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Classical knot theory is concerned with isotopy classes of knots in the 3 sphere,

in other words, path-components of the space K of all smooth submanifolds of S3

diffeomorphic to the circle S1 . What can be said about the homotopy types of these

various path-components? One would like to find, for the path-component KK con-

taining a given knot K , a small subspace MK to which KK deformation retracts, thus

a minimal homotopic model or moduli space for KK . In this paper we describe a

reasonable candidate for MK and prove for many knots K that KK does indeed have

the homotopy type of the model MK . The proof would apply for all K provided that a

certain well-known conjecture in 3 manifold theory is true, the conjecture that every

free action of a finite cyclic group on S3 is equivalent to a standard linear action.

The model MK takes a particularly simple form if K is either a torus knot or a

hyperbolic knot. In these cases MK is a single orbit of the action of SO(4) on KK

by rotations of the ambient space S3 , namely an orbit of a “maximally symmetric”

position for K , a position where the subgroup GK ⊂ SO(4) leaving K setwise invariant

is as large as possible. The orbit is thus the coset space SO(4)/GK . The assertion

that KK deformation retracts to MK = SO(4)/GK is then a sort of homotopic rigidity

property of K .

This picture is consistent with the intuition that there should exist a nice physi-

cally meaningful energy function on KK whose only critical points are global minima

forming a copy of the manifold MK , such that the associated gradient flow gives a

deformation retraction of KK onto MK . One would expect the energy function to be

invariant under rotations of S3 , so its critical point set would be a union of orbits and

ideally just a single orbit. The flow should respect any symmetry the knot might have,

so the minimum energy position for the knot should also be a maximally symmetric

position.

Let us describe the models MK in more detail in the cases of torus knots and hy-

perbolic knots. Consider first the case of the trivial knot. Its most symmetric position

is clearly a great circle in S3 . The subgroup GK ⊂ SO(4) taking K to itself is then

the index two subgroup of a standard O(2)×O(2) in O(4) consisting of orientation-

preserving isometries. It was shown in [H1] that KK has the homotopy type of the
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orbit MK = SO(4)/GK , which can be identified with the 4 dimensional Grassmann

manifold of 2 planes through the origin in R4 .

Consider next a nontrivial torus knot K = Kp,q for relatively prime integers p
and q , neither of which is ±1. Regarding S3 as the unit sphere in C2 , the most sym-

metric position for K is as the set of points (zp, zq)/
√

2 with |z| = 1. The symmetry

group then contains the unitary diagonal matrices with zp and zq as diagonal entries,

forming a subgroup S1 ⊂ SO(4) . There is also a rotational symmetry reversing the

orientation of K , given by complex conjugation in each variable. Thus GK contains a

copy of O(2) , whose restriction to K is the usual action of O(2) on S1 . Clearly GK
cannot be larger than this, otherwise K would be pointwise fixed by a nontrivial ele-

ment of SO(4) , hence would be unknotted. We will show that KK has the homotopy

type of the orbit SO(4)/GK , a closed 5 manifold.

Now let K be hyperbolic, so S3 − K has a unique complete hyperbolic structure,

and let ΓK be the finite group of orientation-preserving isometries of this hyperbolic

structure. By the theorem of Gordon-Luecke [GL], elements of ΓK must take meridians

of K to meridians, so the action of ΓK on S3 − K extends to an action on S3 . By the

Smith conjecture [MB], no nontrivial elements of ΓK fix K pointwise, so ΓK is a group

of diffeomorphisms of K , hence ΓK must be cyclic or dihedral. Assuming the action

of ΓK on S3 is equivalent to an action by elements of SO(4) , then we can isotope

K to a symmetric position in which the action is by isometries of S3 , so we have an

embedding ΓK ⊂ SO(4) . We will show in this case that KK has the homotopy type

of SO(4)/ΓK . The symmetry group GK cannot be larger than ΓK , as we will see, so

in this symmetric position for K we have GK = ΓK , and SO(4)/ΓK is the orbit of K
under the SO(4) action.

For example, if K is the figure eight knot then ΓK is Z2×Z2 , gen-

erated by the 180 degree rotations about orthogonal axes in the pic-

ture at the right. The group π1KK ≈ π1(SO(4)/ΓK) has order eight,

and is in fact the quaternion group, with the 360 degree rotations of

K about its axes of symmetry lifting to generators of π1SO(4) .

The hypothesis that the action of ΓK on S3 is equivalent to an isometric action can

be restated as the well-known conjecture that the orbifold S3/ΓK has a spherical struc-

ture, a special case of Thurston’s geometrization conjecture for orbifolds. We call it

the linearization conjecture for K . It is a theorem of Thurston that the geometrization

conjecture is true for orbifolds which are not actually manifolds. So the linearization

conjecture for K is true unless ΓK is a cyclic group acting freely on S3 . It is also

known to be true for free actions by a cyclic group of order two [L], a power of two

[M], or three [MR]. Random knots have no symmetry, so the linearization conjecture

holds vacuously for them. For knots that do have symmetries, the chances are that

the symmetry group will be small, of order less than five, or will contain rotations

about some fixed axis, so in these cases the linearization conjecture holds as well.
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The unknown cases would seem to be quite rare.

We also analyze the space A of knotted arcs in a ball with fixed endpoints on

the boundary sphere. We show that AK , the path-component of A corresponding to

the knot K , is a K(π,1) for every knot K . When K is trivial, AK is contractible by

[H1], and we show that AK ' S1 when K is a nontrivial torus knot and AK ' S1×S1

when K is hyperbolic. Nice models for AK in these cases can be described as follows.

We can convert a knotted circle K into a knotted arc in a ball by placing a small bead

B on a wire model of K , and then the part of K outside B
becomes a knotted arc in the ball complementary to B in S3 .

The endpoints of the arc are almost antipodal on the boundary

of the ball, and after a small adjustment they can be taken to

be exactly antipodal. As the bead moves around the knot K
we obtain in this way a circle’s worth of knotted arcs. We can

also twirl a knotted arc in a ball about the axis through its two

antipodal endpoints to get another circle’s worth of knotted

arcs. This corresponds to twirling the bead about its axis.

Thus we have a map S1×S1→AK . If K is a nontrivial torus knot in its standard

position, the image of this map is just a circle in AK , and this circle is the model

for AK . If K is a hyperbolic knot satisfying the linearization conjecture and K is

in symmetric position, then the map S1×S1→AK has image a torus, the map being

a cyclic covering space of its image with deck transformations corresponding to the

symmetries of K preserving an orientation of K . This torus in AK is the model for

AK in this case.

As an example, consider the figure eight knot, in the symmetric position shown

in the center of the following figure.
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Placing the bead at a point of the knot in each of the eight arcs between successive
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crossings gives eight positions for a knotted arc, but by symmetry only four of these

are distinct, indicated by the numbers 1 4 in the figure. Regarding the projection

plane of the figure as a 2 sphere by adding a point at infinity, the four positions for

the knotted arc are shown at the four corners of the figure. Going from position 1

to position 2, for example, the bead passes through an undercrossing, and this has

the effect of dragging the overcrossing strand across the front of the knot so that

it becomes an overcrossing at the other end of the knotted arc. This is shown in

the second quadrant of the figure. Similarly, moving the bead from position 1 to

position 4 has the effect shown in the first quadrant. The other two quadrants show

the transitions from position 3 to positions 2 and 4. Thus as the bead goes halfway

around the knot we obtain a loop of knotted arcs. Independently of this deformation

we can also twirl the knotted arc about an axis through its two endpoints, to get the

other S1 factor of the model for AK .

The same procedure applied to the trefoil knot produces a loop of embedded arcs

that is homotopic to the loop obtained by simply twirling the knotted arc about the

axis through its two endpoints.

The same thing happens for all torus knots.

The proofs of these results for torus knots and hyperbolic knots are fairly short,

and consist mainly of invoking a number of nontrivial theorems from 3 manifold

theory.

Satellite Knots

Knots which are not torus knots or hyperbolic knots are satellite knots, and for

these the analysis of KK becomes more complicated. In particular the homotopic

rigidity property of torus knots and hyperbolic knots fails for satellite knots. Modulo

the linearization conjecture again, we show thatKK has the homotopy type of a model

MK which is a finite-dimensional manifold of the form (SO(4)×XK)/ΓK where ΓK is a

compact group of “supersymmetries” of K and XK is the product of a torus of some

dimension and a number of configuration spaces Cn of ordered n tuples of distinct

points in R2 . These configuration spaces occur only when the satellite structure of

K involves nonprime knots. When they are present, π1KK involves braid groups, a

phenomenon observed first in [G] in the case that K itself is nonprime. When there

are no configuration spaces, MK is a closed manifold, but in general there can be no

closed manifold model for KK since its homology groups may not satisfy Poincaré

duality. The space XK appearing in the definition of MK is determined just by the

general form of the satellite structure of K , while the group ΓK is more delicate,
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depending strongly on the particular knots appearing in the satellite structure. The

components of ΓK are tori arising from cabling in the satellite structure, and π0ΓK
is the quotient of π0Diff+(S3 rel K) by the subgroup generated by Dehn twists along

essential tori in S3−K . One could cancel the tori components of ΓK with some circle

factors of XK and thereby make ΓK a finite group in all cases, but from a conceptual

viewpoint this does not seem a very natural thing to do.

As an example, consider the knot K shown in the figure, a Whitehead double of

the figure eight knot. Thus K lies in a tubular neighborhood

V of a figure eight knot. The solid torus V has a 2 parameter

family of homeomorphisms given by longitudinal and merid-

ional rotations of its circle and disk factors. Restricting these

homeomorphisms to K we obtain a family of embeddings of

K in V . This family is the space XK , a torus S1×S1 . We can

also apply rotations of the ambient space S3 to get a map

SO(4)×XK→KK . This is not injective, but is in fact eight-to-

one, assuming that V has been chosen symmetrically. Namely, a 180 degree merid-

ional rotation of V takes K to itself, and the Z2×Z2 rotational symmetry group of the

figure eight knot also acts on XK . The group ΓK in this case is Z2×Z2×Z2 . Factoring

out its action on SO(4)×XK we obtain an injection (SO(4)×XK)/ΓK→KK which is

a homotopy equivalence.

It is not hard to see how to iterate this construction in the case that the satellite

structure for K consists of a nested sequence of tori, for example if K is built by

iterated Whitehead doubles of a hyperbolic or torus knot. In general, however, the

tori defining the satellite structure need not form a single nested sequence, and then

a different construction is needed.

Here is an example to give the essential idea. Start with a knot K′ , which could

be trivial, and choose a number of disjoint balls

each of which intersects K′ in two or more par-

allel unknotted arcs. We imagine these parallel

arcs as passing through an unknotted tube go-

ing through the ball. Now tie each tube in a

knot, say a hyperbolic knot or a turus knot, car-

rying along the strands of K′ so that they now run in parallel through the knotted

tube. The new knot K′ is the knot K we are interested in. Let us view each knotted

tube as a tubular neighborhood of a knotted arc. We have seen earlier how a knotted

arc belongs to a family of knotted arcs parametrized by points of a torus S1×S1 .

Carrying the tube and the strands of K inside the tube along during the 2 parameter

deformation, we obtain a family of embeddings of K . Thus we have a torus factor of

XK for each knotted tube. As in the previous cases, symmetries must be factored out

to obtain the model (SO(4)×XK)/ΓK .
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1. Homotopically Rigid Knots

For a knot K ⊂ S3 the action of the group Diff+(S3) of orientation-preserving dif-

feomorphisms of S3 onKK defines a fibration Diff+(S3)→KK with fiber Diff+(S3, K)
the diffeomorphisms f with f(K) = K . The action of Diff+(S3) restricts to an action

of the subgroup SO(4) ⊂ Diff+(S3) , and the orbit of K is the coset space SO(4)/GK
where GK is the symmetry group GK of K . Thus we have a commutative diagram of

fibrations

−−−−−→
−−−−−−−−−→ −−−−−→

−−−−−→SDiff

↩↩ ↩

K+ 3K K

G SO 4K GK

SDiff
+ 3( )

( ) SO 4( )

,

/

We will show that if K is a torus knot or a hyperbolic knot satisfying the linearization

conjecture then K can be positioned in S3 so that the inclusion GK↩ Diff+(S3, K)
induces isomorphisms on all homotopy groups. By the Smale conjecture the inclusion

SO(4)↩Diff+(S3) also induces isomorphisms of homotopy groups. The five-lemma

will then imply that the inclusion of the model MK = SO(4)/GK into KK induces

isomorphisms on homotopy groups, so is a homotopy equivalence.

To analyze Diff+(S3, K) we will use the spaces in the following diagram:

−−−→SDiff ↩ ↩

↩

+ 3 1K E( ), MDiff
+
( )↩ MDiff

+
( )

I

p

−−−→

p

MDiff
+

( )∂MI
+
( )∂

MIp +
(( ))∂

-

-

+

Here M ⊂ S3 is the complement of the interior of a solid torus tubular neighbor-

hood N(K) of K . The orientation-preserving diffeomorphisms of M that extend to

diffeomorphisms of S3 form a subgroup Diff+E (M) ⊂ Diff+(M) that is a union of

path-components of Diff+(M) , the diffeomorphisms taking meridian circles in ∂M to

meridians, up to sign and isotopy in ∂M . By [GL] this subgroup is in fact the whole

group, but we will not make essential use of this fact. Elements of Diff+(M) must take

longitudes to longitudes, up to sign and isotopy, for homological reasons. Restrict-

ing elements of Diff+E (M) to ∂M , we thus obtain a fibration p : Diff+E (M)→Diff+±I(∂M)
whose base space is the group of orientation-preserving diffeomorphisms of the torus

∂M whose action on π1 is plus or minus the identity. This base space deformation

retracts onto the subspace I+(∂M) consisting of orientation-preserving diffeomor-

phisms that rotate or reflect each factor of ∂M = S1×S1 separately. Thus each of

the two components of I+(∂M) is homeomorphic to a torus. The deformation retrac-

tion of Diff+±I(∂M) onto I+(∂M) lifts to a homotopy equivalence of Diff+E (M) with

p−1(I+(∂M)) . Elements of p−1(I+(∂M)) extend canonically over N(K) by rotations

or reflections of the factors of N(K) , giving an inclusion p−1(I+(∂M))↩Diff+(S3, K) ,
and this inclusion is a homotopy equivalence. Namely, by standard differential topol-

ogy techniques, Diff+(S3, K) deformation retracts onto the subspace of diffeomor-
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phisms taking N(K) to itself by diffeomorphisms that take fiber disks of N(K) to

fiber disks by rotations or reflections. Then by further deformation retractions we

can arrange that K goes to itself by rotation or reflection and that the diffeomor-

phism of N(K) is a product of rotations or reflections in its two factors.

In case K is a nontrivial torus knot in its standard position the symmetry group

GK is a copy of O(2) which we can view as a subgroup of Diff+(M) , and it follows

from [H2], [I] that Diff+(M) deformation retracts onto this subgroup. This can be

seen from the Seifert fibering of M , whis has base a disk and two multiple fibers, of

distinct multiplicities. There is an annulus in M separating it into two solid tori, and

Diff+(M) deformation retracts onto the subspace leaving this annulus invariant, and

a further deformation retraction takes one to the subspace of diffeomorphisms taking

fibers to fibers, from which the result easily follows.

Thus when K is a nontrivial torus knot in standard position we have the inclusion

GK↩Diff+(S3, K) a homotopy equivalence.

Assume now that K is a hyperbolic knot. In this case Mostow rigidity implies

that the composition Isom(S3 − K)↩ Diff(M)↩ Out(π1M) of the isometry group

of the hyperbolic manifold S3 − K into the outer automorphism group of π1M is an

isomorphism. The second inclusion is a homotopy equivalence, by [H2], [I], using the

fact that the space of homotopy equivalences M→M deformation retracts onto the

space of homotopy equivalences of pairs (M, ∂M)→(M, ∂M) , which follows from the

fact that every Z×Z subgroup of π1M is contained in π1(∂M) , up to conjugation,

since K is hyperbolic. The inclusion Isom(S3 − K)↩ Diff(M) is then a homotopy

equivalence, and this remains true also for the subgroups ΓK = Isom+(S3 − K) and

Diff+(M) of index at most two consisting of orientation-preserving isometries or dif-

feomorphisms.

If K satisfies the linearization conjecture, as described in the introduction, then

the subgroup ΓK↩Diff+(S3, K) is conjugate via an element σ ∈ Diff+(S3) to a sub-

group of SO(4) . Replacing K by the equivalent knot σ(K) , we may assume that ΓK
itself is a subgroup of SO(4) . Thus ΓK is a subgroup of the symmetry group GK , and

in fact it must be equal to GK because the natural map GK→π0Diff+(S3−K) ≈ ΓK is

injective by the theorem that a periodic diffeomorphism of a Haken manifold which is

homotopic to the identity must be part of an S1 action (see [T],[FY]), and this happens

only when S3 −K is a Seifert manifold, hence K is a torus knot.

Spaces of Arcs

Knotted arcs in A can be given a preferred orientation since the endpoints of

these arcs are fixed. This leads us to consider the two-sheeted covering space K+

of K consisting of knots with a choice of orientation. Path-components of A and

K+ are in one-to-one correspondence. Let AK and K+
K be the path-components

corresponding to a given oriented knot K . If K is an invertible knot then K+
K is a
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two-sheeted cover of the corresponding component KK of K , and otherwise K+
K is

homeomorphic to KK .

The space of arcs AK has the same homotopy type as the subspace K0
K of K+

K

consisting of knots passing through a given point of S3 and having a given unit tangent

vector at that point, pointing in the direction of the orientation of the knot. Let us

take the given point and tangent direction to be the first two standard basis vectors

e1 and e2 in R4 . Let Kfr
K be the space of pairs consisting of an oriented knot K′

isotopic to K and a positively-oriented orthonormal tangent frame to S3 at a point

of K′ , whose first vector is tangent to K′ pointing in the direction of the orientation.

There is a homeomorphism SO(4)×K0
K ≈ Kfr

K sending a pair (ρ,K′) in the product

to the knot ρ(K′) with the framing at ρ(e1) consisting of ρ of the standard basis

vectors e2 , e3 , e4 .

There is a projectionKfr
K →K+

K by forgetting the frame except for the orientation

of K induced by its first vector. This projection is a fibration, and the fibers are tori.

Denote by M+
K the preimage in K+

K of an SO(4) invariant subspace MK ⊂ KK . Then

we have fibrations

−−−−−→ −−−−−→

↩ ↩

KKSO 4 KK
fr 0

0−−−−−→ −−−−−→MKMK
fr

( )

SO 4( )

==

−−−−−→ −−−−−→

↩ ↩

KKT +KK
fr

−−−−−→ −−−−−→MKT +MK
fr

==

where Mfr
K is the preimage of M+

K in Kfr
K and M0

K is the image of Mfr
K in K0

K . If

the inclusion M+
K↩K+

K is a weak homotopy equivalence, then so will be the other

inclusion in the left-hand diagram, and therefore also the inclusion M0
K↩K0

K .

In particular, if K is a torus knot or a hyperbolic knot satisfying the linearization

conjecture, we obtain the results about a model for AK stated in the introduction.

2. Satellite Knots

A knot K is a satellite knot if it lies in a solid torus tubular neighborhood V
of another nontrivial knot in such a way that it cannot be isotoped within V to be

disjoint from a meridian disk of V . This is equivalent to saying that the torus ∂V
is incompressible in S3 − K . By a classical theorem of Alexander, every torus in S3

bounds a solid torus on one side or the other, so studying the various ways in which K
can be a satellite is equivalent to studying incompressible tori in S3−K . The leads one

to consider the canonical torus decomposition of S3−K . This is a minimal collection

T of finitely many disjoint incompressible tori Ti in S3 − K splitting S3 − K into

pieces that are either Seifert fibered or atoroidal — containing only boundary-parallel

incompressible tori. The minimality of T with respect to inclusion guarantees that it

is unique up to isotopy. See [H] or [NS] for elementary expositions.

It is known that Seifert complementary pieces of the torus decomposition can

only be of rather limited types. A trivial possibility that we are not interested in here

is that K is a torus knot, with T empty and S3 − K itself Seifert fibered. Apart from
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this, there are just two other possibilities for Seifert pieces in the torus decomposition

of a knot:

(1) A cable piece. This is obtained from a solid torus with one of its standard Seifert

fiberings with one multple fiber by deleting a regular fiber, or a fibered tubular

neigborhood of this regular fiber. If the solid torus is knotted in S3 , then the

regular fiber is a satellite of the core knot of the solid torus, namely a cable on

this knot. More generally one could put a more complicated knot in the fibered

neighborhood of the regular fiber, and this knot would also be a satellite of the

core knot of the solid torus.

(2) A sum piece. This is a product of S1 and a disk with at least two punctures, with

the product fibering. In particular there are no multiple fibers, and there are at

least three boundary tori. This configuration arises when one forms connected

sums of knots. Since it is somewhat more complicated to describe than the case

of cable pieces, we postpone a detailed discussion until later.

Associated to a torus decomposition T for S3 −K is a graph τK having a vertex

for each complementary piece and an edge for each torus in T . Since every closed

surface in S3 separates, τK is a tree. It has a distinguished vertex corresponding to

the piece abutting K . Orienting the edges in the direction of this vertex is the same

as giving the tori of T normal orientations toward the solid tori they bound.

The Special Case of an Unbranched Tree

The easiest case is that τK is homeomorphic to a line segment, with no branching.

This says that the torus decomposition T consists of tori T1, ··· , Tn bounding solid

tori V1 ⊃ ··· ⊃ Vn . For each Vi we choose a product structure Vi ≈ S1×D2 . Let XK
be the product of n tori S1×S1 . We view points θ ∈ XK as n tuples of rotations θi of

Vi , the two S1 coordinates of θi specifying the angles of longitudinal and meridional

rotation of Vi . For each θ ∈ XK we construct a function fθ :S3→S3 by first rotating

Vn by θn , then Vn−1 by θn−1 , and so on, ending with the identity outside V1 . Thus on

Vi−Vi+1 , fθ is the composition θ1 ···θi . The function fθ is discontinuous along Ti ,
but this is not a problem if we restrict to K , so we obtain a map XK→KK , θ,fθ(K) .
More generally, we will be interested in the map SO(4)×XK→KK , (ρ, θ),ρ(fθ(K)) .

Now let us bring symmetries into the picture. Symmetries of the torus and

the solid torus will play an important role. In particular there are the orientation-

preserving symmetries of S1×D2 or S1×S1 of the form (x,y), (r1(x), r2(y))
where r1 and r2 are rotations or reflections of the two factors. These form a group

I+ which we we think of as either isometries or linear symmetries. The group I+ has

a subgroup I+0 of index 2 consisting of pairs (r1, r2) of rotations. The remaining

elements of I+ reverse orientations of longitudes and meridians, fixing two line seg-

ments in the solid torus, or four points on the boundary torus. If we embed the solid

torus in S3 in a standard way, these symmetries are realizable by rotations of S3 .
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Returning to the satellite knot K , if the knot K1 formed by the core circle of V1

satisfies the linearization conjecture, we may isotope it into symmetric position, with

symmetry group Γ0 ⊂ SO(4) isomorphic to π0Diff+(S3, K1) if S3 − K1 is hyperbolic,

or to O(2) in the case that K1 is a torus knot with S3 − K1 Seifert fibered. We may

choose the tubular neighborhood V1 of K1 to be a small ε neighborhood invariant

under Γ0 , and we may choose the product structure V1 ≈ S1×D2 so that Γ0 acts on

this product via elements of I+ . Next we have the symmetry group Γ1 of (V1, K2) for

K2 the core circle of V2 , so Γ1 is π0Diff+(V1, K2) if V1 − K2 is hyperbolic or O(2)
if V1 − K2 is Seifert fibered, a cable space. It is a classical fact that an orientation-

preserving action of a finite group on the solid torus V1 is equivalent to an action by

a subgroup of I+ . So after an isotopy of K2 in V1 we may assume Γ1 acts on (V1, K2)
via elements of I+ . As before we may choose V2 nicely so that Γ1 acts on it as well

by elements of I+ . In the same fashion we continue on with the symmetry groupsΓ2, ··· , Γn , at the last stage isotoping K in Vn to linearize the action of Γn .

Elements of Γi are orientation-preserving diffeomorphisms that take meridians to

meridians and longitudes to longitudes in Ti and Ti+1 , possibly reversing orientations

of these meridians and longitudes. Let ΓK be the subgroup of Γ0× ··· ×Γn consisting

of tuples (g0, ··· , gn) such that the restrictions of gi and gi−1 to Ti are isotopic

for each i . This is equivalent to requiring gi and gi−1 both to preserve or both to

reverse orientations of meridians and longitudes in Ti . We can define an action of ΓK
on SO(4)×XK by sending (ρ, θ1, ··· , θn) to (ρg−1

0 , g0θ1g
−1
1 , ··· , gn−1θng

−1
n ) . This

is evidently a free action. The map SO(4)×XK→KK , (ρ, θ),ρ(fθ(K)) , is constant

on orbits since (ρg−1
0 )(g0θ1g

−1
1 ) ··· (gn−1θng

−1
n )(K) = ρθ1 ···θn(K) , using the fact

that gn(K) = K and regarding each gi for i < n as a diffeomorphism of (Vi, Vi+1) ,
or of (S3, V1) for i = 0.

Thus we obtain a map (SO(4)×XK)/ΓK→KK .

Theorem 1. This map (SO(4)×XK)/ΓK→KK is a homotopy equivalence.

Proof: First let us do something about the discontinuities of fθ along the Ti ’s. If we

split S3 along T we obtain compact manifolds W0, ··· ,Wn with W0 the closure of

S3 − V1 , Wi the closure of Vi − Vi+1 for 0 < i < n , and Wn = Vn . The function fθ
determines a continuous map from the disjoint union of the Wi ’s to S3 . If we identify

points in this disjoint union having the same image in S3 then we obtain a 3 manifold

S3
θ and an induced diffeomorphism S3

θ→S3 . Explicitly, we are identifying each point

x ∈ Ti ⊂ Wi with θi(x) ∈ Ti ⊂ Wi−1 .

Let DiffExt+(S3) be the space of pairs (θ, f ) where θ ∈ XK and f :S3
θ→S3 is

an orientation-preserving diffeomorphism. We think of f as an ‘exterior diffeomor-

phism.’ By writing f as the composition of the canonical fθ defined earlier and

a diffeomorphism S3→S3 we see that DiffExt+(S3) is homeomorphic to the prod-

uct of XK and Diff+(S3) . We can in fact use this bijection to define the topology on
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DiffExt+(S3) if we like. We will fit the space DiffExt+(S3) into a commutative diagram

−−−−−→ −−−−−−→SDiffExt DiffExt K+ 3K KS+ 3( ),

−−−−−−−−−→ −−−−−→↩↩ ↩

SO X4K K( ) SO 4(( ) )/Γ KΓ× XK×
The map DiffExt+(S3)→KK sends (θ, f ) to f(K) . This is a fibration whose fiber

DiffExt+(S3, K) is the subspace consisting of pairs (θ, f ) with f(K) = K . The middle

vertical inclusion in the diagram sends (ρ, θ) to (θ, ρfθ) , so this is equivalent to the

natural inclusion SO(4)×XK↩Diff+(S3)×XK , which is a homotopy equivalence by

the Smale conjecture.

Next we analyze the fiber DiffExt+(S3, K) . This has a natural projection to the

space of torus decompositions of S3 − K , the map (θ, f ), f(T) , where we regard

the given torus decomposition T as a decomposition of S3
θ−K . The space of torus de-

compositions is contractible by [H2] (this is made more explicit in the revised version),

so the inclusion of the fiber DiffExt+(S3, K ∪ T) into DiffExt+(S3, K) is a homotopy

equivalence. We can regard DiffExt+(S3, K∪T) as the space of tuples (f0, ··· , fn) of

orientation-preserving diffeomorphisms fi :Wi→Wi whose restrictions to common

boundary tori agree up to rotation, an element of I+0 . (The fi also take meridians to

meridians and longitudes to longitudes, up to isotopy and sign.) From this viewpoint

there is an evident inclusion ΓK↩DiffExt+(S3, K ∪T) , and this is a homotopy equiv-

alence. Namely we can first deform the fi ’s into Γi by [H2] and then adjust these

deformations so that they agree modulo I+0 on the Ti ’s.

It is evident that the diagram commutes, so since the first two vertical maps are

homotopy equivalences, so is the third. tu

Satellite Knots Without Sums

[Not yet written]

General Satellite Knots

[Not yet written]
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