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In a 1979 announcement by César de Sá and Rourke [CR] there is a sketch of an

intuitively appealing approach to measuring the difference between the homotopy type of

the diffeomorphism group of a reducible 3-manifold and the homotopy types of the diffeo-

morphism groups of its prime factors. A more detailed write-up of this announcement did

not appear, but the program was subsequently pushed through to completion by Hendriks

and Laudenbach [HL], with some changes in the technical details to make everything work

out correctly. In the present paper we provide a somewhat different implementation of the

same general idea, in a way which we hope will lead more easily to further progress on this

problem. The construction we give is also closer in spirit to a number of other well-known

constructions, such as Harvey’s curve complexes of surfaces and Culler-Vogtmann’s ”Outer

Space”.

Let M be a compact orientable 3-manifold which is the connected sum of irreducible

manifolds P1, ··· , Pn different from S3 . It will be convenient for us to use the term

‘connected sum’ in a broader sense than usual, allowing the connected sum of a manifold

with itself. Thus the manifold M is allowed to have prime factors S1 × S2 in addition to

the Pi ’s. We will compare the group Diff(M) of orientation-preserving diffeomorphisms

M → M , with the C∞ topology, with the corresponding groups for the summands Pi by

constructing a fibration (up to homotopy) of classifying spaces

C(M) −→ BDiff(M) −→ BDiff(
∐

iPi)

where C(M) is a space whose points represent particular ways of realizing M as a con-

nected sum of the Pi ’s and possibly some trivial S3 summands. The precise definition is

given in Section 1. There is also a relative version of this fibration, with Diff(M) replaced

by the subgroup Diff(M rel A) consisting of diffeomorphisms restricting to the identity

on a compact subsurface A of ∂M , and Diff(
∐

iPi) replaced by Diff(
∐

iPi rel
∐

iAi) for

Ai = A∩∂Pi . The fiber in the relative case is still homotopy equivalent to the same space

C(M) .

The group Diff(
∐

iPi) contains the product of the groups Diff(Pi) , and equals this

product if no two Pi ’s are diffeomorphic, but when some Pi ’s coincide there are also

diffeomorphisms in Diff(
∐

iPi) that permute these summands.

Much of the work in constructing the main fibration will go into constructing the map

BDiff(M) → BDiff(
∐

iPi) since there is no natural homomorphism Diff(M) → Diff(
∐

iPi)
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that could induce this map of classifying spaces. Looping the map of classifying spaces

does lead to a homotopy class of maps Diff(M) → Diff(
∐

iPi) , but these maps are homo-

morphisms only in a homotopy sense since they arise as loop maps.

It is known that if none of the Pi ’s are Seifert manifolds or the 3-ball then BDiff(
∐

iPi)

is a K(π, 1), so the higher homotopy groups of BDiff(M) are the same as those of C(M) .

These homotopy groups are generally nontrivial.

Similar constructions can be made for the operation of boundary connected sum of irre-

ducible 3-manifolds Pi with nonempty boundary. In this case BDiff(M) and BDiff(
∐

iPi)

are both K(π, 1)’s, hence the version of C(M) for this situation is also a K(π, 1).

One might expect analogous constructions to work in one lower dimension for con-

nected sums of surfaces, but this does not seem to be the case. Applying the obvious

definitions, what one gets instead is only a special case of the preceding construction for

boundary connected sum of 3-manifolds, the case that M is a handlebody bounded by

the given surface. The constructions do work for boundary connected sums of surfaces,

although they do not really give anything new in this case. We will comment on these

other situations more in the last section of the paper.

1. Connected Sum Configurations

Let us begin by defining the space C(M) . Let M be the connected sum of compact

connected irreducible oriented 3-manifolds P1, ··· , Pn different from S3 . We allow the

connected sum of a manifold with itself, which produces S1 × S2 summands. Let G be a

finite connected graph with n of its vertices labeled 1, ··· , n and such that all unlabeled

vertices have valence at least three. Assume that the fundamental group of G is free of

rank equal to the number of S1 × S2 summands of M . To a vertex of G labeled i we

associate the summand Pi and to each unlabeled vertex we associate a copy of S3 . Let

M0 be the disjoint union of the Pi ’s together with the copies of S3 associated to the

unlabeled vertices of G . We can construct a manifold diffeomorphic to M from M0 by

doing a connected sum operation for each edge of G . By specifying exactly how to perform

these connected sum operations, and by letting the graph G vary, we will construct a space

C(M) that parametrizes the various choices made in the connected sums.

The sphere S3
v corresponding to an unlabelel vertex v of G will be regarded as a

metric object, isometric to the standard sphere of radius 1. For each edge e we perform

a connected sum of the manifolds corresponding to the endpoints of e by removing balls

from these manifolds and attaching a product S2
e × Ie . This product is also viewed as a
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metric object, the product of a sphere of radius re and an interval of length ℓe . When an

end of a product S2
e ×Ie is attached to a Pi , this is done by choosing a smooth embedding

of the ball B3
e bounded by S2

e into Pi , deleting the interior of the image of the ball, and

then identifying the end of S2
e ×Ie with the resulting boundary sphere in Pi via the chosen

embedding. Attaching an end of S2
e × Ie to a sphere S3

v is done similarly, with the added

condition that the embedding of the attaching ball B3
e in S3

v is an isometry on S2
e . We

do these attachments for all the edges of G in such a way that all the products S2
e × Ie

in the resulting manifold M are disjoint. We assume all this is done so that the given

orientations of the Pi ’s induce an orientation of M . The products S2
e × Ie in M will

be called tubes and the parts of the spheres S3
v that remain in M will be called nodes.

Two constructions of M as a connected sum associated to G in this way are regarded as

equivalent when there is a homeomorphism between them that is an isometry on the tubes

and nodes and is the identity on the complement of the union of the tubes and nodes.

Letting the various choices made in this construction of M vary, we obtain a space

CG(M) parametrizing these choices. The choices are: the radii re , the lengths ℓe , and

the embeddings B3
e →֒ Pi or B3

e →֒ S3
v used to attach the tubes.

As G varies we now have a collection of disjoint spaces CG(M) which we wish to

combine into a single space C(M) by allowing the lengths ℓe of the Ie factors of certain

tubes S2
e × Ie go to zero. There are two ways in which we allow this to happen:

(a) If one end of the tube S2
e × Ie attaches to a node and the other end to a summand

Pi , then we can collapse S2
e × Ie to S2

e and identify the node with part of the ball

in Pi bounded by the attaching sphere of the tube. The identification is done in

the following way. The tube S2
e × Ie can be viewed as part of the boundary of a

1-handle B3
e × Ie , the rest of the boundary being B3

e ×∂Ie , two 3-balls, one of which

is embedded in Pi when the tube is attached, and the other of which is similarly

embedded in the sphere S3
v containing the node. When we collapse S2

e × Ie to S2
e

we identify the node with part of the attaching ball of the tube in S3
v by reflecting

S3
v across the attaching sphere of the tube, then we identify this ball in S3

v with the

attaching ball in Pi via the embedding used to attach the tube to Pi . The net result

is that all the other tubes which attached to the node now attach to Pi , and we have

a point in CG/e(M) .

(b) If the two ends of e correspond to distinct nodes and if when we collapse the tube

S2
e × Ie to S2

e , the union of the two nodes at its ends is, metrically, a node, then we

have a point in CG/e(M) .

Iteration of the operations in (a) and (b) corresponds to collapsing certain disjoint unions
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of trees in G to points, namely trees containing at most one labeled vertex.

We can enlarge the spaces CG(M) to spaces CG(M) by allowing degenerate tubes

of length ℓe = 0 in the situations (a) and (b). The space C(M) is then defined to be

the quotient of the union of the disjoint spaces CG(M) obtained by ignoring degenerate

tubes.

In a sense the tubes are redundant. We could produce an equivalent space C(M) by

collapsing each tube S2
e × Ie to S2

e , so the connected sums would be formed by deleting

open balls and identifying the resulting boundary spheres. However it will be convenient

to have the tubes later in the paper.

It would be possible to build a finite-dimensional version of C(M) having the same

homotopy type by choosing fixed Riemannian metrics on the factors Pi and taking the

embeddings B3 →֒ Pi used to attach tubes to be scalar multiples of exponential maps.

The scalar multiples could be taken to be the radii re of the tubes, and then the attaching

would depend only on the choice of the center point of the attaching ball in Pi and a

rotation parameter in SO(3).

The definition of C(M) works even if n = 0, when M is just a connected sum of

copies of S1 × S2 . The condition that the graphs G have unlabeled vertices of valence at

least 3 forces the number of S1 × S2 summands to be at least 2. For the main theorem

later in the paper we will assume n ≥ 1, however.

We can think of the subspaces CG(M) in C(M) as strata. In the finite-dimensional

version of C(M) the top-dimensional strata are those where G has the maximum number

of vertices and edges, so the labeled vertices have valence 1 and the unlabeled vertices

valence 3 (note that the Euler characteristic of G is equal to 1− s where s is the number

of S1 × S2 summands of M ). The lowest dimensional strata are those where G has the

fewest vertices and edges, so there are no unlabeled vertices.

The configurations in a stratum CG(M) of lowest dimension consist just of tubes

joining the Pi ’s, and the global structure of CG(M) can be analyzed in the following way.

To each configuration in CG(M) we can associate the centerpoints of the attaching balls of

the tubes. These vary over a component XG of the space of configurations of 2t distinct

points in
∐

iPi , where t is the number of tubes, so t = n−1+s . More precisely, one starts

with the space of configurations of 2t labeled points and factors out by the permutations

of these points induced by symmetries of G that fix all vertices. In particular there are

no such symmetries if s = 0. The projection CG(M) → XG is a fiber bundle with fiber

R
2t × SO(3)t where the R

2t factor comes from the parameters re and ℓe and there is an

SO(3) factor coming from the rotation parameter in attaching each end of a tube, modulo
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isometries of the tube which reduce from two SO(3) factors for each tube to one. The

fiber bundle is a product if there are no symmetries of G fixing the vertices.

To see what the higher strata look like, consider the case that M is the sum of three

irreducible manifolds P1, P2, P3 with no S1 × S2 summands. There is then one higher-

dimensional stratum, consisting of configurations with one central node connected to the

three Pi ’s by three tubes. The other three strata are obtained by collapsing each of the

tubes in turn. We can see the structure of the large stratum by considering what happens

to it under one of the three collapses, say the one that collapses the tube from the node

to P1 . This identifies the larger stratum with triples consisting of a ball in P1 together

with two tubes from P2 and P3 to P1 whose ends in P1 lie in the specified ball in P1 .

The larger stratum is attached to the smaller one by forgetting the ball.

General strata CG(M) can be described by iterating this idea, collapsing a collection

of disjoint trees in G containing all the unlabeled vertices, each tree containing exactly one

labeled vertex, producing configurations of nested balls in the Pi ’s, together with t twist

parameters in SO(3). If G has no symmetries fixing all the labeled vertices, these twist

parameters are globally defined, and otherwise one factors out the group of symmetries.

2. Sphere Systems

Inside a fixed copy of the manifold M , consider a nonempty collection S of finitely

many disjoint embedded spheres Sj such that M − S consists of the manifolds Pi with

disjoint balls removed, together with possibly some copies of S3 with disjoint balls removed,

at least three balls being removed from each S3 . Associated to such a full sphere system

S is a finite graph G whoses vertices are the components of M − S and whose edges are

the components of S . The vertices of G not corresponding to summands Pi have valence

at least three. The space of all such sphere systems S with associated graph G , and with

weights tj > 0 assigned to their spheres Sj , we denote SG(M) . We form a space S(M)

from the union of these SG(M) ’s by letting some weights tj go to 0 and deleting the

corresponding spheres Sj , provided the remaining spheres still form a full sphere system.

We assume S(M) is nonempty, so M is neither S3 nor S1 × S2 .

Theorem. S(M) is contractible.

Proof: We will show that the homotopy groups πkS(M) are trivial for all k . Let the family

St ∈ S(M) , t ∈ Sk , represent an element of πkS(M) . Choose a fixed system Σ ∈ S(M)

and thicken Σ to a family Σ × [−1, 1] of parallel systems. Sard’s theorem implies that

for each t ∈ Sk there is a slice Σ × {s} in this thickening that is transverse to St . This
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slice will remain transverse to St for all nearby t as well. By a compactness argument

this means we can choose a finite cover of Sk by open sets Ui so that St is transverse to

a slice Σi for all t ∈ Ui .

For a fixed t ∈ Ui consider the standard procedure for surgering St to make it disjoint

from Σi . The procedure starts with a circle of St ∩ Σi that cuts off a disk D in Σi that

contains no other circles of St ∩ Σi . Using D we then surger St to eliminate the given

circle of St ∩Σi . The process is then repeated until all circles have been eliminated. Each

surgery produces a system of spheres that would define a point of S(M) after deleting

trivial spheres that bound balls and redundant isotopic copies of the same sphere. (This

follows from the standard reasoning in the proof of the existence and uniqueness of prime

decompositions.) For the moment, however, we are not going to delete trivial or redundant

spheres.

A convenient way to specify the order in which to perform the sequence of surgeries is

to imagine the surgeries as taking place during a time interval, and then surgering a circle

at the time given by the area of the disk it cuts off in Σi , normalized by dividing by the

area of Σi itself, where area is computed using some choice of a Riemannian metric on

M . The only ambiguity in this prescription occurs if one is surgering the last remaining

circle and this circle splits Σi into two disks of equal area. Then one would have to make

an arbitrary choice of one of these disks as the surgery disk.

We refine this procedure so that it works more smoothly in our situation. Thicken St

to a family St × [−1, 1] of nearby parallel systems, all still transverse to Σi for t ∈ Ui .

Call this family of parallel systems St . For t ∈ Ui , with i fixed for the moment, we

perform surgery on all the disks of St family by gradually cutting through the family in

a neighborhood of Σi . Thus we are producing a family Stu for u ∈ [0, 1] , where again we

use the areas of the surgery disks in Σi to tell when to perform the surgeries. We allow

Stu to contain finitely many pairs of spheres that touch along a common subsurface at

the instant when these spheres or disks are being surgered. To specify the surgeries more

completely we choose a small neighborhood Σi × (−εi, εi) of Σi in Σ × [−1, 1] , which we

rewrite as Σi × R , and we let the surgery on a sphere of Stu produce two parallel copies

of the surgery disk in the slices Σi × {±1/u} of Σi × R .

To convert the thickened family Stu back into an ordinary family Stu consisting of

finitely many spheres for each (t, u) we replace each family of parallel spheres in Stu of

nonzero thickness by the central sphere in this family. Thus this central disk belongs to

Stu for an open set of values of (t, u) . Observe that this prescription for constructing Stu

eliminates the ambiguity in choosing one of the two equal-area surgery disks mentioned

earlier.
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As t varies over Ui we now have a family Stu , depending on i . To combine these

families for different values of i , letting t range over all of Sk rather than just over Ui ,

we proceed in the following way. For each i choose a continuous function ϕi : Ui → [0, 1]

that takes the value 1 near ∂Ui and the value 0 on an open set Vi inside Ui such that the

different Vi ’s still cover Sk . Then construct Stu by delaying the time when each surgery

along Σi is performed by the value ϕ(t) . We may assume all the spheres Σi are distinct

and their thickenings Σi × (−εi, εi) are disjoint, so the surgeries along different Σi ’s are

completely independent of each other.

We have constructed the family Stu for (t, u) ∈ Sk × [0, 1] such that all the curves of

St ∩Σi are surgered away as u goes from 0 to 1/2 for t ∈ Vi . We can then adjoin Σi to

Stu for (t, u) ∈ Vi × (1/2, 1), deleting the surgered spheres of Stu for u ≥ 3/4. We may

assume all the thickenings Σi × (−εi, εi) are disjoint from the original separating system

Σ. Then we adjoin Σ to Stu for u > 3/4, so that for u = 1 only Σ remains in Stu .

Components of Stu that bound balls in M can be deleted from Stu , so we will

assume this has been done. All that prevents Stu from being a contraction of St in S(M)

is then the possible presence of pairs of spheres in Stu that are isotopic, or in other words,

complementary components of Stu that are products S2 × I both of whose boundary

spheres lie in Stu . We will show how to replace each such collection of isotopic spheres in

Stu by a single sphere, in a way that varies continuously with the parameters t and u .

As a preliminary step, we will arrange that the weighting coefficients of the various

spheres in Stu vary piecewise linearly with t and u . For each (t, u) there is a neighborhood

in Sk × I such that the spheres of Stu have positive weights throughout this neighbor-

hood. Choose piecewise linear weight functions for these spheres that are zero outside this

neighborhood and positive in a smaller neighborhood of (t, u) . A finite number of these

smaller neighborhoods cover Sk × I by compactness. For each (t, u) let the new weight

function for each sphere of Stu be the sum of the piecewise linear weight functions for

this sphere for the finitely many neighborhoods containing (t, u) . Letting the weights go

linearly from their old values to their new values gives a homotopy of St0 in S(M) , so we

can now use the new piecewise linear weight functions for Stu over Sk × I .

Choose a triangulation of Sk × I such that all the weight functions are linear on

simplices. As one passes from a simplex to its boundary certain weight go to zero, and the

corresponding spheres are deleted from Stu . To give ourselves a little room to maneuver,

let us expand the triangulation to a handle structure on Sk × I in the usual way, with

one i-handle h(σ) for each i-simplex σ . Thus there is a map p : Sk × I → Sk × I with

p−1(σ) = h(σ) for each simplex σ . We can modify the family Stu by changing the

weights of Stu linearly to those of Sp(t,u) . Again this gives a homotopy of St0 , so we
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can assume this has been done and we use the notation Stu for the new family. Passing

from an i-handle Di × Dj to its attaching locus ∂Di × Dj , some weights of spheres

of Stu go to zero, or in other words, Stu is replaced by a subcollection of spheres. We

want to foliate the product regions between isotopic spheres of Stu by product foliations

that vary continuously with (t, u) , so that when we pass from a handle to its attaching

locus the foliations over the attaching locus are the restrictions of the foliations over the

whole handle. This can be done by downward induction on the indices of the handles.

For the induction step of choosing foliations over an i-handle Di ×Dj , one has foliations

for (t, u) ∈ Di × ∂Dj coming from the foliations over handles of larger index, and these

extend to foliations over the full handle since the space of product foliations on S2 × I is

contractible (this is an equivalent form of the Smale conjecture Diff(S3) ≃ O(4)).

We can also arrange inductively that the foliations have compatible continuously vary-

ing transverse affine structures since the space of such structures is contractible as well.

Using these transverse affine structures one can form nonnegative linear combinations of

leaves in the foliations. Thus we can replace each collection of isotopic spheres in each

Stu by the single sphere which is their weighted average. This gives a new continuously

varying family Stu that lies in S(M) , agreeing with the previous family Stu for u = 0, 1.

Thus we have shown that the original map Sk → S(M) is homotopic to a constant map,

finishing the proof. ⊔⊓

It will be convenient in the next section to have a version of S(M) in which sphere

systems S ⊂ M are thickened to products S × I ⊂ M , regarded as laminations with

sphere leaves. The weights tj on the components Sj of S are viewed as thicknesses of the

products Sj × I in such a lamination. As weights go to zero, the corresponding laminated

products Sj × I shrink to single leaves Sj and disappear. The space of all such weighted

laminations we denote by T (M) , thinking of such laminations as tubings of M , in the spirit

of the preceding section. It is clear that T (M) has the same homotopy type as S(M) since

the space of collar neighborhoods of a codimension one submanifold is contractible.

3. Classifying Spaces

Let us recall a classical construction for a classifying space BDiff(M) for a smooth

manifold M . The connectivity of the space Emb(M, Rk) of smooth embeddings M →֒ R
k

increases with k , by Whitney’s embedding theorem applied to parametrized families, so the

space Emb(M, R∞) =
⋃

k Emb(M, Rk) has trivial homotopy groups, hence is contractible.

The action of Diff(M) on this space by composition in the domain defines a principal fiber
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bundle

Diff(M) −→ Emb(M, R∞) −→ Emb(M, R∞)/Diff(M)

with contractible total space, so the base space Emb(M, R∞)/Diff(M) is a classifying space

BDiff(M) . This can be regarded as the space of smooth submanifolds of R
∞ diffeomorphic

to M , and we will denote it by I(M) , the images of M in R
∞ . When M is oriented and

we take Diff(M) to mean orientation-preserving diffeomorphisms, then I(M) becomes the

space of oriented submanifolds of R
∞ diffeomorphic to M .

In a similar way, by replacing Emb(M, R∞) by the subspace of embeddings re-

stricting to a given embedding on a submanifold A ⊂ M we obtain a classifying space

BDiff(M relA) .

Specializing to the situation of this paper, consider the product Emb(M, R∞)×T (M)

where T (M) is the space of tubings of M defined at the end of the previous section. We can

think of points in Emb(M, R∞)×T (M) as pairs consisting of an embedding f : M → R
∞

together with a tubing of the image f(M) . Again Diff(M) acts by composition with

f , and the orbit space, consisting of tubed submanifolds of R
∞ diffeomorphic to M ,

is homotopy equivalent to I(M) since T (M) is contractible. We denote this space by

TI(M) , the tubed images of M in R
∞ . Like I(M) , it is a classifying space BDiff(M) .

Let P =
∐

iPi and let TI(M ∪ P ) be the subspace of TI(M) × I(P ) consisting of

pairs (x, y) such that x ∩ y consists of the closure of the complement of the tubes and

nodes of x . Thus x is obtained from x ∩ y by attaching the tubes and nodes, while y is

obtained from x ∩ y by filling in balls where the tubes attach to x ∩ y .

Proposition. The projection p : TI(M ∪P ) → TI(M) , (x, y) 7→ x , is a homotopy equiv-

alence.

Proof: As a first approximation to the proof, and as motivation, note that the fibers of

p are contractible since they consist of all the ways of filling in a collection of disjoint 2-

spheres in R
∞ with disjoint 3-balls whose interiors are also disjoint from a submanifold of

R
∞ . The disjointness conditions can be achieved by general position, and the space of balls

with a fixed boundary is contractible since it is a classifying space for the diffeomorphism

group of a ball fixing the boundary, which is contractible by the Smale conjecture. If the

projection p were a fibration, this would finish the proof. However, verifying some form

of the homotopy lifting property does not look like it would be easy, particularly since the

number of 3-balls being filled in varies from fiber to fiber.

Composing p with the map TI(M) → I(M) that forgets the tubings gives a fibration

TI(M ∪ P ) → I(M) , and it will suffice to prove that the fiber F of this fibration is

contractible. There is a natural projection q : F → T (M) which ignores the filling balls.
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Since T (M) is contractible, it will suffice to show q is a homotopy equivalence. We will

describe how to construct a section s : T (M) → F of q and a homotopy from sq to the

identity.

The section s can be constructed inductively over strata of T (M) . Over a given

stratum one has a system of disjoint spheres in a fixed copy of M in R
∞ , varying by

isotopy over the stratum, that one is trying to fill in with balls. The restriction map

from the space of ball systems to the space of sphere systems is a fibration, and its fiber is

contractible. This implies (how exactly?) the existence of a section s over the stratum. For

the inductive step one wants to extend a given section from the boundary of the stratum

to the rest of the stratum. The spheres one wants to fill in with balls over the interior

are already filled in with balls over the boundary, although these balls may intersect M

in more than their boundary spheres. By contractibility of the space of balls with fixed

boundary, we can fill in the balls over the whole stratum, and then use general position to

make them meet M only in their boundary spheres over the interior of the stratum.

In this fashion one can construct a section s . A homotopy from sq to the identity

can be constructed by a similar inductive procedure. In each fiber of q one has the space

of all filling balls with fixed boundary spheres, and this space is contractible to the ball

given by the section. ⊔⊓

Forgetting the first coordinate of points (x, y) in TI(M ∪ P ) gives a fibration

F −→ TI(M ∪ P ) −→ I(P )

Proposition. The fiber F is homotopy equivalent to C(M) .

Proof: The idea is to show that corresponding strata of F and C(M) are homotopy

equivalent by equivalences that respect the way the strata fit together. Points of both F

and C(M) consist of a fixed copy of P to which tubes and nodes are attached, where in F

these attachments take place in R
∞ while for C(M) the attachments are done abstractly

but with extra metrical information.

Consider first a lowest stratum, where there are no nodes, only tubes. For both F

and C(M) there is a collection of disjoint balls in P where the tubes attach. For C(M)

the additional data determining each tube attachment is a twist parameter in SO(3). For

F the additional data is an embedding of the tube in R
∞ . The claim is that the set of

tubes in R
∞ with fixed ends has the homotopy type of SO(3). This set of tubes is a

classifying space for the group of diffeomorphisms of S2 × I that restrict to the identity

on S2 × ∂I . It follows from the Smale conjecture that this group has the homotopy type

of the loopspace ΩSO(3), so its classifying space has the homotopy type of SO(3).
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To treat higher strata this argument needs to be extended ...................

⊔⊓

Combining the preceding propositions, we obtain the desired homotopy fibration

C(M) −→ BDiff(M) −→ BDiff(P )

The relative version mentioned in the introduction is derived in the same way, the only

difference being that throughout the whole process one restricts to embeddings of Pi in

R
∞ that are fixed on the given subsurface Ai ⊂ ∂Pi .
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