Senior Seminar Topics

2006-2007			
Discrete Probability	Game Theory	Revisiting Combinatorics	
Abra Brisbin	Jason Anema	Jay Schweig	
The first few days introduced set theory and	This course began with a study of matrix	Combinatorics was taken in new directions for	
combinatorics. After that, they turned to	games and a proof of the existence of Nash	the students, covering graph and tree	
probability distributions, expected value, and	equilibria. Students then studied decision	enumeration, partitions, compositions, and	
independence. In the second half of the course,	graphs, which included backwards induction,	generating functions. Responding to a request	
they worked on conditional probability, Bayes'	uncertainty and multiple-person decisions, and	from the students, the second part of the	
Theorem, the Monte Carlo method, and Markov	as an example played "Indian Poker" in class.	session covered the beginnings of formal logic,	
chains. Throughout the course, they tackled	The next topic was the problem of maximizing	including a treatment of sentential logic, a	
questions involving applications of probability in	utility in auctions with incomplete	discussion of the completeness and	
biology, medicine, social policy, and everyday life.	information. The course concluded with a	incompleteness theorems, and a full proof of	
	consideration of voting schemes and	the compactness theorem for sentential logic.	
	coalitions.		
2007-2008			
Combinatorics: Unusual Counting Problems	Group Theory	Introduction to Knot Theory	
Gwyneth Whieldon	Jonathan Needleman	Victor Kostyuk	
Students started with proofs of interesting	This course emphasized symmetries of	This session started with basic concepts of	
Fibonacci identities, and then moved on to more	mathematical objects, such as geometric	knot and link projections, ambient isotopies,	
general binomial identities, with the emphasis on	shapes and sets. Basic properties of groups	and Reidemeister moves, and continued with	
using bijective counting arguments rather than	were explored including subgroups, normal	simple link and knot invariants (e.g., linking	
induction or other proof methods. Lucas and	subgroups, and quotient groups. Lagrange's	number, tricolorability, and crossing number).	
Gibonacci identities were studied, and more	Theorem and the first isomorphism theorem	Alexander and Jones polynomials were	
difficult identities that combine Lucas and	were proved, and the Sylow Theorems were	introduced, the latter defined in terms of the	
Fibonacci numbers were studied. Binet's formula	stated. For an end of the term group project	Kauffman bracket. Students examined the	
using combinatorial and probabilitistic arguments	the students decided to explore symmetries in	Dawker notation and algebraic tangles, closed	
was proved. Identities on simple or general	M.C. Escher's artwork.	braid representations of links, torus and	
continued fractions was studied. Students were		satellite knots. The last few weeks were spent	
introduced to Khinchin's constant and some of its		discussing surfaces and the Euler	
more unusual properties.		characteristic, leading to a definition of a	
		knot's genus and construction of Seifert	
		surfaces	

2008-2009			
Counting Problems & Generating Functions	Cardinality	Isometries & Symmetries	
Saul Blanco	Matt Noonan	Victor Kostyuk	
Students looked at the connection between rational	This session extended the unit on generating	Students looked at isometries of the line and	
generating functions and linear recurrences, and	functions and examined how generating	plane, and symmetries of figures in the plane.	
used these to find closed formulas for the	functions can lead to a generalized notion of	This led to groups of isometries or symmetries.	
Fibonacci and Catalan numbers that were defined	cardinality. Students applied generating	They discussed the axioms a set needs to	
recursively as the solution to counting problems.	functions to the construction of "nonstandard	satisfy in order to be a group, and studied basic	
Students explored bijections between objects that	dice." Understanding these dice is closely tied	examples of groups, their properties, and	
are counted by Catalan and Motzkin numbers.	to understanding cyclotomic polynomials, and	geometric expression as symmetries or	
Other topics included composition, set and number	this became the new theme of the course. The	isometries. Injective and surjective functions	
partitions, their associated generating functions,	seminar moved on to study constructability of	were covered, as well as homomorphisms and	
and Euler's pentagonal number theorem. Unlike	regular polygons by ruler and compass.	isomorphisms. They explored kernels, normal	
the generating functions connected to linear	Finally, after studying some basic number	subgroups, quotient groups, and the first	
recurrences, students discovered that the	theory in the form of Fermat's Little Theorem,	isomorphism theorem. Seminar closed with a	
generating functions associated with partitions are	Wilson's Theorem and Euler's Theorem, the	discussion of generators, relations, and free	
an infinite product and not an infinite sum.	the RSA encryption algorithm was introduced.	groups. Universal properties and commutative	
		diagrams were introduced in this context.	
2009-2010			
Group Theory: Rubik's Cube	Paradoxes and Infinity	Introduction to Cryptology	
Group Theory: Rubik's Cube Jennifer Biermann	Paradoxes and Infinity Gwyneth Whieldon	Introduction to Cryptology Benjamin Lundell	
Group Theory: Rubik's Cube Jennifer Biermann Students first focused on determining the size of	Paradoxes and Infinity Gwyneth Whieldon This seminar began with discussion of several	Introduction to Cryptology Benjamin Lundell Basic Caesar and Rail Fence ciphers opened the	
Group Theory: Rubik's Cube Jennifer Biermann Students first focused on determining the size of the Rubik's cube group. For this they learned	Paradoxes and Infinity <i>Gwyneth Whieldon</i> This seminar began with discussion of several classical math paradoxes, properties of	Introduction to Cryptology <i>Benjamin Lundell</i> Basic Caesar and Rail Fence ciphers opened the seminar. After introducing modular arithmetic,	
Group Theory: Rubik's Cube Jennifer Biermann Students first focused on determining the size of the Rubik's cube group. For this they learned about permutation groups, decompositions of	Paradoxes and InfinityGwyneth WhieldonThis seminar began with discussion of severalclassical math paradoxes, properties ofnumbers and number systems, and the	Introduction to Cryptology Benjamin Lundell Basic Caesar and Rail Fence ciphers opened the seminar. After introducing modular arithmetic, students generalized to multiplication and,	
Group Theory: Rubik's Cube Jennifer Biermann Students first focused on determining the size of the Rubik's cube group. For this they learned about permutation groups, decompositions of permutations into disjoint cycles, and even and	Paradoxes and InfinityGwyneth WhieldonThis seminar began with discussion of severalclassical math paradoxes, properties ofnumbers and number systems, and thedevelopment of axiomatic mathematics.	Introduction to Cryptology Benjamin Lundell Basic Caesar and Rail Fence ciphers opened the seminar. After introducing modular arithmetic, students generalized to multiplication and, eventually, affine ciphers. Students studied	
Group Theory: Rubik's Cube Jennifer Biermann Students first focused on determining the size of the Rubik's cube group. For this they learned about permutation groups, decompositions of permutations into disjoint cycles, and even and odd permutations. They investigated subgroups of	Paradoxes and InfinityGwyneth WhieldonThis seminar began with discussion of severalclassical math paradoxes, properties ofnumbers and number systems, and thedevelopment of axiomatic mathematics.Students examined sizes of finite and infinite	Introduction to Cryptology Benjamin Lundell Basic Caesar and Rail Fence ciphers opened the seminar. After introducing modular arithmetic, students generalized to multiplication and, eventually, affine ciphers. Students studied monoalphabetic substitution ciphers using the	
Group Theory: Rubik's Cube Jennifer Biermann Students first focused on determining the size of the Rubik's cube group. For this they learned about permutation groups, decompositions of permutations into disjoint cycles, and even and odd permutations. They investigated subgroups of the Rubik's cube group and Lagrange's Theorem.	Paradoxes and InfinityGwyneth WhieldonThis seminar began with discussion of severalclassical math paradoxes, properties ofnumbers and number systems, and thedevelopment of axiomatic mathematics.Students examined sizes of finite and infinitesets and several classic puzzles and paradoxes	Introduction to Cryptology Benjamin Lundell Basic Caesar and Rail Fence ciphers opened the seminar. After introducing modular arithmetic, students generalized to multiplication and, eventually, affine ciphers. Students studied monoalphabetic substitution ciphers using the Keyword cipher, and the cryptoanalysis of	
Group Theory: Rubik's Cube Jennifer Biermann Students first focused on determining the size of the Rubik's cube group. For this they learned about permutation groups, decompositions of permutations into disjoint cycles, and even and odd permutations. They investigated subgroups of the Rubik's cube group and Lagrange's Theorem. The last part of the unit touched on several	Paradoxes and Infinity Gwyneth Whieldon This seminar began with discussion of several classical math paradoxes, properties of numbers and number systems, and the development of axiomatic mathematics. Students examined sizes of finite and infinite sets and several classic puzzles and paradoxes (e.g., Zeno's paradox, the Banach-Tarski	Introduction to Cryptology Benjamin Lundell Basic Caesar and Rail Fence ciphers opened the seminar. After introducing modular arithmetic, students generalized to multiplication and, eventually, affine ciphers. Students studied monoalphabetic substitution ciphers using the Keyword cipher, and the cryptoanalysis of ciphers through frequency analysis and letter	
Group Theory: Rubik's Cube Jennifer Biermann Students first focused on determining the size of the Rubik's cube group. For this they learned about permutation groups, decompositions of permutations into disjoint cycles, and even and odd permutations. They investigated subgroups of the Rubik's cube group and Lagrange's Theorem. The last part of the unit touched on several subjects such as Cayley graphs and quotient	Paradoxes and Infinity <i>Gwyneth Whieldon</i> This seminar began with discussion of several classical math paradoxes, properties of numbers and number systems, and the development of axiomatic mathematics. Students examined sizes of finite and infinite sets and several classic puzzles and paradoxes (e.g., Zeno's paradox, the Banach-Tarski paradox, the Littlewood Ping-Pong ball	Introduction to Cryptology <i>Benjamin Lundell</i> Basic Caesar and Rail Fence ciphers opened the seminar. After introducing modular arithmetic, students generalized to multiplication and, eventually, affine ciphers. Students studied monoalphabetic substitution ciphers using the Keyword cipher, and the cryptoanalysis of ciphers through frequency analysis and letter distributions. They learned ways to make more	
Group Theory: Rubik's Cube Jennifer Biermann Students first focused on determining the size of the Rubik's cube group. For this they learned about permutation groups, decompositions of permutations into disjoint cycles, and even and odd permutations. They investigated subgroups of the Rubik's cube group and Lagrange's Theorem. The last part of the unit touched on several subjects such as Cayley graphs and quotient groups. The students were not taught how to solve	Paradoxes and Infinity <i>Gwyneth Whieldon</i> This seminar began with discussion of several classical math paradoxes, properties of numbers and number systems, and the development of axiomatic mathematics. Students examined sizes of finite and infinite sets and several classic puzzles and paradoxes (e.g., Zeno's paradox, the Banach-Tarski paradox, the Littlewood Ping-Pong ball problem, and other Supertask problems).	Introduction to Cryptology Benjamin Lundell Basic Caesar and Rail Fence ciphers opened the seminar. After introducing modular arithmetic, students generalized to multiplication and, eventually, affine ciphers. Students studied monoalphabetic substitution ciphers using the Keyword cipher, and the cryptoanalysis of ciphers through frequency analysis and letter distributions. They learned ways to make more secure ciphers, which led to the Vigenère cipher	
Group Theory: Rubik's Cube Jennifer Biermann Students first focused on determining the size of the Rubik's cube group. For this they learned about permutation groups, decompositions of permutations into disjoint cycles, and even and odd permutations. They investigated subgroups of the Rubik's cube group and Lagrange's Theorem. The last part of the unit touched on several subjects such as Cayley graphs and quotient groups. The students were not taught how to solve the Rubik's cube but rather, time was spent	Paradoxes and Infinity <i>Gwyneth Whieldon</i> This seminar began with discussion of several classical math paradoxes, properties of numbers and number systems, and the development of axiomatic mathematics. Students examined sizes of finite and infinite sets and several classic puzzles and paradoxes (e.g., Zeno's paradox, the Banach-Tarski paradox, the Littlewood Ping-Pong ball problem, and other Supertask problems). Other topics included partial fractions and	Introduction to Cryptology Benjamin Lundell Basic Caesar and Rail Fence ciphers opened the seminar. After introducing modular arithmetic, students generalized to multiplication and, eventually, affine ciphers. Students studied monoalphabetic substitution ciphers using the Keyword cipher, and the cryptoanalysis of ciphers through frequency analysis and letter distributions. They learned ways to make more secure ciphers, which led to the Vigenère cipher and the one-time pad. They studied	
Group Theory: Rubik's Cube Jennifer Biermann Students first focused on determining the size of the Rubik's cube group. For this they learned about permutation groups, decompositions of permutations into disjoint cycles, and even and odd permutations. They investigated subgroups of the Rubik's cube group and Lagrange's Theorem. The last part of the unit touched on several subjects such as Cayley graphs and quotient groups. The students were not taught how to solve the Rubik's cube but rather, time was spent discussing conjugates and how they could be used	Paradoxes and Infinity <i>Gwyneth Whieldon</i> This seminar began with discussion of several classical math paradoxes, properties of numbers and number systems, and the development of axiomatic mathematics. Students examined sizes of finite and infinite sets and several classic puzzles and paradoxes (e.g., Zeno's paradox, the Banach-Tarski paradox, the Littlewood Ping-Pong ball problem, and other Supertask problems). Other topics included partial fractions and Khinchin's constant, Fibonacci numbers and	Introduction to Cryptology <i>Benjamin Lundell</i> Basic Caesar and Rail Fence ciphers opened the seminar. After introducing modular arithmetic, students generalized to multiplication and, eventually, affine ciphers. Students studied monoalphabetic substitution ciphers using the Keyword cipher, and the cryptoanalysis of ciphers through frequency analysis and letter distributions. They learned ways to make more secure ciphers, which led to the Vigenère cipher and the one-time pad. They studied cryptoanalyis of polyalphabetic ciphers via the	
Group Theory: Rubik's Cube Jennifer Biermann Students first focused on determining the size of the Rubik's cube group. For this they learned about permutation groups, decompositions of permutations into disjoint cycles, and even and odd permutations. They investigated subgroups of the Rubik's cube group and Lagrange's Theorem. The last part of the unit touched on several subjects such as Cayley graphs and quotient groups. The students were not taught how to solve the Rubik's cube but rather, time was spent discussing conjugates and how they could be used to find useful sequences of moves. Most students	Paradoxes and Infinity <i>Gwyneth Whieldon</i> This seminar began with discussion of several classical math paradoxes, properties of numbers and number systems, and the development of axiomatic mathematics. Students examined sizes of finite and infinite sets and several classic puzzles and paradoxes (e.g., Zeno's paradox, the Banach-Tarski paradox, the Littlewood Ping-Pong ball problem, and other Supertask problems). Other topics included partial fractions and Khinchin's constant, Fibonacci numbers and counting problems, and properties of infinite	Introduction to Cryptology <i>Benjamin Lundell</i> Basic Caesar and Rail Fence ciphers opened the seminar. After introducing modular arithmetic, students generalized to multiplication and, eventually, affine ciphers. Students studied monoalphabetic substitution ciphers using the Keyword cipher, and the cryptoanalysis of ciphers through frequency analysis and letter distributions. They learned ways to make more secure ciphers, which led to the Vigenère cipher and the one-time pad. They studied cryptoanalyis of polyalphabetic ciphers via the Friedman test, public key cryptography, and the	
Group Theory: Rubik's Cube Jennifer Biermann Students first focused on determining the size of the Rubik's cube group. For this they learned about permutation groups, decompositions of permutations into disjoint cycles, and even and odd permutations. They investigated subgroups of the Rubik's cube group and Lagrange's Theorem. The last part of the unit touched on several subjects such as Cayley graphs and quotient groups. The students were not taught how to solve the Rubik's cube but rather, time was spent discussing conjugates and how they could be used to find useful sequences of moves. Most students learned (on their own) how to solve the cube by	Paradoxes and Infinity <i>Gwyneth Whieldon</i> This seminar began with discussion of several classical math paradoxes, properties of numbers and number systems, and the development of axiomatic mathematics. Students examined sizes of finite and infinite sets and several classic puzzles and paradoxes (e.g., Zeno's paradox, the Banach-Tarski paradox, the Littlewood Ping-Pong ball problem, and other Supertask problems). Other topics included partial fractions and Khinchin's constant, Fibonacci numbers and counting problems, and properties of infinite sums. Students took an historical look at the	Introduction to Cryptology <i>Benjamin Lundell</i> Basic Caesar and Rail Fence ciphers opened the seminar. After introducing modular arithmetic, students generalized to multiplication and, eventually, affine ciphers. Students studied monoalphabetic substitution ciphers using the Keyword cipher, and the cryptoanalysis of ciphers through frequency analysis and letter distributions. They learned ways to make more secure ciphers, which led to the Vigenère cipher and the one-time pad. They studied cryptoanalyis of polyalphabetic ciphers via the Friedman test, public key cryptography, and the Diffe-Hellman Key Exchange Protocol. We	
Group Theory: Rubik's Cube Jennifer Biermann Students first focused on determining the size of the Rubik's cube group. For this they learned about permutation groups, decompositions of permutations into disjoint cycles, and even and odd permutations. They investigated subgroups of the Rubik's cube group and Lagrange's Theorem. The last part of the unit touched on several subjects such as Cayley graphs and quotient groups. The students were not taught how to solve the Rubik's cube but rather, time was spent discussing conjugates and how they could be used to find useful sequences of moves. Most students learned (on their own) how to solve the cube by the end of the unit.	Paradoxes and Infinity <i>Gwyneth Whieldon</i> This seminar began with discussion of several classical math paradoxes, properties of numbers and number systems, and the development of axiomatic mathematics. Students examined sizes of finite and infinite sets and several classic puzzles and paradoxes (e.g., Zeno's paradox, the Banach-Tarski paradox, the Littlewood Ping-Pong ball problem, and other Supertask problems). Other topics included partial fractions and Khinchin's constant, Fibonacci numbers and counting problems, and properties of infinite sums. Students took an historical look at the idea of "numbers," an historical examination	Introduction to Cryptology Benjamin Lundell Basic Caesar and Rail Fence ciphers opened the seminar. After introducing modular arithmetic, students generalized to multiplication and, eventually, affine ciphers. Students studied monoalphabetic substitution ciphers using the Keyword cipher, and the cryptoanalysis of ciphers through frequency analysis and letter distributions. They learned ways to make more secure ciphers, which led to the Vigenère cipher and the one-time pad. They studied cryptoanalyis of polyalphabetic ciphers via the Friedman test, public key cryptography, and the Diffe-Hellman Key Exchange Protocol. We ended with a week long "cipher scavenger	
Group Theory: Rubik's Cube Jennifer Biermann Students first focused on determining the size of the Rubik's cube group. For this they learned about permutation groups, decompositions of permutations into disjoint cycles, and even and odd permutations. They investigated subgroups of the Rubik's cube group and Lagrange's Theorem. The last part of the unit touched on several subjects such as Cayley graphs and quotient groups. The students were not taught how to solve the Rubik's cube but rather, time was spent discussing conjugates and how they could be used to find useful sequences of moves. Most students learned (on their own) how to solve the cube by the end of the unit.	Paradoxes and Infinity <i>Gwyneth Whieldon</i> This seminar began with discussion of several classical math paradoxes, properties of numbers and number systems, and the development of axiomatic mathematics. Students examined sizes of finite and infinite sets and several classic puzzles and paradoxes (e.g., Zeno's paradox, the Banach-Tarski paradox, the Littlewood Ping-Pong ball problem, and other Supertask problems). Other topics included partial fractions and Khinchin's constant, Fibonacci numbers and counting problems, and properties of infinite sums. Students took an historical look at the idea of "numbers," an historical examination of paradoxes of set theory, and the axiomatic	Introduction to Cryptology <i>Benjamin Lundell</i> Basic Caesar and Rail Fence ciphers opened the seminar. After introducing modular arithmetic, students generalized to multiplication and, eventually, affine ciphers. Students studied monoalphabetic substitution ciphers using the Keyword cipher, and the cryptoanalysis of ciphers through frequency analysis and letter distributions. They learned ways to make more secure ciphers, which led to the Vigenère cipher and the one-time pad. They studied cryptoanalyis of polyalphabetic ciphers via the Friedman test, public key cryptography, and the Diffe-Hellman Key Exchange Protocol. We ended with a week long "cipher scavenger hunt," in which students cracked a series of	

2010-2011 **Counterexamples in Mathematics Probability Numerical Analysis** Mircea Pitici Tilo Nguyen Amy Cochran This seminar was based exclusively on analyzing, The first segment of this seminar was an The seminar began with preliminary topics: constructing, and discussing counterexamples in computer arithmetic, error, logic, and basic introduction to probability, starting with some mathematics. We proceeded gradually, starting refresher combinatorics problems. Students programming using graphing calculators. The with counterexamples pertaining to basic functional then learned how to use combinatorics and bulk of the seminar was focused on linear and notions and quickly advancing to counterexamples Venn diagram to calculate probability. We nonlinear systems of equations. For linear related to functional properties studied in calculus talked about the meaning of independent or systems, the students examined solution (continuity, differentiability, Darboux property, mutually exclusive events. We discussed techniques (e.g., Gaussian Elimination, integrability). Among many examples we included conditional probability and Bayes' Theorem, Backward/Forward Substitution, and Jacobi using disease testing as an example. We some of historical importance (e.g., Dirichlet method), and learned about matrix and vector function and its variants, Weierstrass function). studied popular discrete distributions (e.g., norms, singular value decomposition, and LU Most examples concerned functions of one variable, Bernoulli, binomial, negative binomial, decomposition. For nonlinear systems, rootbut toward the end we also studied counterexamples geometric, and Poisson distributions). We finding and minimization techniques were in functions of two variables. The initial intent was studied Markov chains and briefly discussed studied, including Newton-Raphson, bisection, to include all branches of mathematics, but we the use of Markov chains in real life golden search, and steepest descent methods. Numerical calculus was also briefly studied. decided to stay just within calculus for the whole applications (e.g., Google searches). The seminar. However, as a final project, one student seminar ended with solving fun and famous Topics included Newton-Cotes formulas, studied counterexamples in number theory. probability problems (e.g., Buffon's needle). Gaussian, and Monte Carlo integration. 2011-2012 **Special Curves Axiomatic Development of Probability Calculus of Variations** Mircea Pitici Mark Cerenzia Anoop Grewal We explored various special curves, with an This seminar presented the axiomatic approach We started off with the historical beginning of emphasis on geometric elements; occasionally we to probability theory so that students could the subject with the famous Brachistochrone also studied the algebraic and trigonometric learn how mathematical machinery is built and problem by Johann Bernoulli. The general properties, and pointed out the importance of the applied. We began with a brisk introduction to solution by Euler and Lagrange was derived curves in applications, for instance in the theory and discussed next. We discussed many relevant set theory in order to state the three and construction of mechanisms. All along we axioms of probability (i.e., the definition of a famous applications of calculus of variations in considered other curves related to a given curve, measure space). We then derived typical engineering and physics, including geodesics such as pedal curves and envelopes. We started off properties one would expect when computing on the plane, cylinder and sphere; Lagrangian with a unified view of conics offered by projective probabilities and showed how the framework formulation of mechanics; and the catenary geometry, mentioning several major closure helps us avoid pitfalls that both laymen and curve as minimum potential energy solution. theorems (due to Pascal, Brianchon, Poncelet) and professionals often make. This led naturally a potpourri of side results. We continued by into other core concepts, such as independence, examining in detail the cycloid, a few particular conditional probability, Bayes' Formula, and epicycloids and hypocycloids (cardioid, astroid, random variables along with their important quantities (variance and expectation). Deriving deltoid, nephroid), and various spirals. Pressed by time, we mentioned cursorily some of the everything formally from the axioms was the

main feature and focus of this development.

properties of limacon, lemniscates, and ovals.