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Introduction

The problem the limiting behavior of a slow component of multidimensional

Markov diffusion process has many applications in physics, biology and other areas.

One possible setting of this problem is as follows. Assume that we are given a

Markov diffusion process (Xε(t), Yε(t)) consisting of two components Xε(t) and

Yε(t) and depending on the parameter ε which tends to zero. Then we are interested

in what happens if, as ε → 0, Xε(t) changes faster and faster in time and Yε(t)

lives in the same time scale for all ε.

This problem was considered in [Kh68],[PSV77], [VF79],[Sk89], [PV1], [PV2] and

many others. Roughly speaking, the main result can be described as follows. Let

the generator Lε(x, y) of the process (Xε(t), Yε(t)) is:
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Lε(x, y) = ε−2L1(x, y) + ε−1L2(x, y) + L3(x, y),

L1(x, y) =

l1∑
i,j=1

a
(1)
ij (x, y)

∂2

∂xi∂xj
+

l1∑
i=1

b
(1)
i (x, y)

∂

∂xi
,

L2(x, y) =

l1∑
i=1

l2∑
j=1

a
(2)
ij (x, y)

∂2

∂xi∂yj
,

L3(x, y) =

l2∑
i,j=1

a
(3)
ij (x, y)

∂2

∂yi∂yj
+

l2∑
i=1

b
(3)
i (x, y)

∂

∂yi
.

Suppose that, for any fixed y, the Markov process Xx,y(t) with generator L1(x, y)

and satisfying Xx,y(0) = x is ergodic. Assume the density of its stationary distri-

bution exists and denote it by ρ(x, y). Denote also for any function g(x, y)

ḡ(y) =

∫
g(x, y)ρ(x, y)dx

and let Ȳ y(t) be the Markov process starting at y with generator L̄3. Under some

additional conditions on the coefficients, guaranteeing, in particular, compactness

of the family of measures generated by Y x,y
ε (t) for ε → 0 and weak uniqueness

of the process Ȳ y(t), the averaging principle for the slow component was proved:

Y x,y
ε (t)

distr−→ Ȳ y(t) for any x, y, as ε→ 0.
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The related result also can be formulated in the PDE terms, making use of the

probabilistic representation for the solution of Cauchy problem for parabolic PDE’s.

Let uε(t, x, y), x ∈ Rl1, y ∈ Rl2, be a solution of the problem

∂uε
∂t

= Lε(x, y)uε + c(x, y)uε + f(x, y); uε(0, x, y) = φ(x, y). (1)

Assume that coefficients of the operator L1 have the property: for any fixed y the

problem

L∗1(x, y)ρ(x, y) = 0;

∫
Rl1
ρ(x, y)dx = 1 (2)

has a unique solution. (Sufficient conditions on coefficients for this property are

well known, see, e.g., [PV1]). Assume also that all coefficients a
(k)
ij , b

(k)
i are bounded

and smooth enough . Then uε(t, x, y)→ ū(t, y), as ε→ 0, here ū(t, y) is a solution

of the problem (see, e.g., [KY])

∂ū

∂t
= L̄3(y)ū(t, y) + c̄(y)ū+ f̄(y); ū(0, y) = φ̄(y). (3)

Question: what is the limit behavior of uε if the fast component is not ergodic? In

what follows we restrict ourself by the one-dimensional fast component, l1 = 1. The

fast component can be transient or null-recurrent. For the transient fast component

the limit of uε(t, x, y) can depend on the fast component x.
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Assume, for instance, that the fast component can go to +∞ and to −∞ with

positive probability, and L3(x, y) → L±3 (y), φ(x, y) → φ±(y) as x → ±∞, and

L2(x, y) = 0. Then it is not hard to prove that a solution uε(t, x, y) of the problem

∂uε
∂t

= Lε(x, y)uε; uε(0, x, y) = φ(x, y),

has the following limiting behavior: for t > δ > 0

lim
ε→0

uε(t, x, y) = p(x, y)u+(t, y) + (1− p(x, y))u−(t, y),

here the function p(x, y) is a solution of the problem

L1(x, y)p(x, y) = 0; p(−∞, y) = 0, p(+∞, y) = 1

( it can be written at the explicit form) and u±(t, y) is a solution of the problem

∂u±

∂t
= L±3 (y)u±; u±(0, y) = φ±(y).
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Averaging for null-recurrent fast component

The simplest case of the null-recurrent one-dimensional fast component is the

case where L1(x, y) = a
(1)
11 (x, y) ∂2

∂x2 with

0 < c1 ≤ a
(1)
11 (x, y) ≤ c2 <∞. (4)

Thus we have considered in [KK] the diffusion process with two scales and generator

Lε(x, y) = ε−2a00(x, y)
∂2

∂x2 + 2ε−1
d∑
i=1

ai0(x, y)
∂2

∂x∂yi

+
d∑

i,j=1

aij(x, y)
∂2

∂yi∂yj
+

d∑
i=1

bi(x, y)
∂

∂yi
(5)

:= ε−2L1(x, y) + ε−1L2(x, y) + L3(x, y)

We suppose that the following conditions concerning the coefficients of (5) are valid.

A1. The coefficients aij, bi are Lipschitz continuous in (x, y) and, for each x,

their derivatives in y up to and including second order derivatives are bounded

continuous functions of y.

A2. For some positive constants c1, c2 the condition (4) is valid and for some

constant c3 > 0
d∑
i=1

(aii(x, y) + b2
i (x, y)) ≤ c3(1 + |y|2).
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We denote below p(x, y) = (a00(x, y))−1.

B1. The function p(x, y) has a limit p±(y) in C̀esaro sense, as x→ ±∞:

lim
x→±∞

x−1
∫ x

0
p(z, y)dz = p±(y)

uniformly in y ∈ Rd and, moreover, also uniformly in y ∈ Rd,

lim
x→±∞

x−1
∫ x

0

∂p(z, y)

∂y
dz =

∂p±(y)

∂y
,

lim
x→±∞

x−1
∫ x

0

∂2p(t, y)

∂y2 dt =
∂2p±(y)

∂y2 .

We suppose further that the coefficients aij(x, y), bi(x, y), i = 1, ..., d, j = 0, ..., d

and all their derivatives in y up to the second order also have averages in x, as

x → ±∞ with the weight p(x, y). To write these conditions in a compact form

we use the following notation: for any function K(x, y) having the limit in C̀esaro

sense as x→ ±∞,

K+(y) := lim
x→+∞

x−1
∫ x

0
K(t, y)dt,

K−(y) := lim
x→−∞

x−1
∫ x

0
K(t, y)dt;

K±(x, y) := K+(y)1{x>0} +K−(y)1{x≤0}.
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For a function K(x, y) we write K ∈ K if K± exists and

x−1
∫ x

0
K(z, y)dz −K±(x, y) = (1 + |y|2)α(x, y).

Here ( and below) the function α is bounded and satisfies

lim
|x|→∞

sup
y∈Rd
|α(x, y)| = 0.

B2. For i = 1, ..., d, j = 0, ..., d, we have

pbi, Dy(pbi), D
2
y(pbi), paij, Dy(paij), D

2
y(paij) ∈ K.

Introduce also the notations

āij(x, y) =
(aijp)

±(x, y)

p±(x, y)
, b̄(x, y) =

(bp)±(x, y)

p±(x, y)
; Ā(x, y) = (āij(x, y))i,j=0,1,...,d.

Observe, in passing, that ā00(x, y) = (p±(x, y))−1.

Consider the Markov diffusion process Z̃(t) = (X̃0(t), Ỹ0(t)) with the diffusion

matrix Ā(x, y) and the drift vector (0, b̄(x, y))∗ and denote L̄(x, y) the generator of

this process.

It is proven in [KK] that the slow component only does not converge to any

limiting process, but the pair (εXε(t), Yε(t)) converges weakly to the limit Z̃(t) if

the diffusion matrix Ā(x, y), the drift vector (0, b̄(x, y))∗ and the initial conditions
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determine the distribution of Z̃(t) uniquely. These coefficients are smooth functions

only in each half-space {x > 0} and {x < 0} and can have jumps at the hyperplane

x = 0. This circumstance makes not self-evident the uniqueness of the process

with this generator, which is essential for our approach. We have considered in

[KK] some examples where this uniqueness has place, and, in general, added this

uniqueness condition to our Theorem. But recently Krylov found in [Kr 03] that

the weak uniqueness for the solution of the appropriate SDE’s and PDE’s always

has place under conditions A, B. The generator of Z̃ε(t) is

L1(x/ε, y) + L2(x/ε, y) + L3(x/ε, y) = L(x/ε, y)

In PDE’s terms the result can be formulated by the following way.

Theorem 1. Let the conditions A, B be fulfilled and c(x, y) ∈ K, f(x, y) ∈ K.

Denote c̄(x, y) = (pc)±(x,y)
p±(x,y) ; f̄(x, y) = (pf)±(x,y)

p±(x,y) ; L̄(x, y) = (pL)±(x,y)
p±(x,y) . Then the

solution of the Cauchy problem

∂uε
∂t = L(x/ε, y)uε + c(x/ε, y)uε + f(x/ε, y); uε(0, x, y) = ϕ(x, y) (6)

converges, as ε→ 0, to the unique bounded solution

ū(x, y, t) ∈ W2,1
d+1,loc of the problem

∂ū
∂t = L̄(x, y)ū+ c̄(x, y)ū+ f̄(x, y); ū(0, x, y) = ϕ(x, y). (7)
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The natural question: is it possible to include the case of initial conditions also

depending on x/ε?

Corollary 1. Let the conditions of the Theorem 1 be valid and ϕ(x, y) ∈ K also.

Denote ϕ̄(x, y) = (ϕp)±(x,y)
p±(x,y) . Then the solution of the Cauchy problem

∂uε
∂t = L(x/ε, y)uε + c(x/ε, y)uε + f(x/ε, y); uε(0, x, y) = ϕ(x/ε, y) (8)

converges for t > δ > 0, as ε→ 0, to the unique bounded solution

ū(x, y, t) ∈ W2,1
d+1,loc of the problem

∂ū
∂t = L̄(x, y)ū+ c̄(x, y)ū+ f̄(x, y); ū(0, x, y) = ϕ̄(x, y). (9)

The proof of this Corollary can be obtained by combining the probabilistic ap-

proach of [KK] and the known results about Hölder continuity the solution of

parabolic equations with bounded coefficients for t > δ > 0 (see [Kr85]).
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Homogenization

Homogenization problems for parabolic PDE were considered in many publica-

tions, see, for instance, [F], [PSV], [JKO], [BLP] and references there. It is supposed

in the most part of these references that the coefficients of the PDE are periodic

in all space variables. Now we first answer the question: what result concerning

homogenization follows from the Theorem 1 and Corollary?

Consider the Cauchy problem for the parabolic PDE

∂uε
∂t

= a00(x/ε)
∂2uε
∂x2 + c(x/ε)uε + f(x/ε); uε(0, x) = φ(x/ε). (10)

Assume that c1 ≤ a00(x) = p−1(x) ≤ c2 (c1 > 0), a00(x) has two bounded deriva-

tives, and the function p(x) has limits p± in C̀esaro sense, as x→ ±∞.

Assume also that the functions p(x)c(x), p(x)f(x), p(x)ϕ(x) also have limits in

C̀esaro sense, as x → ±∞. Then all conditions of the Corollary are fulfilled for

the problem (10), and one can deduce from the Corollary that uε(t, x) → ū(t, x),

as ε→ 0, here ū(t, x) is a solution of the problem

∂ū
∂t = ā(x)∂

2ū
∂x2 + c̄(x) + f̄(x); ū(0, x) = ϕ̄(x).

Here ā(x) = 1/p±(x), c̄(x) = (pc)±(x)
p±(x) , f̄(x) = (pf)±(x)

p±(x) , ϕ̄(x) = (pϕ)±(x)
p±(x) .
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A natural question arises: is it possible to use the Theorem 1 for justification

the homogenization to the parabolic equations on R+×R1 with the drift term? In

other words, can we apply the Theorem 1 for the analysis of the limiting behavior

of the equation

∂uε
∂t = a00(x/ε)

∂2uε
∂x2 + b0(x/ε)

∂uε
∂x + c(x/ε)uε + f(x/ε); uε(0, x) = φ(x/ε)? (11)

Unfortunately, the answer to this question is negative: the equation of the ’fast’

component in the Theorem 1 does not have a drift term. Nevertheless, it is well

known, that for the case periodic coefficients homogenization has place .

It was noticed in [KhKl] that the Theorem 1 can be generalized by the following

way. Instead of the process with the generator

Lε(x, y) = ε−2a00(x, y) ∂2

∂x2 + 2ε−1∑d
i=1 ai0(x, y) ∂2

∂x∂yi
+
∑d

i,j=1 aij(x, y) ∂2

∂yi∂yj

+
∑d

i=1 bi(x, y) ∂
∂yi

the averaging principle can be justified for the process Ẑε(t) = (X̂ε(t), Ŷε(t)) with

the generator

L̂ε(x, y) = ε−2a00(x, y) ∂2

∂x2 + ε−1b0(x, y) ∂
∂x + 2ε−1∑d

i=1 ai0(x, y) ∂2

∂x∂yi

+
∑d

i,j=1 aij(x, y) ∂2

∂yi∂yj
+
∑d

i=1 bi(x, y) ∂
∂yi
. (12)
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Remark 1. Due to the presence the drift term b0 in (11) the process X̃ε(t) with

the generator ε−2a00(x, y) ∂2

∂x2 +ε−1b0(x, y) ∂
∂x with fixed y can be not necessarily null-

recurrent, as in [KK], but, may be, positive recurrent or transient. Nevertheless,

the averaging result in the theorem below is of the same type as for the process

with null-recurrent fast component (as in [KK]) due to the fact that the drift term

in this operator is small in comparison with the diffusion term.

We use here and below the same notations and assumptions concerning coeffi-

cients of the operator L̂ε(x, y) as above. There are only the following differences.

We include b0 in the smoothness condition A.1, the summation in the condition A.2

starts from i = 0, and assume, in addition, that pb0 ∈ K in the condition B.2.

Denote by Ã, B̃ the modified by this way conditions A, B.

As before , we consider the limiting behavior of the process Z
(1)
ε (t) = (εX̂ε(t), Ŷε(t)).

It is easy to see from (9) that the generator of the process Z
(1)
ε (t) has the form

L(1)(x/ε, y) = a00(x/ε, y) ∂2

∂x2 + b0(x/ε, y) ∂
∂x + 2

∑d
i=1 ai0(x/ε, y) ∂2

∂x∂yi

+
∑d

i,j=1 aij(x/ε, y) ∂2

∂yi∂yj
+
∑d

i=1 bi(x/ε, y) ∂
∂yi
. (12)



ON AVERAGING AND HOMOGENIZATION IN NON-STANDARD SITUATION 13

Introduce also the differential operator

L̄(1)(x, y) = ā00(x, y) ∂2

∂x2 + b̄0(x, y) ∂
∂x + 2

∑d
i=1 āi0(x, y) ∂2

∂x∂yi

+
∑d

i,j=1 āij(x, y) ∂2

∂yi∂yj
+
∑d

i=1 b̄i(x, y) ∂
∂yi
. (13)

Theorem 2.Let the conditions of Theorem 1 with replacement the conditions A,

B by Ã, B̃ are valid. Then solution of the Cauchy problem

∂uε
∂t = L(1)(x/ε, y)uε + c(x/ε, y)uε + f(x/ε, y); uε(0, x, y) = ϕ(x/ε, y) (14)

converges, as ε→ 0, to the unique bounded solution

ū(x, y, t) ∈ W2,1
d+1,loc of the problem

∂ū
∂t = L̄(1)(x, y)ū+ c̄(x, y)ū+ f̄(x, y); ū(0, x, y) = ϕ̄(x, y). (15)

Consider now the Cauchy problem for the one-dimensional parabolic PDE

∂vε
∂t

= a(x/ε)
∂2vε
∂x2 + b(x/ε)

∂vε
∂x

+ c(x/ε)vε + f(x/ε); vε(0, x) = φ(x/ε).(16)

The next corollary follows from this theorem.

Corollary 2. Assume that the coefficients of (16) are Lipschitz continuous, a(x)

lies between two positive constants, and the functions

1/a(x) = p(x), b(x)p(x), c(x)p(x), f(x)p(x), ϕ(x)p(x) are bounded and have limits

p±(x), (bp)±(x), (cp)±(x), (fp)±(x), (ϕp)±) in C̀esaro sense, as x → ±∞. Then

the solution vε(t, x) of the problem (16) converges, as ε→ 0, to the solution of the
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problem

∂v0

∂t
= ā(x)

∂2v0

∂x2 + b̄(x)
∂v0

∂x
+ c̄(x)v0 + f̄(x); (17)

v0(0, x) = ϕ̄(x) (18)

Here, as before, ā(x) = 1/p−1{x<0} + 1/p+1{x≥0}, b̄(x) = (pb)−

p− 1{x<0} + (pb)+

p+ 1{x≥0}

and the functions c̄(x), f̄(x), ϕ̄(x) are defined analogously.

Remark 2. The coefficients and the initial condition for the problem (17, (18)

are constants in each half-plane {x < 0} and {x > 0}. This circumstance allows to

write the solution of this problem explicitly.

Remark 3. For the special case p+ = p−, (pb)+ = (pb)− and so on this result

generalizes the homogenization result for the parabolic equations in R+ × R1 with

periodic or almost periodic coefficients. (See, e.g., [F], [BLP])
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