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Interior Angles

Let P be a d-polytope. The
interior angle a(F, P) measures
the fraction of directions that
one can move from a face F
into P.

That is,

vol(S:(x) N P)

olFP) = = ois.(0)

where x is in the interior of F
and S.(x) is the (d — 1)-sphere
of radius ¢ centered at x for ¢
sufficiently small.
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Angle Sums

The angle sums of Pfor0 </ < d are

a(P)= > aF,P).

i—faces FCP

In particular, note that ag_1(P) = 3fy_1(P) and ag(P) = 1.
We say a_1(P) = 0.

The a-vector of P is

a(P) = (ao(P), a1(P), ..., aq(P)),
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Theorem (Gram Relation (1874, 1967))

For any d-polytope P,
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Relations on the a-vector

Theorem (Gram Relation (1874, 1967))

For any d-polytope P,

d—1

Y (=1 ai(P)=(~1)7"".

i=0

Theorem (Perles Relations, 1967)

For any simplicial polytope P and —1 < k < d —1,

a—1 .
]+ _
> 1 (43 JoutP) = (-1PentP) - 1P
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Likewise, we define the v-vector as an analog to the h-vector:
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The ~-vector

Likewise, we define the v-vector as an analog to the h-vector:
(P) = ((P),v1(P), - .- ,va(P)) where

(P) =S (§ )P
j=0

For all polytopes P,
m (P)=0
= 11(P) = ao(P)
m 4(P) = 1 for all polytopes P.
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The Perles relations and the ~v-vector

Theorem (Perles Relations)

For a simplicial d-polytope P, ~i(P) + v4_i(P) = hi(P) for
0<i<ad.

Questions:
m Are v-vectors non-negative?
m Are ~y-vectors unimodal?
m How can we characterize y-vectors?
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Simplices

The ~-vectors of a d-simplex A%, d < 4, are non-decreasing
and therefore non-negative.

Conjecture

The ~-vectors of d-simplices A for all d are non-negative and
non-decreasing.
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Simplices: Bounds on 4

We know that 1 (P) = ag(P) for all polytopes P.

Lemma

For all simplices A, v1(A) < .

This is based on two facts:

Given a realization of a simplex A in a fixed coordinate system,
m No vector is in the interior of two vertex angles; the vertex
angles are disjoint.

m If a vector is in the union of the interiors of the vertex
angles, its negation is not.
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Non-decreasing ~y-vectors for Simplices

Let AY be a d-simplex.
Recall that vo(A%) = 0 and v4(AY) = 1.

Since 0 < 71(A9) < § and y1(A%) + 74-1(AY9) = h(AY9) =1,
2<7d1(Ad)§1

Also, we know that 12(A*) = 1 by the Perles relations.

It follows that the ~y-vectors of d-simplices, d < 4, have
non-decreasing vy-vectors, and are therefore non-negative.
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Pyramid and Prism Constructions

We will consider the effect of pyramid and prism constructions
on the ~-vector. We begin with a (d — 1)-polytope Q placed in
the x; = 0 plane in R? and choose a height x4 = k for the

second copy of Q (directly above the first) or the apex (above
the centroid). g0

<

PQ

Q

<_~

Since the angles of the pyramid will change with the height k,
we will write P,Q. We note two limiting cases that make angle
sums easy to determine: PyQ and P, Q.
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Effect of Constructions on the ~-vector

We can show the following facts based on the effect of the
constructions on the a-vector.

1(B°Q) = (+(Q), ).

1(Po@) = (0, 3 0(@), 31(Q).... 3 2(@).1).

1(P@) = 1 1(0.4(Q)) + (+(Q). 1)].

We can get ~-vectors arbitrarily close to these idealized
~-vectors.
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Observations about Pyramid and Prism Constructions

m Based on the constructions, by taking a very short pyramid
over a simplicial polytope Q, we can have v-vectors
(0,1m0(Q), 1h1(Q), ..., thg—2(Q), 1), which are clearly
non-negative and peak in the middle.

m By taking prisms over such short pyramids, we can make
the peak of the y-vector move as far forward of the middle
as we wish.

m Using any of the three constructions, we would preserve
non-negativity and unimodality of the ~-vector of the base.
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3-Dimensional Pyramids and Prisms

(Joint work with Robert Zima)

Lemma

For all 3-dimensional pyramids over an n-gon P,
71(Pn) 4+ 72(Pn) = 251

Theorem

All 3-dimensional pyramids over an n-gon P, have
non-negative ~-vectors.

Lemma

For all 3-dimensional prisms over an n-gon B,
Y1(Bn) +72(Bn) = ,27
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To prove this, we subdivide
P, into n — 2-simplices T;,
i=1,...,n—2anduse
earlier results about the
non-negativity of simplices.

We know vo(Pn) = 0, v1(Pn) = ag(Pn) > 0, and y3(Pp) = 1.
We compute
m 71 (Pn)+72(Pp) = a1(Pn)—ao(P,,) = ap(Pn)—ag(Py) = 51,
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Non-negativity of v(P,)

To prove this, we subdivide
P, into n — 2-simplices T;,
i=1,...,n—2anduse
earlier results about the
non-negativity of simplices.

We know vo(Pn) = 0, v1(Pn) = ag(Pn) > 0, and y3(Pp) = 1.
We compute
= 71(Pn)+72(Pn) = a1(Pn)_O‘0(Pn) = ap(Pp)—as(Ppn) = r12;1
" 71(Pn) = ao(Pn) = 315 ao(Tf) < 132
m y2(Pn) = "5t —71(Pa) > 3.
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Unimodality and Prisms

v(Pn) is unimodal.

m If 72(Pn) < 1, then the -vector is non-decreasing.
m If vo(Pp) > 1, then the y-vector is unimodal with peak at 5.

We have not yet found a subdivision of a prism that gives a
conclusive result for non-negativity of general prisms. The best

result is that v»(Bp) > —n+ 3, so all triangular prisms have
non-negative y-vectors.
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Non-negativity and Unimodality Summary

m 3- and 4-simplices have non-decreasing, hon-negative
~v-vectors. It is conjectured that all simplices have
non-decreasing, hon-negative ~y-vectors.

m Prisms and pyramids do not all have non-decreasing
~-vectors. However, all 3-pyramids have non-negative
~v-vectors.

m Since the prism and pyramid constructions preserve
non-negativity and unimodality, repeated prisms and
pyramids over 3-simplices, 4-simplices, triangular prisms
or 3-pyramids have non-negative, unimodal ~v-vectors.
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Dimension of spaces of v-vectors.

Using the pyramid and prism constructions in a manner similar
to Bayer and Billera (1984), we can span the spaces of vectors
defined by the Gram and Perles relations.

Theorem
The affine span of the ~-vectors of d-simplices has dimension

[

The affine span of the v-h-vectors of simplicial d-polytopes has
dimension d — 1.

Theorem

The affine span of the ~-h-vectors of general d-polytopes has
dimension2d — 3 for d > 2.
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Open Questions

m Do all simplices have non-decreasing y-vectors?

m Do all polytopes have non-negative ~-vectors? If not, for
which class of polytopes do we have non-negativity?

m Do all polytopes have unimodal v-vectors? If not, for which
class of polytopes do we have unimodality?



