attaching of a

3 ball has no effect on π1 . Since π1Lp/q ≈ Zq , the number q is uniquely determined

by Lp/q . (We take q non-negative always.)

For p there is some ambiguity, however. First, we can rechoose the longitude in

S1×D2 by adding any number of twists around the meridian. This changes slopes by

an arbitrary integer, so Lp′/q = Lp/q if p′ ≡ p mod q . Also, reversing the orientation

of S1×D2 changes the sign of slopes, so L−p/q = Lp/q . (We are not specifying an ori-

entation of Lp/q.) Finally, the roles of the two S1×D2 halves of Lp/q can be reversed,

replacing ϕ by ϕ−1 . Taking ϕ =
(
r q
s p

)
∈ SL2(Z) , then ϕ−1 =

(
p −q
−s r

)
, so we obtain

L−r/q = Lp/q , where r ≡ p−1 mod q since pr −qs = 1. Summarizing, Lp′/q = Lp/q if

p′ ≡ ±p±1 mod q .

Theorem 2.5. Lp′/q is diffeomorphic to Lp/q if and only if p′ ≡ ±p±1 mod q .

Proof: We shall show that there is, up to isotopy, only one torus T in Lp/q bounding

a solid torus on each side. This implies the theorem since such a T yields a decompo-

sition Lp/q = S
1×D2∪ϕ S

1×D2 , and the only ambiguities in the slope p′/q′ defining

such a representation of Lp/q are the ones considered in the paragraph preceding the

theorem: choice of longitude and orientation in the boundary of the first solid torus,

and switching the two solid tori.

Let T be the standard torus bounding solid tori on each side, from the definition

of Lp/q . Let Σ be the core circle S1×{0} of the first solid torus S1×D2 bounded by

T . The union of a meridian disk D of the second S1×D2 with the radial segments in

slices {x}×D2 of the first S1×D2 joining points of ∂D to Σ is a 2 complex ∆ ⊂ Lp/q .

Abstractly, ∆ is obtained from the circle Σ by attaching a disk D2 by a q to 1 covering

map ∂D2→Σ .

Let T ′ be another torus in Lp/q bounding solid tori on both sides. The concentric

copies of T ′ in these two solid tori, together with the two core circles, define a singular

foliation F of Lp/q , whose leaves can also be described as the level sets of a function

f :Lp/q→[0,1] .
The first thing we do is put ∆ in good position with respect to F , as follows.

Perturb Σ to be disjoint from the two singular leaves (circles) of F , and so that f ||Σ is

a morse function with all critical points in distinct levels. Near local maxima of f ||Σ ,

perturb the q sheets of ∆ to lie ‘above’ Σ , as in Figure 2.4. Likewise, at local minima

of f ||Σ make ∆ lie ‘below’ Σ .
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Figure 2.4

Now, keeping ∆ fixed in a small neighborhood of Σ , perturb ∆ to be transverse to the

two singular leaves of F and so that away from these two leaves f is a morse function

on ∆−Σ with all saddles in levels distinct from each other and from the levels of the

critical points of f ||Σ .

The foliation F then induces a singular foliation on ∆ , hence also on D2 via the

quotient map D2→∆ . The singularities of the foliation of D2 are of the following

types:

— ‘centers’ in the interior of D2 , where f ||(∆ − Σ) has local maxima or minima, in

particular where ∆ meets the two singular leaves of F .

— saddles in the interior of D2 .

— ‘half-saddles’ in ∂D2 , at local maxima or minima of f ||Σ .

Figure 2.5 shows the various possible configurations for a singular leaf in D2 contain-

ing a saddle or half-saddle.

Figure 2.5

Recall that all saddles and half-saddles on ∆ lie in distinct levels. However, each local

maximum or minimum of f ||Σ gives q half-saddles in D2 in the same level, and some

of these may be contained in the same singular leaf, as indicated by the dashed line

in case (e). The saddles and half-saddles in cases (a) and (e) are called essential , all

others inessential . In (a) the singular leaf divides D2 into four quarter disks, and in

(e) the singular leaf cuts off two or more half disks from D2 .

Let D be a quarter or half disk containing no other quarter or half disks, and let α

be the arc D∩∂D2 . The two endpoints of α are part of the same singular leaf, and as

we move into the interior of α we have pairs of points joined by a nonsingular leaf in

D2 . Continuing into the interior of α , this pairing of points of α by nonsingular leaves

in D2 continues until we reach an inessential saddle of type (b) or an inessential half-

saddle, since D was chosen as a smallest quarter or half disk, and the singular leaves

in cases (c) and (d) do not meet ∂D2 . An inessential saddle of type (b) presents no
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obstacle to continuing the pairing of points of α , which can therefore continue until

we reach an inessential half-saddle. At this point, however, the two paired points of

α coalesce into one point, the half-saddle point itself. We conclude from this that D

contains exactly one inessential half-saddle.

In particular, note that the projection α→Σ must be an embedding on the interior

of α since f ||Σ has at least two critical points. The two endpoints of α might have

the same image in Σ , however. If this happens, D must be a half disk and the two

endpoints of α must be half-saddles at the same critical point of f ||Σ . In this case

isotoping α rel ∂α across D to ∂D − α induces an isotopy of Σ so that it lies in a

leaf of F . This is a desirable outcome, as we shall see below, and our next goal is to

reduce to this case.

So suppose the disk D is a half disk and α has a half-saddle at only one of its

endpoints. The configuration is as shown in Figure 2.6. Here we can isotope Σ , and

hence ∆ , via isotopy extension, by dragging α across D to a new position, shown in

dashed lines, with f ||Σ having two fewer critical points.

Figure 2.6

The other possibility is that D is a quarter disk, with the configuration in Fig-

ure 2.7 below. In this case we again isotope Σ by pushing α across D , dragging the

other q − 1 sheets of ∆ along behind, enlarging them by parallel copies of D . This

does not change the number of critical points of f ||Σ , while the number of essential

saddles decreases, since the essential saddle in ∂D becomes q half-saddles and no

new essential saddles are created. (The inessential half-saddle in α becomes q − 1

inessential saddles. Inessential saddles in the interior of D are also replicated. In

addition, other essential saddles in D2 −D may become inessential.)
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Figure 2.7

Thus after finitely many steps we are reduced to the earlier case when Σ is iso-

toped into a leaf of F , which we may assume is the torus T ′ . The circle Σ is nontrivial

in T ′ since it generates π1Lp/q ≈ Zq and we may assume q > 1. The torus T is the

boundary of a solid torus neighborhood of Σ . Shrinking this neighborhood if neces-

sary, we may assume T ∩ T ′ consists of two circles, parallel copies of Σ in T ′ , so T

intersects each of the solid tori X′ and Y ′ bounded by T ′ in an annulus, and likewise

T ′ intersects each of the solid tori X and Y bounded by T in an annulus.

We now appeal to the following fact: An annulus A ⊂ S1×D2 with ∂A consisting

of nontrivial, nonmeridional circles in S1×∂D2 must be ∂ parallel. For such an A

must be incompressible since π1A→π1(S
1×D2) is injective, hence must be either

∂ incompressible or ∂ parallel. In the former case A could be isotoped to be vertical

in the product Seifert fibering of S1×D2 , but then A would again be ∂ parallel.

This applies to each of the four annuli of T −T ′ and T ′−T Note that meridional

boundary circles cannot occur since Σ is not nullhomotopic in Lp/q . We conclude that

the two annuli of T − T ′ can be isotoped to the two annuli of T ′ − T , as indicated in

Figure 2.8, so T is isotopic to T ′ . ⊔⊓

Figure 2.8

Exercises

1. What happens if αi/βi = 1/0 in the manifold M(±g,b;α1/β1, ··· , αk/βk)?
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2. Torus Bundles and Semi-Bundles

In the preceding section we encountered a few Seifert manifolds which are bundles

over the circle with torus fibers. Most torus bundles are not Seifert-fibered, however,

though they share one essential feature with most Seifert manifolds: Their topology is

dominated by incompressible tori. This makes them easy to classify, and Theorem 2.6

below reduces this classification to understanding conjugacy classes in GL2(Z) , an

algebraic problem which has a nice geometric solution described later in this section.

After the case of torus bundles we move on to a closely-related class of manifolds,

torus semi-bundles, which always have a torus bundle as a 2 sheeted covering space.

The torus bundles and torus semi-bundles which are not Seifert-fibered have a

special interest because they are the manifolds in one of Thurston’s eight geometries,

called solvgeometry.

The Classification of Torus Bundles

A torus bundle has the form of a mapping torus, the quotient Mϕ = T×I/(x,0) ∼

(ϕ(x),1) for some diffeomorphism ϕ ∈ GL2(Z) of the torus T . This is because

every diffeomorphism f :T→T is isotopic to a linear diffeomorphism ϕ ∈ GL2(Z) .

Moreover, ϕ is uniquely determined by f since it is essentially the map on H1(T) ≈ Z
2

induced by f . By Proposition 1.6, Mϕ is irreducible since its universal cover is R3 .

Once again we restrict attention to orientable 3 manifolds for simplicity. For Mϕ
this means restricting ϕ to be in SL2(Z) .

Theorem 2.6. Mϕ is diffeomorphic to Mψ if and only if ϕ is conjugate to ψ±1 in

GL2(Z) .

Proof: The ‘if’ half is easy: Applying a diffeomorphism f :T→T in each slice T×{y}

of T×I has the effect of conjugating ϕ by f when we form the quotient Mϕ =

T×I/(x,0) ∼ (ϕ(x),1) . And by switching the two ends of T×I we see that Mϕ−1 is

diffeomorphic to Mϕ .

The main step in the converse is the following:

Lemma 2.7. An incompressible surface in Mϕ is isotopic to a union of torus fibers,

unless ϕ is conjugate to ±
(

1 0
n 1

)
.

Proof: Let S ⊂ Mϕ be incompressible. We may suppose S has transverse intersection

with a fiber T0 of Mϕ . After we eliminate trivial circles of S ∩ T0 by isotopy of S in

the usual way, the surface S′ = S ||T0 is incompressible in Mϕ ||T0 = T×I . (Given
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a compressing disk D for S′ in T×I , then ∂D bounds a disk in S , which must lie

in S′ since any intersections with T0 would be trivial circles of S ∩ T0 .) If S′ is

∂ compressible, it must have ∂ parallel annulus components. These can be eliminated

by pushing them across T0 , decreasing the number of circles of S ∩ T0 . So we may

assume S′ is incompressible and ∂ incompressible in T×I .

Thinking of T×I as a trivial circle bundle, S′ can be isotoped to be either hori-

zontal or vertical, hence to consist either of vertical tori parallel to T0 , i.e., fibers of

Mϕ , or annuli whose boundary circles have the same slope in both ends T×{0} and

T×{1} . In the latter case, ϕ must preserve this slope in order for S′ to glue together

to form the original surface S . This means ϕ has an eigenvector in Z2 , so is conjugate

to ±
(

1 0
n 1

)
. ⊔⊓

Continuing the proof of the theorem, suppose f :Mϕ→Mψ is a diffeomorphism.

The lemma implies that if ψ is not conjugate to ±
(

1 0
n 1

)
, we can isotope f to take

a fiber T of Mϕ to a fiber of Mψ . We may assume that T is the image of T×∂I

in the quotient mapping torus T×I/(x,0) ∼ (ϕ(x),1) , and similarly that f(T) is

the image of T×∂I in T×I/(x,0) ∼ (ψ(x),1) . Then f is the quotient of a diffeo-

morphism F :T×I→T×I . We may assume F takes each of T×{0} and T×{1} to

themselves, rather than interchanging them, by replacing ψ by ψ−1 if necessary,

switching the ends of T×I . Let f0 and f1 be the restrictions of F to T×{0} and

T×{1} . Since (x,0) is identified with (ϕ(x),1) , it must be that (f0(x),0) is identi-

fied with (f1ϕ(x),1) . But (f0(x),0) is identified with (ψf0(x),1) , so we conclude

that f1ϕ = ψf0 . This equation implies that ϕ and ψ are conjugate in GL2(Z) since

f0 and f1 are isotopic to the same diffeomorphism in GL2(Z) , as they induce the

same map on H1(T) , namely the map induced by F on H1(T×I) .

There remains the case that ψ is conjugate, hence we may assume equal, to

±
(

1 0
n 1

)
. Since ψ preserves slope ∞ , Mψ is a circle bundle with fibers the slope ∞

circles in the torus fibers of Mψ . It is not hard to see that, with a suitable choice of

orientation for Mψ , this circle bundle, as a Seifert manifold, is M(ε,0;n) with ε equal

to either +1 or −2, the sign of ε being the same as the sign of ±
(

1 0
n 1

)
. The bun-

dle projection Mψ→S
1 factors as a composition of two circle bundles Mψ→B→S

1 ,

where B is the base surface of the Seifert fibering.

We may isotope a diffeomorphism f :Mϕ→Mψ so that the incompressible torus

f(T) , with T a fiber of Mϕ , is either horizontal or vertical in Mψ . If it is vertical,

we may rechoose the torus fibering of Mψ so that f(T) is a fiber, by rechoosing the

fibering B→S1 so that the image circle of f(T) is a fiber. (In the case that B is a Klein
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bottle, this circle is 2 sided and nonseparating in B , so its complement must be an

annulus, not a Möbius band.) In the new fibering, the new ψ is still ±
(

1 0
n 1

)
since this

matrix was determined by the Seifert fibering M(ε,0;n) , as we saw. Now we have f

taking T to a torus fiber of Mψ , and the argument can be completed as before.

If f(T) is horizontal we must have the Euler number n equal to zero, so ψ =

±I . We cannot have ψ = −I since then the base surface of M(−2,0; 0) is nonori-

entable, so the circle fibers of M(−2,0; 0) cannot be coherently oriented, which means

that the horizontal surface f(T) is separating, splitting M(−2,0; 0) into two twisted

I bundles. If ψ = I , then Mψ is the 3 torus, and after composing f with a diffeomor-

phism in GL3(Z) we may assume the map on π1 induced by f takes the subgroup

π1T into the Z2 subgroup corresponding to the torus fiber of Mψ , with cyclic image

in π1B . Then when we isotope f to make f(T) horizontal or vertical, f(T) cannot

be horizontal since for a horizontal surface the projection to B is a finite-sheeted

covering space, with π1 image of finite index in π1B , hence noncyclic. This reduces

us to the previous case that f(T) was vertical. ⊔⊓

We now determine which Seifert-fibered manifolds are torus bundles Mϕ . If the

fiber torus T is isotopic to a vertical surface, then since its complement is T×I , which

has only the product Seifert fibering, up to isomorphism, the Seifert fibering of Mϕ
must be of the form M(1,0;n) or M(−2,0;n) , with ϕ conjugate to ±

(
1 0
n 1

)
. If T is

isotopic to a horizontal surface, Mϕ must be one of the manifolds M1 M5 from §2.1:

M1 = M(1,0; ) = S1×S1×S1, with ϕ = I

M2 = M(0,0; 1/2,
1/2,

−1/2,
−1/2) = S

1×̃S1×̃S1, with ϕ = −I

M3 = M(0,0; 2/3,
−1/3,

−1/3), with ϕ =
(
−1 −1

1 0

)

M4 = M(0,0; 1/2,
−1/4,

−1/4), with ϕ =
(

0 −1
1 0

)

M5 = M(0,0; 1/2,
−1/3,

−1/6), with ϕ =
(

0 −1
1 1

)

For M2 and M4 , ϕ is rotation by 180 and 90 degrees, respectively. For M3 and M5 , if

we view Z
2 not as the usual square lattice in R2 but as the regular hexagonal lattice,

ϕ is rotation by 120 and 60 degrees, respectively. So for M1 M5 , ϕ is periodic, of

period 1,2,3,4, and 6, respectively. We leave it for the reader to verify that with these

ϕ ’s, Mϕ is the given Seifert fibering, with circle fibers the images of the segments

{x}×I ⊂ T×I in the mapping torus Mϕ . This just amounts to checking that the

multiple fibers have the multiplicities given, since the Euler number is necessarily

zero; see §2.1.
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In particular, the theorem implies that none of these Seifert manifolds M1 M5

are diffeomorphic to each other or to the manifolds M(1,0;n) or M(−2,0;n) with

n 6= 0, since their ϕ ’s are not conjugate, being of different orders. This completes

the classification of Seifert-fibered torus bundles, left over from §2.1.

The Classification of Torus Semi-bundles

Let N = S1×̃S1×̃I , the twisted I bundle over the Klein bottle. Two copies of

N glued together by a diffeomorphism ϕ of the torus ∂N form a closed orientable

manifold Nϕ , which we called a torus semi-bundle in §2.1: Nϕ is foliated by tori

parallel to ∂N , together with a Klein bottle at the core of each copy of N . We can

identify ϕ , or rather its isotopy class, with an element of GL2(Z) via a choice of

coordinates in ∂N , which we can get by thinking of N as the quotient of S1×S1×I

obtained by identifying (x,y, z) with (−x,ρ(y), ρ(z)) , where the ρ ’s are reflections.

Then the x and y coordinates define ‘horizontal’ and ‘vertical’ in ∂N , and an arbitrary

choice of orientations of these directions completes the choice of coordinates for ∂N .

If we compose ϕ on the left or the right with a diffeomorphism of ∂N which

extends to a diffeomorphism of N , then we get the same manifold Nϕ . For example,

we can compose ϕ with diffeomorphisms reflecting either the horizontal or vertical

directions in ∂N , with matrices
(
±1 0
0 ±1

)
, since the reflection ρ acting in either S1 factor

of S1×S1×I passes down to a diffeomorphism of the quotient N . As we shall see

below, these four diffeomorphisms are, up to isotopy, the only diffeomorphisms of

∂N which extend over N .

Replacing ϕ by ϕ−1 obviously produces the same manifold Nϕ , by interchanging

the roles of the two copies of N in Nϕ . Thus we have proved the easier ‘if’ half of the

following:

Theorem 2.8. Nϕ is diffeomorphic to Nψ if and only if ϕ =
(
±1 0
0 ±1

)
ψ±1

(
±1 0
0 ±1

)
in

GL2(Z) , with independent choices of signs understood.

Proof: First, consider an incompressible, ∂ incompressible surface S ⊂ N . Give N

the Seifert fibering M(−1,1; ) as a circle bundle over the Möbius band, and isotope S

to be either horizontal or vertical. If S is vertical, it consists either of tori parallel to

∂N , or nonseparating annuli with boundaries of slope ∞ in ∂N , with respect to the

coordinates in ∂N chosen earlier. If S is horizontal it consists of separating annuli

with boundaries of slope 0. This can be seen as follows. Orient ∂S by the positive

direction of the x coordinate in N . Let s be a section of the circle bundle N , with

∂s of slope 0. The arcs of S ∩ s pair off the points of ∂S ∩ ∂s into pairs of opposite
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sign, so S and s have algebraic intersection number 0. Since all the components of

∂S have parallel orientations, each component must have intersection number 0 with

∂s , hence must have slope 0.

Now let S be an incompressible surface in Nψ . As in the proof of Lemma 2.7,

we may isotope S so that for each of the two copies N1 and N2 of N whose union is

Nψ , S∩Ni is an incompressible, ∂ incompressible surface Si in Ni . By the preceding

paragraph, either S consists of parallel copies of the torus T splitting Nψ into N1

and N2 , or ψ takes slope 0 or ∞ to slope 0 or ∞ . We shall see later that this means

Nψ is Seifert-fibered.

Suppose f :Nϕ→Nψ is a diffeomorphism, and let T be the torus in Nϕ splitting

Nϕ into two copies of N . Applying the preceding remarks to S = f(T) , there are two

possibilities:

(1) We can isotope f so that f(T) is the torus splitting Nψ into two copies of N . Then

ϕ must be obtained from ψ by composing on the left and right by diffeomorphisms

of ∂N which extend to diffeomorphisms of N . Such diffeomorphisms must preserve

slope 0 and slope ∞ , since these are the unique slopes of the boundaries of incom-

pressible, ∂ incompressible separating and nonseparating annuli in N , respectively,

as noted earlier. The theorem is thus proved in this case.

(2) We can isotope f so that f(T) meets each of the two copies of N in incom-

pressible, ∂ incompressible annuli. These must be separating, since T is separat-

ing, so they must have boundaries of slope 0. Thus ψ preserves slope 0, having,

we may assume, the form
(

1 n
0 1

)
. In this case if we take all the slope 0 circles in

the torus and Klein bottle fibers of the torus semi-bundle Nψ we obtain the Seifert

fibering M(0,0; 1/2,
1/2,

−1/2,
−1/2, n), with Euler number n , as the reader can verify by

inspection. The torus f(T) can be isotoped to be vertical in this Seifert fibering,

since horizontal surfaces inM(0,0; 1/2,
1/2,

−1/2,
−1/2, n) are nonseparating (because the

base surface of this Seifert fibering is orientable, hence the fiber circles are coher-

ently orientable, making any horizontal surface the fiber of a surface bundle). We

can then rechoose the torus semi-bundle structure on Nψ so that f(T) becomes a

fiber torus. (The other torus and Klein bottle fibers are also unions of circle fibers of

M(0,0; 1/2,
1/2,

−1/2,
−1/2, n).) The ψ for the new torus semi-bundle structure is clearly

the same as the old one, namely
(

1 n
0 1

)
. So this reduces us to case (1). ⊔⊓

Which Seifert fiberings are torus semi-bundles Nϕ ? If the torus fiber is vertical

in the Seifert fibering, it splits Nϕ into two Seifert-fibered copies of N . Since N has

just the two Seifert fiberings M(−1,1; ) and M(0,1; 1/2,
1/2), the possibilities are:
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(1) M(−2,0;n) , with ϕ =
(

1 0
n 1

)

(2) M(−1,0; 1/2,
−1/2, n), with ϕ =

(
0 1
1 n

)
, or equivalently

(
n 1
1 0

)

(3) M(0,0; 1/2,
1/2,

−1/2,
−1/2, n), with ϕ =

(
1 n
0 1

)

On the other hand, if the torus fiber of Nϕ is horizontal, then as we saw in §2.1, the

Seifert fibering is either the one in (1) or (2) with n = 0.

The theorem implies that all the manifolds listed in (1)-(3) are distinct, modulo

changing the sign of n and the coincidence of (1) and (3) when n = 0. In most cases

this was already proved in §2.1. The one exception is the manifold M(−1,0; 1/2,
−1/2),

labelled M6 in §2.1, which we did not then distinguish from the other manifolds in

(1)-(3).

For each Nϕ there is a torus bundle Mψ which is a natural 2 sheeted covering

space of Nϕ . Over each of the two copies of N in Nϕ , Mψ consists of the double cover

S1×S1×I→N by which N was defined. The first copy of S1×S1×I is glued to the

second by ϕ along S1×S1×{0} and by τϕτ along S1×S1×{1} , where τ(x,y) =

(−x,ρ(y)) , as in the definition of N . Thus ψ = τϕ−1τϕ . Since the 2 sheeted

covering Mψ→Nϕ takes fibers to fibers, it fits into a commutative

diagram as at the right, where the two vertical maps are the bundle

and semi-bundle projections, and the map S1→I is the ‘folding’ map

which factors out by the reflection ρ . The bundle Mψ→S
1 can be regarded as the

pullback of the semi-bundle Nϕ→I via the folding map S1→I . There are similar

n to–1 folding maps I→I , folding up I like an n segmented carpenter’s ruler, and

Nϕ→I can be pulled back to other torus semi-bundles via these folding maps.

The Geometry of SL(2,Z)

A matrix
(
a b
c d

)
∈ SL2(Z) gives rise to a linear fractional transformation z֏

(az + b)/(cz + d) of the Riemann sphere C ∪ {∞} . Since this has real coefficients

it takes R ∪ {∞} to itself, preserving orientation since the determinant is positive.

Hence it takes the upper half plane to itself since all linear fractional transformations

preserve orientation of C ∪ {∞}. Let H denote the upper half plane, including its

boundary points R∪{∞} . The action of SL2(Z) on H extends to an action of GL2(Z)

on H if we identify points in the upper and lower half planes via complex conjugation,

since a linear fractional transformation with real coefficients takes conjugate points

to conjugate points. Then an element of GL2(Z) preserves or reverses orientation of

H according to whether its determinant is +1 or −1.

For a matrix A =
(
a b
c d

)
∈ GL2(Z) let ℓA be the semicircle in H orthogonal to ∂H



52 Special Classes of 3-Manifolds §2.2

with endpoints at the rational numbers c/a and d/b in ∂H . We orient ℓA from c/a

to d/b . In case a or b is zero, ℓA is a vertical line in H with lower endpoint at d/b

or c/a , respectively, and other ‘endpoint’ at ∞ = ±1/0. Note that there are exactly

four A ’s with the same oriented ℓA , obtained by multiplying either column of A by

−1. When the interior of H is taken as a model for the hyperbolic plane, the ℓA ’s are

geodesics, so we shall refer to them as ‘lines.’

The collection of all the lines ℓA is invariant under the action of GL2(Z) on H .

Namely, if A,B ∈ GL2(Z) then A(ℓB) = ℓAB , as the reader can readily verify using the

fact that linear fractional transformations preserve angles and take circles and lines

in C to circles or lines. Note that this action is transitive: ℓB = BA
−1(ℓA) .

Proposition 2.9. The collection of all lines ℓA forms a tessellation T of H by ideal

triangles: triangles with their vertices on ∂H .

See Figure 2.9 for two pictures of this tesselation T , the second picture being a

redrawing of the first to make H a disk.

Figure 2.9

Proof: First we check that no two lines ℓA cross. Since the action of GL2(Z) on the

ℓA ’s is transitive, it suffices to consider an ℓA crossing ℓI . If A =
(
a b
c d

)
and ℓA is

oriented from left to right (which can be achieved by switching the columns of A if

necessary), then c/a < 0 < d/b . We may assume c is negative and a , b , and d are

positive. But then ad − bc > 1, which is impossible since elements of GL2(Z) have

determinant ±1.

Next we observe that any two rational numbers are joined by an edgepath con-

sisting of finitely many edges ℓA , each two successive edges in the edgepath having

a common vertex. For given c/a ∈ Q with (a, c) = 1, there exist integers b,d with

ad−bc = ±1, so
(
a b
c d

)
∈ GL2(Z) . Thus each rational is the endpoint of a line ℓA . To
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get an edgepath joining c/a to 0/1, use the fact that
(
a b
c d

)
can be reduced to a diago-

nal matrix by a sequence of elementary column operations, each operation consisting

of adding an integer multiple of one column to the other column. (This is essentially

the Euclidean algorithm in Z .) This produces a finite sequence of matrices in GL2(Z) ,

each pair of successive matrices having a column in common, so the corresponding

sequence of ℓA ’s forms an edgepath. The final edge has endpoints 0 = 0/±1 and

∞ = ±1/0, since the diagonal matrix has ±1’s down the diagonal.

The three ℓA ’s with endpoints 0/1, 1/0, and 1/1 form one triangle in H . Let

U be the union of all the images of this triangle under the action of GL2(Z) , with all

vertices in ∂H deleted. To finish the proof we need to show that U = int(H) . We do

this by showing that U is both open and closed in int(H) . Openness is clear, since

GL2(Z) acts transitively on the ℓA ’s, and the edge ℓI is shared by the two triangles

whose third vertices are +1 and −1. If U were not closed, there would be an infinite

sequence zi ∈ U converging to a point z ∈ int(H) − U . We may assume the zi ’s

lie in distinct lines ℓAi . Since no ℓAi ’s cross, there would have to be a limit line ℓ

containing z . Since z ∉ U , ℓ is not an ℓA . Neither endpoint of ℓ can be rational

since every line through a rational point crosses lines ℓA (true for 1/0, hence true for

all rationals by transitivity) and if ℓ crossed an ℓA so would some ℓAi . On the other

hand, if both endpoints of ℓ are irrational, then again ℓ cannot cross any ℓA ’s, and

in this case it would not be possible to join rationals on one side of ℓ to rationals on

the other side by edgepaths consisting of ℓA ’s, contradicting an earlier observation.

Thus U must be closed in int(H) . ⊔⊓

For the action of GL2(Z) on H , only ±I act as the identity. So we have an injection

of the quotient PGL2(Z) = GL2(Z)/±I into the symmetry group of the tesselation T .

This is in fact an isomorphism, since PGL2(Z) acts transitively on oriented edges, and

also contains orientation-reversing maps of H . The index-two subgroup PSL2(Z) is

the group of orientation-preserving symmetries of T .

An element A =
(
a b
c d

)
∈ SL2(Z) not equal to ±I has one or two fixed points in

H , the roots of the quadratic z = (az + b)/(cz + d) . There are three possibilities:

(1) There are two distinct real irrational roots r1 and r2 . Then the line (semicircle)

in H joining r1 and r2 is invariant under A . The infinite sequence of triangles of T

meeting this line is arranged in a periodic pattern, invariant under A , which acts as a

translation of this strip, as in Figure 2.10, with ai triangles having a common vertex

on one side of the strip, followed by ai+1 triangles with a common vertex on the other

side, etc.
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Figure 2.10

The cycle (a1, ··· , a2n) is a complete invariant of the conjugacy class of A in PGL2(Z) ,

by our earlier comment that PGL2(Z) is the full symmetry group of T . The fixed points

r1 and r2 are slopes of eigenvectors of A . The two corresponding eigenvalues have

the same sign since A ∈ SL2(Z) , and this sign together with the cycle (a1, ··· , a2n) is

a complete invariant of the conjugacy class of A in GL2(Z) . A specific representative

of this conjugacy class is

±

(
1 0

a1 1

)(
1 a2

0 1

)(
1 0

a3 1

)
···

(
1 a2n

0 1

)

The conjugacy class of A−1 is represented by the inverse cycle (a2n, ··· , a1) with the

same sign of the eigenvalues. Geometrically, we can think of the conjugacy class of

the pair {A,A−1} as the triangulated cylinder obtained from the strip in Figure 5.2

by factoring out by the translation A , together with a sign. Diffeomorphism classes

of torus bundles Mϕ with ϕ having distinct real eigenvalues correspond bijectively

with such triangulated, signed cylinders, by Theorem 2.6.

(2) There is only one rational root r . In this case the triangles having r as a vertex

form a degenerate infinite strip, with quotient a cone divided into some number n

of triangles. The number n together with the sign of the eigenvalue ±1 of A is a

complete invariant of the conjugacy class of {A,A−1} in GL2(Z) . A representative of

this conjugacy class is ±
(

1 n
0 1

)
.

(3) There are two complex conjugate roots. The root in int(H) gives a fixed point of

A in int(H) , so A acts either by rotating a triangle 120 degrees about its center or

by rotating an edge 180 degrees about its center. Since PGL2(Z) acts transitively on

triangles and edges, these rotations of H fall into two conjugacy classes in PGL2(Z) ,

according to the angle of rotation. In GL2(Z) we thus have just the conjugacy classes

of the matrices of orders 2,3,4, and 6 discussed earlier.

Now let us use the tesselation T to make explicit the equivalence relation on ele-

ments of GL2(Z) corresponding to diffeomorphism of torus semi-bundles, described
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in Theorem 2.8. An element A =
(
a b
c d

)
∈ GL2(Z) determines an oriented edge ℓA in

T , as above. The other three A ’s with the same oriented ℓA differ by multiplication on

the right by
(
±1 0
0 ±1

)
, so give the same torus semi-bundle NA . Multiplication on the left

by
(
±1 0
0 ±1

)
corresponds either to the identity of H or a reflection of H across the edge

ℓI , so we may normalize A by choosing it so that ℓA lies in the right half of H . Let

T(A) be the smallest connected union of triangles of T containing ℓI and ℓA . This

is a finite triangulated strip with two distinguished oriented edges in its boundary, ℓI
and ℓA , as in Figure 2.11.

Figure 2.11

In degenerate cases the top or bottom edges of the strip can reduce to a single point.

We leave it as an exercise for the reader to check that T(A−1) is obtained from T(A)

by simply interchanging the labelling of the two oriented edges ℓI and ℓA . Thus dif-

feomorphism classes of torus semi-bundles correspond bijectively with isomorphism

classes of triangulated strips with oriented left and right edges.

As another exercise, the reader can show that the torus bundle double covering

NA , as described earlier in this section, corresponds to the cylinder (or cone) obtained

by gluing two copies of T(A) together by the identity map of their boundary, with

the sign +1 if the two ends of T(A) have parallel orientation and the sign −1 in the

opposite case; this assumes we are not in the degenerate case that T(A) is just a

single edge, with no triangles.
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Chapter 3. Homotopy Properties

1. The Loop and Sphere Theorems

These are the basic results relating homotopy theory, specifically π1 and π2 , to

more geometric properties of 3 manifolds.

The Loop Theorem

Let M be a 3 manifold-with-boundary, not necessarily compact or orientable.

Theorem 3.1. If there is a map f : (D2, ∂D2)→(M, ∂M) with f ||∂D
2 not nullhomo-

topic in ∂M , then there is an embedding with the same property.

Proof: The first half of the proof consists of covering space arguments which reduce

the problem to finitely many applications of the relatively simple special case that f

is at most two-to-one. The second half of the proof then takes care of this special

case. It is a curious feature of the proof that at the end of the first step one discards

the original f completely and starts afresh with a new and nicer f .

It seems more convenient to carry out the first half of the proof in the piecewise

linear category. Choose a triangulation of M and apply the simplicial approximation

theorem (for maps of pairs) to homotope the given f to a map f0 which is simplicial

in some triangulation of the domain D2 and which still

satisfies the same hypotheses as f . We now construct

a diagram as at the right. To obtain the bottom row, let

D0 be f0(D
2) , a finite subcomplex of M , and let V0 be a

neighborhood of D0 in M that is a compact 3 manifold

deformation retracting onto D0 . The classical construc-

tion of such a V0 is to take the union of all simplices in

the second barycentric subdivision of M that meet D0 .

In particular, V0 is connected since D0 is connected. If V0 has a connected 2 sheeted

cover p1 :M1→V0 , then f0 lifts to a map f1 :D2→M1 since D2 is simply-connected.

Let D1 = f1(D
2) and let V1 be a neighborhood of D1 in M1 chosen as before. This

gives the second row of the diagram. If V1 has a connected 2 sheeted cover we can

repeat the process to construct a third row, and so on up the tower.

To see that we must eventually reach a stage where the tower cannot be continued

further, consider the covering p−1
i (Di−1)→Di−1 . Both these spaces have natural sim-

plicial structures with simplices lifting the simplices of D0 . The nontrivial deck trans-

formation τi of the covering space p−1
i (Di−1)→Di−1 is a simplicial homeomorphism.
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Since Mi is connected, so is p−1
i (Di−1) since Mi deformation retracts to p−1

i (Di−1)

by lifting a deformation retraction of Vi−1 to Di−1 . The set p−1
i (Di−1) = Di ∪ τi(Di)

is connected, so Di ∩ τi(Di) must be nonempty. This means that τi must take some

simplex of Di to another simplex of Di , distinct from the first simplex since τi has

no fixed points. These two simplices of Di are then identified in Di−1 , so Di−1 is a

quotient of Di with fewer simplices than Di . Since the number of simplices of Di is

bounded by the number of simplices in the original triangulation of the source D2 , it

follows that the height of the tower is bounded.

Thus we arrive at a Vn having no connected 2 sheeted cover. This says that π1Vn
has no subgroup of index two, so there is no nontrivial homomorphism π1Vn→Z2 ,

and hence H1(Vn;Z2) = Hom(H1(Vn),Z2) = 0. In the exact sequence

H2(Vn, ∂Vn;Z2) -→H1(∂Vn;Z2) -→H1(Vn;Z2)

the first term is zero since it is isomorphic to H1(Vn;Z2) by Poincaré duality, and

the third term is zero since it is isomorphic to H1(Vn;Z2) by the universal coefficient

theorem. Exactness then implies that the middle term H1(∂Vn;Z2) is zero, which

means that all the components of the compact surface ∂Vn are 2 spheres.

In the component of ∂Vi containing fi(∂D
2) , let Fi = (p1

◦ ··· ◦pi)
−1(∂M) . This

will be a compact surface if the neighborhoods Vi are chosen with sufficient care. Let

Ni ⊂ π1Fi be the kernel of (p1
◦ ··· ◦pi)∗ :π1Fi→π1(∂M) . Note that [fi ||∂D

2] ∉ Ni
by the initial hypothesis on f , so Ni is a proper normal subgroup of π1Fi .

At the top of the tower the surface Fn is a planar surface, being a subsurface of

a sphere. Hence π1Fn is normally generated by the circles of ∂Fn . Since Nn 6= π1Fn ,

some circle of ∂Fn must represent an element of π1Fn − Nn . This circle bounds a

disk in ∂Vn . Let gn :D2→Vn be this embedding of a disk, with its interior pushed

into Vn so as to be a proper embedding. We have [gn ||∂D
2] ∉ Nn . We can take gn to

be a smooth embedding and work from now on in the smooth category.

The rest of the proof consists of descending the tower step by step, producing

embeddings gi :D
2→Vi with [gi ||∂D

2] ∉ Ni . In the end we will have an embedding

g0 :D2→V0 ⊂ M with [g0
||∂D

2] ∉ N0 , which says that g0
||∂D

2 is not nullhomotopic

in ∂M , and the proof will be complete.

Consider the inductive step of producing gi−1 from gi . Since pi is a 2 sheeted

cover, we can perturb gi so that the immersion pigi has only simple double curves,

either circles or arcs, where two sheets of pigi(D
2) cross transversely. Our aim is to

modify gi so as to eliminate each of these double curves in turn.

Suppose C is a double circle. A neighborhood N(C) of C in pigi(D
2) is a bundle
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over C with fiber the letter X . Thus N(C) is obtained from X×[0,1] by identifying

X×{0} with X×{1} by some homeomorphism given by a symmetry of X . A 90 degree

rotational symmetry is impossible since pi is two-to-one. A 180 degree rotational

symmetry is also impossible since it would force the domain D2 to contain a Möbius

band. For the same reason a symmetry which reflects the X across one of its crossbars

is impossible. The two remaining possibilities are the identity symmetry, with N(C) =

X×S1 , and a reflection of X across a horizontal or vertical line. Note that a reflection

can occur only if M is nonorientable.

In the case that N(C) = X×S1 there are two circles in D2 mapping to C . These

circles bound disks D1 and D2 in D2 . If D1 and D2 are nested, say D1 ⊂ D2 , then we

redefine gi on D2 to be gi ||D1 , smoothing the resulting corner along C . This has the

effect of eliminating C from the self-intersections of pigi(D
2) , along with any self-

intersections of the immersed annulus pigi(D2 −D1) . If D1 and D2 are disjoint we

modify gi by interchanging its values on the disks D1 and D2 , then smoothing the re-

sulting corners along C , as shown in Figure 3.1(a). Thus we eliminate the circle C from

the self-intersections of pigi(D
2) without introducing any new self-intersections.

Figure 3.1

In the opposite case that N(C) is not X×S1 we modify the immersed disk pigi(D
2)

in the way shown in Figure 3.1(b), replacing each cross-sectional X of N(C) by two

disjoint arcs. This replaces an immersed annulus by an embedded annulus with the

same boundary, so the result is again an immersed disk with fewer double circles.

Iterating these steps, all double circles can be eliminated without changing gi ||∂D
2 .

Now consider the case of a double arc C . The two possibilities for how the two

corresponding arcs in D2 are identified to C are shown in Figure 3.2.

Figure 3.2

In either case, Figure 3.3 shows two ways to modify gi to produce new immersions
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g′i and g′′i eliminating the double arc C .

Figure 3.3

The claim is that either [g′i ||∂D
2] ∉ Ni or [g′′i ||∂D

2] ∉ Ni . To see this, we break the

loop gi ||∂D
2 up into four pieces α , β , γ , δ as indicated in Figure 3.2. Then in case

(a) we have

αβγδ = (αγ)δ−1(αβ−1γδ−1)−1(αγ)δ

|| || ||

g′i ||∂D
2 g′′i ||∂D

2 g′i ||∂D
2

and in case (b) we have

αβγδ = (αγ−1)(γδ)−1(αγ−1)−1(αδγβ)(γδ)

|| || ||

g′i ||∂D
2 g′i ||∂D

2 g′′i ||∂D
2

So in either case, if g′i ||∂D
2 and g′′i ||∂D

2 were both in the normal subgroup Ni , so

would gi ||∂D
2 be in Ni .

We choose the new gi to be either g′i or g′′i , whichever one preserves the condi-

tion [gi ||∂D
2] ∉ Ni . Repeating this step, we eventually get gi with pigi an embedding

gi−1 , with [gi−1
||∂D

2] ∉ Ni−1 . ⊔⊓

Corollary 3.2 (Dehn’s Lemma). If an embedded circle in ∂M is nullhomotopic in M ,

it bounds a disk in M .

Proof: First delete from ∂M everything but a neighborhood of the given circle C ,

producing a new manifold M′ with ∂M′ an annulus. (If C had a Möbius band neigh-

borhood in ∂M , it would be an orientation-reversing loop in M , which is impossible

since it is nullhomotopic.) Apply the loop theorem to M′ to obtain a disk D2 ⊂ M′

with ∂D2 nontrivial in ∂M′ , hence isotopic to C . ⊔⊓

Corollary 3.3. Let S ⊂ M be a 2 sided surface. If the induced map π1S→π1M is

not injective for some choice of basepoint in some component of S , then there is a

disk D2 ⊂ M with D2 ∩ S = ∂D2 a nontrivial circle in S .

Proof: Let f :D2→M be a nullhomotopy of a nontrivial loop in S . We may assume f

is transverse to S , so f−1(S) consists of ∂D2 plus possibly some circles in D2−∂D2 .



60 Homotopy Properties §3.1

If such a circle in D2−∂D2 gives a trivial loop in the component of S it maps to, then

we can redefine f so as to eliminate this circle (and any other circles inside it) from

f−1(S) . So we may assume no circles of f−1(S) are trivial in S . Then the restriction

of f to the disk bounded by an innermost circle of f−1(S) (this circle may be ∂D2

itself) gives a nullhomotopy in M − S of a nontrivial loop in S . Now apply the loop

theorem to (M − ∂M)||(S − ∂S) . ⊔⊓

Here is another application of the loop theorem:

Proposition 3.4. A compact connected orientable prime 3 manifold M with π1M ≈

Z is either S1×S2 or S1×D2 .

Proof: First let us do the case ∂M 6= ∅ . Then ∂M can contain no spheres, otherwise

primeness would imply M = B3 , contradicting π1M ≈ Z . To restrict the possibilities

for ∂M further we need the following basic result.

Lemma 3.5. If M is a compact orientable 3 manifold then the image of the boundary

map H2(M, ∂M)→H1(∂M) has rank equal to one half the rank of H1(∂M) .

Here ‘rank’ means the number of Z summands in a direct sum splitting into cyclic

groups. Equivalently, we can use homology with Q coefficients and replace ‘rank’ by

‘dimension.’

Proof: With Q coefficients understood, consider the commutative diagram

where the vertical isomorphisms are given by Poincaré duality. Since we have coeffi-

cients in a field, the map i∗ is the dual of i∗ , obtained by applying Hom(−,Q) . Linear

algebra then implies that dim Ker i∗ = dim Coker i∗ . Hence dim Im ∂ = dim Ker i∗ =

dim Coker i∗ = dim Coker ∂ which implies the result. ⊔⊓

Continuing with the proof of the Proposition, H1(M) has rank one, hence so does

H1(M) ≈ H2(M, ∂M) and we conclude that ∂M must be a single torus. The map

π1∂M→π1M is not injective, so the loop theorem gives a disk D2 ⊂ M with ∂D2

nontrivial in ∂M . Splitting M along this D2 gives a manifold with boundary S2 , and

this leads to a connected sum decomposition M = N ♯ S1×D2 . Since M is prime, we

conclude that M = S1×D2 .

When ∂M = ∅ we use another basic fact about 3 manifolds:
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Lemma 3.6. For a 3 manifold M , every class in H2(M) is represented by an em-

bedded closed orientable surface S ⊂ M , and similarly every class in H2(M, ∂M) is

represented by an embedded compact orientable surface (S, ∂S) ⊂ (M, ∂M) . If M is

orientable, S may be chosen in both cases so that the inclusion of each component of

S into M induces an injective map on π1 .

Proof: Taking simplicial homology with respect to some triangulation of M , repre-

sent a class in H2(M) by a cycle z , a sum of the oriented 2 simplices in M with

integer coefficients. Reversing orientations of some simplices, we may assume all

coefficients are non-negative. To desingularize this 2 cycle z into a surface, first re-

place each 2 simplex σ with coefficient nσ by nσ nearby parallel copies of itself,

all with the same boundary ∂σ . Next, look in a small disk transverse to a 1 simplex

of M . The copies of 2 simplices incident to this 1 simplex have induced normal ori-

entations, which we can think of as either clockwise or counterclockwise around the

1 simplex. Since z is a cycle, the number of incident 2 simplices with clockwise ori-

entation equals the number with counterclockwise orientation. Thus there must be

two consecutive 2 simplices with opposite orientation. The edges of these along the

given 1 simplex can be joined together and pushed off the 1 simplex. Repeat this

step until z is ‘resolved’ to a surface whose only singularities are at vertices of M . To

eliminate these isolated singularities, consider a small ball about a vertex. The surface

meets the boundary of this ball in disjoint embedded circles, so we can cap off these

circles by disjoint embedded disks in the interior of the ball. Doing this for all vertices

produces an embedded oriented surface S , with a natural map to the 2 skeleton of

M taking the fundamental class for S to z . The case of relative homology is treated

in similar fashion.

To obtain the final statement of the lemma, suppose the map π1S→π1M is not

injective for some component of S . Then Corollary 3.3 gives a disk D ⊂ M realizing

this noninjectivity. Surgering S along D produces a new surface which is obviously

in the same homology class. Since S is compact, surgery simplifies S , either splitting

one component into two components of lower genus, in case ∂D separates S , or in

the opposite case, reducing the genus of a component of S . So after finitely many

steps we reach the situation that each component of S is π1 injective. ⊔⊓

Returning to the proof of Proposition 3.4 in the case of closed M , we have Z ≈

H1(M) ≈ H
1(M) ≈ H2(M) . By the lemma we may represent a nontrivial class in

H2(M) by a closed embedded surface S with each component π1 injective. Since

π1M ≈ Z , each component of S must then be a 2 sphere. The separating spheres are
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trivial in homology, so can be discarded, leaving at least one nonseparating sphere.

As in Proposition 1.4 this gives a splitting M = N ♯ S1×S2 , finishing the proof. ⊔⊓

Dropping the hypothesis that M is prime, the proof shows that M = N ♯ S1×S2

or N♯S1×D2 . Then π1M ≈ π1N∗Z , hence N is simply-connected, since a nontrivial

free product is necessarily nonabelian. This implies that ∂N , hence also ∂M , consists

of spheres, since as we showed in the proof of the loop theorem, H1(N ;Z2) = 0 is

sufficient to obtain this conclusion. Let N ′ be obtained from N by capping off its

boundary spheres by balls. Thus N ′ is a closed simply-connected 3 manifold. The

next proposition describes the homotopy type of such an N ′ .

Proposition 3.7. A closed simply-connected 3 manifold is a homotopy sphere, i.e.,

homotopy equivalent to S3 . A compact 3 manifold is contractible if and only if it is

simply-connected and has boundary a 2 sphere.

Proof: Let P be a closed simply-connected 3 manifold. It is orientable since π1P = 0.

By Poincaré duality and the Hurewicz theorem we have π2P ≈ H2(P) ≈ H
1(P) ≈

H1(P) = 0. Then π3P ≈ H3(M) ≈ Z , and we have a degree one map S3→P . This

induces an isomorphism on all homology groups. Since both S3 and P are simply-

connected, Whitehead’s theorem implies that the map S3→P is a homotopy equiva-

lence.

The second assertion can be proved in similar fashion. ⊔⊓

The Poincaré Conjecture (still unproved) is the assertion that S3 is the only ho-

motopy 3 sphere, or equivalently, B3 is the only compact contractible 3 manifold.

The Sphere Theorem

Here is the general statement:

Theorem 3.8. Let M be a connected 3 manifold. If π2M 6= 0 , then either

(a) there is an embedded S2 in M representing a nontrivial element in π2M , or

(b) there is an embedded 2 sided RP2 in M such that the composition of the cover

S2→RP2 with the inclusion RP2֓M represents a nontrivial element of π2M .

A 2 sided RP2 ⊂ M can exist only if M is nonorientable, so for orientable M

the theorem asserts that there is an S2 ⊂ M which is nontrivial in π2M , if π2M is

nonzero. An example of a nonorientable manifold where RP2 ’s are needed to repre-

sent a nontrivial element of π2 is S1×RP2 . This has S1×S2 as a double cover, so π2
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is Z . However, S1×RP2 is irreducible, by Proposition 1.13, so any embedded S2 in

S1×RP2 is nullhomotopic.

We remark that it is not true in general for orientable M that every element of

π2M is represented by an embedded sphere. For example, π2(S
1×S2) ≈ Z , but as

we saw in Proposition 1.4, a separating S2 in S1×S2 bounds a ball since S1×S2 is

prime, while a nonseparating S2 is a slice {x}×S2 in a product structure S1×S2

hence represents a generator of π2 .

Corollary 3.9. Let M be a compact connected orientable irreducible 3 manifold with

universal cover M̃ .

(a) If π1M is infinite, and in particular if ∂M 6= ∅ , then M is a K(π,1) , i.e., πiM = 0

for all i > 1 , or equivalently, M̃ is contractible.

(b) If π1M is finite, then either M = B3 or M is closed and M̃ is a homotopy 3 sphere.

Proof: Since M is irreducible, the Sphere Theorem implies that π2M is zero. It fol-

lows that π3M ≈ π3M̃ ≈ H3M̃ by the Hurewicz theorem. If π1M is infinite, M̃ is

noncompact, so H3M̃ = 0. Thus π3M = 0. By Hurewicz again, π4M ≈ π4M̃ ≈ H4M̃ .

Since H4 of a 3 manifold is zero, we get π4M = 0. Similarly, all higher homotopy

groups of M are zero. Now assume π1M is finite. If ∂M 6= ∅ then by Lemma 3.5,

∂M must consist of spheres and irreducibility implies M = B3 . If ∂M = ∅ , then M̃ is

also closed since the covering M̃→M is finite-sheeted, and so by Proposition 3.7 M̃

is a homotopy sphere. ⊔⊓

Proposition 3.10. An embedded sphere S2 ⊂ M is zero in π2M if and only if it

bounds a compact contractible submanifold of M . A 2 sided RP2 ⊂ M is always

nontrivial in π2M .

Proof: Let S̃ be any lift of the nullhomotopic sphere S ⊂ M to the universal cover

M̃ . Via the isomorphism π2M ≈ π2M̃ , S̃ is nullhomotopic in M̃ , hence it is also

homologically trivial in M̃ , bounding a compact submanifold Ñ of M̃ . Rechoosing S̃

to be an innermost lift of S in Ñ , we may assume Ñ contains no other lifts of S . Then

the restriction of the covering projection M̃→M to Ñ is a covering space Ñ→N , as

in the proof of Proposition 1.6. This covering is 1 sheeted, i.e., a homeomorphism,

since it is 1 sheeted over S . By the van Kampen theorem, Ñ is simply-connected

since M̃ is. By Proposition 3.7, N is contractible.

For the case of a 2 sided RP2 ⊂M , consider the orientable double cover M̃→M ,

corresponding to the subgroup of π1M represented by orientation-preserving loops

in M . The given RP2 lifts to a unique S2 ⊂ M̃ . If this is nullhomotopic, the first
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half of the proposition implies that this S2 bounds a contractible submanifold Ñ of

M̃ . The nontrivial deck transformation of M̃ takes Ñ to itself since the given RP2

is 2 sided in M . So the restriction of the covering projection to Ñ is a double cover

Ñ→N , with ∂N = RP2 . This is impossible by the following lemma. (Alternatively, the

Lefschetz fixed point theorem implies that the nontrivial deck transformation Ñ→Ñ
must have a fixed point since Ñ is contractible.) ⊔⊓

Lemma 3.11. If N is a compact 3 manifold, then the Euler characteristic χ(∂N) is

even.

Proof: By the proof of Lemma 3.5 with Z2 coefficients now instead of Q coefficients,

we see that H1(∂N ;Z2) is even-dimensional, from which the result follows. ⊔⊓

The converse statement, that a closed surface of even Euler characteristic is the

boundary of some compact 3 manifold, is easily seen to be true also.

Here is another consequence of the Sphere Theorem:

Proposition 3.12. In a compact orientable 3 manifold M there exists a finite collec-

tion of embedded 2 spheres generating π2M as a π1M module.

Proof: By the prime decomposition there is a finite collection S of disjoint spheres

in M such that each component of M ||S is an irreducible manifold with punctures.

We claim that the spheres in S , together with all the spheres in ∂M , generate π2M

as a π1M module. For let f :S2→M be given. Perturb f to be transverse to S , so

that f−1(S) is a collection of circles in S2 . Since the components of S are simply-

connected, we may homotope f , staying transverse to S , so that f takes each circle

in f−1(S) to a point. This means that f is homotopic to a linear combination, with

coefficients in π1M , of maps fj :S2→M − S . It suffices now to show that if P is

irreducible-with-punctures then π2P is generated as a π1P module by the spheres

in ∂P . This is equivalent to saying that if P̃→P is the universal cover, then π2P̃ is

generated by the spheres in ∂P̃ . To show this, let P̃ ′ be P̃ with its boundary spheres

filled in with balls Bℓ . We have a Mayer-Vietoris sequence:

Now P̃ ′ is the universal cover of the irreducible manifold P ′ obtained by filling in

the boundary spheres of P , so π2P̃
′ ≈ π2P

′ = 0 by the Sphere Theorem. Since
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H2(
⋃
ℓ Bℓ) = 0, we conclude that π2(

⋃
ℓ ∂Bℓ)→π2(P̃) is surjective, i.e., π2P̃ is gener-

ated by the spheres in its boundary. ⊔⊓

Proof of the Sphere Theorem: Let p : M̃→M be the universal cover. By Lemma 3.6

we may represent a nonzero class in π2M ≈ π2M̃ ≈ H2M̃ by an embedded closed

orientable surface S ⊂ M̃ , each component of which is π1 injective, hence a sphere

since π1M̃ = 0. Some component will be nontrivial in H2M̃ , hence in π2M̃ . Call this

component S0 .

The rest of the proof will be to show that the sphere S0 can be chosen so that the

union of all the images τ(S0) under the deck transformations τ of M̃ is a collection

of disjoint embedded spheres. Then the restriction p :S0→p(S0) is a covering space,

so its image p(S0) is an embedded S2 or RP2 in M representing a nontrivial element

of π2M . If it is a 1 sided RP2 , then the boundary of an I bundle neighborhood of this

RP2 is an S2 with the inclusion S2֓M homotopic to the composition S0→RP2֓M ,

hence nontrivial in π2M by the choice of S0 . Thus the proof will be finished.

We now introduce the key technical ideas which will be used. Let N be a triangu-

lated 3 manifold, with triangulation T . Then a surface S ⊂ N is said to be in normal

form with respect to the triangulation if it intersects each 3 simplex ∆3 of T in a

finite collection of disks, each disk being bounded by a triangle or square of one of

the types shown in Figure 3.4.

Figure 3.4

There are four types of triangles in each ∆3 separating one vertex from the other

three, and three types of squares separating opposite pairs of edges of ∆3 . Squares

of different types necessarily intersect each other, so an embedded surface in normal

form can contain squares of only one type in each ∆3 . The edges of the squares and

triangles are assumed to be straight line segments, so ‘triangles’ are literally triangles,

but ‘squares’ do not have to lie in a single plane or have all four sides of equal length.

‘Quadrilateral’ would thus be a more accurate term.

For a compact surface S which meets the 1 skeleton of the triangulation trans-
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versely we define the weight w(S) to be the total number of points of intersection of

S with all the edges of the triangulation.

Lemma 3.13. If N contains an embedded sphere which is nontrivial in π2N , then it

contains such a sphere in normal form, and we may take this sphere to have minimal

weight among all spheres which are nontrivial in π2N .

Proof: As in the proof of existence of prime decompositions, we begin by perturbing

a nontrivial sphere S ⊂ N to be transverse to all simplices of T , and then we perform

surgeries to produce an S meeting each 3 simplex only in disks. A surgery on S

produces a pair of spheres S′ and S′′ , and in π2N , S is the sum of S′ and S′′ , with

respect to suitably chosen orientations and paths to a basepoint. So at least one of

S′ and S′′ must be nontrivial in π2N if S is, and we replace S by this nontrivial S′

or S′′ . Then we repeat the process until we obtain a nontrivial sphere S meeting all

3 simplices in disks. Note that replacing S by S′ or S′′ does not yield a sphere of

larger weight since w(S) = w(S′)+w(S′′) .

Next, we isotope S so that for each 3 simplex ∆3 , the boundary ∂D of each disk

component D of S ∩∆3 meets each edge of ∆3 at most once. For if such a circle ∂D

meets an edge ∆1 more than once, consider two points of ∂D∩∆1 . After rechoosing

these two points if necessary, we may assume the segment α of ∆1 between these

points meets D only in the two points of ∂α . The arc α lies in one of the two disks

of ∂∆3 bounded by ∂D , and separates this disk into two subdisks. Let E be one of

these subdisks. We may perturb E so that it lies entirely in the interior of ∆3 except

for the arc α in ∂E , which we do not move, and so that the rest of ∂E , an arc β , stays

in D . Now we can perform an isotopy of S which removes the two points of ∂α = ∂β

from the intersection of S with the edge ∆1 by pushing β across the repositioned

E . It may be that before this isotopy, E intersects S in other curves besides β , but

this is not a real problem as we can just push these curves along ahead of the moving

β . The key property of this isotopy is that it decreases the weight w(S) by at least

two, since it eliminates the two intersection points of ∂α without introducing any new

intersections of S with edges of the triangulation.

Since this isotopy decreases w(S) , finitely many such isotopies, interspersed with

the former surgery steps to make S meet each 3 simplex in disks, suffice to produce a

sphere S meeting 3 simplices only in disks, with the boundaries of these disks meet-

ing each 1 simplex at most once. We can then easily isotopy S to meet all 2 simplices

in straight line segments, without changing the intersections with edges. We leave it as

an exercise for the reader to check that the condition that the boundary circles of the
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disks of S∩∆3 meet each 1 simplex at most once implies that each of these boundary

circles consists of either three or four segments, forming a triangle or square as in

Figure 3.4.

Thus we produce a sphere S in normal form which is still nontrivial in π2N .

Since the procedure for doing this did not increase the weight of S , it follows that the

minimum weight of all homotopically nontrivial spheres in N is achieved by a normal

form nontrivial sphere. ⊔⊓

Now we return to the proof of the Sphere Theorem. Choose a triangulation of

M and lift this to a triangulation T of M̃ . By the preceding lemma we may take S0

to be in normal form with respect to T and of minimum weight among all nontrivial

spheres in M̃ . The immersed sphere p(S0) ⊂ M is then composed of triangles and

squares in all the 3 simplices of M , and by small perturbations of the vertices of

these triangles and squares we can put their boundary edges in general position with

respect to each other. This means than any two edges of triangles or squares meet

transversely in at most one point lying in the interior of a 2 simplex, and no three

edges have a common point. We may also assume the interiors of the triangles and

squares intersect each other transversely. Lifting back up to M̃ , this means that the

collection Σ of all the translates τ(S0) of S0 under deck transformations τ ∈ π1M

consists of minimum weight nontrivial spheres in normal form, having transverse

intersections disjoint from the 1 skeleton of T .

Define compact subsets Bi ⊂ M̃ inductively, letting B0 be any 3 simplex of T

and then letting Bi be the union of Bi−1 with all 3 simplices which meet Bi−1 . So

B0 ⊂ B1 ⊂ ··· ⊂
⋃
i Bi = M̃ . Let Σi be the collection of all the spheres in Σ which meet

Bi . This is a finite collection since only finitely many τ(S0) ’s meet each 3 simplex of

T , and Bi is a finite union of 3 simplices.

We describe now a procedure for modifying the spheres in Σi to make them

all disjoint. Suppose S ∩ S′ ∩ T
2 6= ∅ for some S, S′ ∈ Σi , where T

2 denotes the

2 skeleton of T . As a first step, circles of S ∩ S′ in the interiors of 3 simplices of

T can be eliminated by isotopy of S without affecting S ∩ T
2 . Namely, since S and

S′ are in normal form, such a circle in a simplex ∆3 bounds disks D ⊂ S ∩ ∆3 and

D′ ⊂ S′ ∩∆3 . We may choose D to be innermost, so that D ∩ S′ = ∂D . Then D ∪D′

is a sphere, which bounds a ball in ∆3 by Alexander’s theorem, and we can isotope S′

by pushing D′ across this ball to eliminate the circle ∂D = ∂D′ from S ∩ S′ .

Next we will appeal to the following crucial lemma:
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Lemma 3.14. Let S and S′ be minimum weight nontrivial spheres in normal form,

intersecting transversely and with S ∩ S′ disjoint from 1 simplices. Assume that

S ∩ S′ 6= ∅ , and that in each 3 simplex, S ∩ S′ consists only of arcs, no circles. Then

there is a circle C of S∩S′ which is innermost in both S and S′ , i.e., C bounds disks

D ⊂ S and D′ ⊂ S′ with D∩S′ = ∂D and D′∩S = ∂D′ . Furthermore we may choose

D and D′ so that the sphere D ∪D′ is trivial in π2M .

Let us postpone the proof of this lemma, which is rather lengthy, and continue

with the proof of the Sphere Theorem. Having a circle C as in this lemma, we replace

D by D′ in S to obtain a new sphere S , and similarly modify S′ by replacing D′

by D . Since D ∪ D′ is trivial, the new spheres S and S′ are homotopic to the old

ones, hence are nontrivial. They are also still of minimum weight since the total

weight w(S)+w(S′) is unchanged, hence both terms are unchanged since S and S′

each have minimal weight. With a small perturbation of S and S′ we can eliminate

the circle C from S ∩ S′ . The new spheres S and S′ are not in normal form, but

can easily be made so: First straighten their arcs of intersection with 2 simplices

without changing the endpoints of these arcs; note that these arcs must join distinct

edges of each 2 simplex, otherwise S or S′ would not be of minimum weight. Having

straightened the intersection of S and S′ with 2 simplices, the intersections of S and

S′ with 3 simplices must still be disks, otherwise the procedure for putting them into

normal form would decrease their weights, which is not possible. The new S and S′

together have no more points of intersection in 2 simplices with other spheres in Σi
than the old S and S′ did, since these other spheres are in normal form, so when

we straightened the intersections of the new S and S′ with 2 simplices this will not

produce new intersections with the other spheres.

Thus by repeating this process for the other circles of S∩S′ and then for all pairs

S , S′ , in Σi we eventually obtain a collection Σi of spheres which are disjoint in all

2 simplices. They can easily be made to be disjoint in the interior of each 3 simplex

∆3 as well. For the new spheres of Σi meet ∂∆3 in a collection of disjoint circles, so

we need only choose disjoint disks in ∆3 bounded by these circles, then isotope the

disks of Σi ∩∆3 to these disjoint disks, rel Σi ∩ ∂∆3 .

Suppose we perform this disjunction procedure on the spheres in Σ0,Σ1,Σ2, ···

in turn. We claim that no sphere is modified infinitely often. To see this, observe first

that each sphere of Σi is contained in Bi+w where w is the common weight of all the

spheres of Σ . This is because the cell structure on each sphere S in Σ consisting of

the triangles and squares given by normal form has w vertices, so a maximal tree in
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its 1 skeleton has w − 1 edges and any two vertices can be joined by an edgepath

with w − 1 edges, so if S meets Bi , S must be contained in Bi+w . So a sphere in Σi
will not be modified at any stage after the spheres which meet Bi+w are modified, i.e.,

the spheres in Σi+w .

So the infinite sequence of modifications produces a collection Σ of disjoint non-

trivial spheres. Let S denote the union of these spheres. This is a surface in normal

form, perhaps noncompact. We claim that the intersection of S with the 2 skeleton

T
2 is invariant under all the deck transformation. This is certainly true for the inter-

section with the 1 skeleton T
1 , which was unchanged during the whole modification

procedure. Observe that for a surface T in normal form, T ∩ T
1 determines T ∩ T

2

uniquely, since for each simplex ∆2 , the weights a , b , c of T at the three edges of

∆2 determine the numbers x , y , z of arcs of T ∩ ∆2 joining each pair of edges, as

indicated in Figure 3.5.

Figure 3.5

So for each deck transformation τ , the normal form surfaces S and τ(S) have the

same intersection with T
1 hence also with T

2 , as claimed.

Finally, to make S itself invariant under deck transformations we need only

choose the disks of S − T
2 to be invariant. This can be done by fixing a choice of

these disks in a particular 3 simplex of T lying over each 3 simplex in M , then trans-

lating these disks to all other 3 simplices of T via the deck transformations. ⊔⊓

Proof of Lemma 3.14: Consider disks D ⊂ S and D′ ⊂ S′ bounded by circles of

S ∩ S′ . Such disks may or may not be innermost, i.e., meeting S ∩ S′ only in their

boundary. Here are some facts about such disks.

(1) The minimum weight of disks in S and S′ is the same. For consider a disk of

minimum weight in both S and S′ , say D ⊂ S . We may assume D is innermost. Let

D′ and E′ be the disks in S′ bounded by ∂D . At least one of the spheres D ∪ D′ ,

D ∪ E′ is nontrivial, say D ∪ E′ . Then w(D ∪ E′) ≥ w(S′) = w(D′ ∪ E′) since S′

has minimal weight. Weights being additive, we get w(D) ≥ w(D′) . This implies

w(D) = w(D′) by the choice of D , so D′ also achieves the minimum weight of disks
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in S and S′ .

(2) If D ⊂ S is an innermost minimum weight disk, separating S′ into disks D′ and

E′ with D∪E′ nontrivial, then D′ is a minimum weight disk and D∪E′ is a minimum

weight nontrivial sphere. This was shown in (1) except for the observation that D∪E′

is minimum weight, which holds because w(D ∪ E′) = w(D′ ∪ E′) since w(D) =

w(D′) .

(3) Each disk D has w(D) > 0. To verify this we may assume D is innermost. The

normal form sphere S is decomposed into triangles and squares by the 2 skeleton

T
2 . If w(D) = 0, D is disjoint from the corners of these triangles and squares, and

so meets them in regions of the following types:

Figure 3.6

Construct a graph G ⊂ D by placing a vertex in the interior of each of these regions,

together with an edge joining this vertex to the midpoint of each of the arcs of inter-

section of the region with the sides of the triangle or square. Clearly D deformation

retracts onto G , so G is a tree, but this contradicts the fact that each vertex of G is

incident to at least two edges of G .

(4) By (3), a minimum weight disk D which is not innermost can contain only one

innermost disk D0 , and the annuli in D−D0 bounded by circles of S ∩ S′ must have

weight zero. By the Euler characteristic argument in (3), these annuli must consist

entirely of the rectangular shaded regions in Figure 3.6.

(5) For a minimum weight disk D , there must exist in some 2 simplex ∆2 of T an

arc component α of D ∩ ∆2 having one end on ∂∆2 and the other in the interior of

∆2 . This is because D meets T
1 (since w(D) > 0) , and if a component of D ∩ T

2

containing a point of D∩T1 consisted entirely of arc components of D∩∆2 with both

endpoints on ∂∆2 , for each ∆2 , then D would be a closed surface.

(6) An arc α as in (5) is divided into segments by the points of α ∩ S′ . Each such

segment, except the one meeting ∂∆2 , must connect the two boundary components

of an annulus of D − S′ , as in (4). The segment of α meeting ∂∆2 must lie in the

unique innermost disk D0 ⊂ D .

Having these various facts at our disposal, we now begin the proof proper.
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Case I. Suppose we have a minimum weight disk D and an arc α of D ∩ ∆2 as in

(5) with the additional property that the endpoint of α in the interior of ∆2 is the

endpoint of an arc α′ of S′ ∩ ∆2 whose other endpoint lies on the same edge of ∆2

as the other endpoint of α ; see Fig. 3.6a. The two arcs α and α′ cut off a triangle T

from ∆2 , and the following argument will involve replacing T by subtriangles until

the situation of Fig. 3.7c is achieved, with α∩ S′ = α′ ∩ S = α∩α′ .

Figure 3.7

After replacing D by its innermost subdisk we may assume by (6) that α∩S′ = α∩α′ ,

as in Fig. 3.7b. Near α ∩ α′ , α′ lies in a disk D′ ⊂ S′ . If all of α′ is not contained

in D′ , then the circle ∂D = ∂D′ meets α′ at another point in the interior of α′ , and

we can rechoose α to have this point as an endpoint. So we may assume α′ ⊂ D′ . If

D∪D′ is nontrivial, relabel D′ as E′ in the notation of (1) and (2) above. But then the

minimum weight nontrivial sphere D ∪ E′ can obviously be isotoped to decrease its

weight, a contradiction. So D ∪D′ is trivial, and by (1) D′ is also a minimum weight

disk. We can then repeat the preceding steps with the roles of D and D′ reversed,

obtaining in the end the desired situation of Fig. 3.7c, with both D and D′ innermost

and minimum weight, and D ∪D′ trivial. This finishes the proof in Case I.

Case II. Suppose we have a minimum weight disk D such that D∩∆2 has a component

which is an arc β in the interior of ∆2 , for some 2 simplex ∆2 of T . The arc β is

divided into segments by the points of S′ ∩ D . One of these segments must lie in

the innermost disk D0 in D , otherwise these segments would all be arcs crossing the

annuli of D − S′ as we saw in (4), an impossibility since both ends of β are on ∂D .

Replace D by its innermost disk, with the new β a subsegment of the old one. The

two endpoints of β are joined to ∂∆2 by arcs α1 and α2 of S′ ∩ ∆2 , which may be

chosen to have their outer endpoints on the same edge of ∆2 , as in Figure 3.8a.
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Figure 3.8

If there are other arcs of D∩∆2 meeting α1 or α2 , these arcs cannot cross α1 or α2

since D is innermost. Furthermore, these arcs must lie on the same side of α1 and α2

as β since D lies on one side of S′ near ∂D . Assuming we are not in Case I, these arcs

then join α1 to α2 , and we can replace β by an edgemost such arc joining α1 to α2 .

So we may assume α1 and α2 meet D only at ∂β . Then α1 and α2 lie in a disk D′ of

S′ . If the sphere D∪D′ is nontrivial, it must be minimum weight, by (2). But there is

an obvious isotopy of D∪D′ decreasing its weight by two. So D∪D′ is trivial and D′

is a minimum weight disk, by (2) again. If D′ is innermost, we are done. Otherwise,

replace D′ by its innermost subdisk, α1 and α2 being replaced by subarcs which still

meet ∂∆2 by (6). If we are not in Case I, the endpoints of α1 and α2 in the interior

of ∆2 are then joined by a new arc β in some disk D of S with ∂D = ∂D′ . By (2) the

sphere D ∪ D′ cannot be nontrivial, since there is an obvious isotopy decreasing its

weight. So D ∪D′ is trivial and D is minimum weight. If D is not innermost we can

go back to the beginning of Case II and repeat the argument with a smaller rectangle

bounded by α1∪β∪α2 in ∆2 . So we may assume D is innermost, finishing the proof

in Case II.

Case III. Considering again an arc α as in (5), there remains the possibility that the

component A′ of S′∩∆2 containing the endpoint of α in the interior of ∆2 has both

its endpoints on edges of ∆2 not containing the other endpoint of α . Thus we have

the configuration shown in Figure 3.8b. The arc α lies in a minimum weight disk D

which we may assume is innermost. In particular this means that no arcs of S′ ∩ ∆2

below A′ join the left and right edges of ∆2 . By (2) we have ∂D = ∂D′ for some

minimum weight disk D′ in S′ . Assuming Cases I and II are not applicable, there is

an arc α′ in D′ as shown in the figure, with one endpoint at the upper endpoint of α

and the other endpoint in the left edge of ∆2 . If D′ is not innermost we may replace

it by an innermost disk, choosing a new α to the left of the current one. Thus we

may assume both D and D′ are innermost. If D∪D′ is nontrivial then by (2) we can
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rechoose D′ on the other side of α , but this configuration would be covered by Case

I or II. So we may assume D ∪D′ is trivial, and Case III is finished. ⊔⊓

Now we can prove a converse to Proposition 1.6:

Theorem 3.15. If M̃→M is a covering space with M irreducible and orientable,

then M̃ is irreducible.

Proof: This follows quite closely the scheme of proof of the Sphere Theorem. The

main thing to observe is that Lemmas 3.13 and 3.14 remain valid if ‘triviality’ for

embedded spheres is redefined to mean ‘bounding a ball.’ The two properties of trivial

spheres which were used were: (1) Surgery on a nontrivial sphere cannot produce two

trivial spheres, and (2) Triviality is invariant under isotopy.

Suppose M̃ is reducible, hence contains a nontrivial sphere S0 . The proof of the

Sphere Theorem gives a new nontrivial sphere S ⊂ M̃ which covers either a sphere

or an RP2 in M . In the latter case the RP2 is 1 sided since we assume M orientable,

and an I bundle neighborhood of this RP2 is RP3 minus a ball, so irreducibility of

M implies M = RP3 , hence M̃ = S3 , which is irreducible, a contradiction. In case the

sphere S ⊂ M̃ covers a sphere in M , the latter sphere bounds a ball in M , which lifts

to a ball in M̃ bounded by S , a contradiction again. ⊔⊓

Recall the example S1×S2→S1×RP2 of a covering of an irreducible manifold

by a reducible manifold, which shows the necessity of the orientability hypothesis in

Theorem 3.15. To extend the theorem to the nonorientable case one needs to restrict

M to be P2 irreducible, that is, irreducible and containing no 2 sided RP2 ’s.

Exercises

1. Show that a closed connected 3 manifold with π1 free is a connected sum of

S1×S2 ’s, S1×̃S2 ’s, and possibly a homotopy sphere.

2. Extend Proposition 3.4 to the nonorientable case.

3. Show that every closed surface of even Euler characteristic is the boundary of some

compact 3 manifold.

4. Show that if M is simply-connected, then every circle in ∂M separates ∂M . In

particular, components of ∂M which are closed must be spheres.
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