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Interior Angles

Let P be a d-polytope. The
interior angle α(F , P) measures
the fraction of directions that
one can move from a face F
into P.

That is,

α(F , P) =
vol(Sε(x) ∩ P)

vol(Sε(x))

where x is in the interior of F
and Sε(x) is the (d − 1)-sphere
of radius ε centered at x for ε
suf�ciently small.
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Angle Sums

The angle sums of P for 0 ≤ i ≤ d are

αi(P) =
∑

i−faces F⊆P
α(F , P).

In particular, note that αd−1(P) = 1
2 fd−1(P) and αd(P) = 1.

We say α−1(P) = 0.

The α-vector of P is

α(P) = (α0(P), α1(P), . . . , αd(P)),



Angle Sums

The angle sums of P for 0 ≤ i ≤ d are

αi(P) =
∑

i−faces F⊆P
α(F , P).

In particular, note that αd−1(P) = 1
2 fd−1(P) and αd(P) = 1.

We say α−1(P) = 0.

The α-vector of P is

α(P) = (α0(P), α1(P), . . . , αd(P)),



Angle Sums

The angle sums of P for 0 ≤ i ≤ d are

αi(P) =
∑

i−faces F⊆P
α(F , P).

In particular, note that αd−1(P) = 1
2 fd−1(P) and αd(P) = 1.

We say α−1(P) = 0.

The α-vector of P is

α(P) = (α0(P), α1(P), . . . , αd(P)),



Relations on the α-vector

Theorem (Gram Relation (1874, 1967))
For any d-polytope P,

d−1∑

i=0
(−1)iαi(P) = (−1)d−1.

Theorem (Perles Relations, 1967)
For any simplicial polytope P and −1 ≤ k ≤ d − 1,

d−1∑

j=k
(−1)j

( j + 1
k + 1

)
αj(P) = (−1)d(αk (P)− fk (P)).
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The γ-vector

Likewise, we de�ne the γ-vector as an analog to the h-vector:
γ(P) = (γ0(P), γ1(P), . . . , γd(P)) where

γi(P) =
i∑

j=0
(−1)i−j

(d − j
d − i

)
αj−1(P).

For all polytopes P,
γ0(P) = 0
γ1(P) = α0(P)

γd(P) = 1 for all polytopes P.
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The Perles relations and the γ-vector

Theorem (Perles Relations)
For a simplicial d-polytope P, γi(P) + γd−i(P) = hi(P) for
0 ≤ i ≤ d .

Questions:
Are γ-vectors non-negative?
Are γ-vectors unimodal?
How can we characterize γ-vectors?
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Simplices

Theorem
The γ-vectors of a d-simplex ∆d , d ≤ 4, are non-decreasing
and therefore non-negative.

Conjecture
The γ-vectors of d-simplices ∆d for all d are non-negative and
non-decreasing.
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Simplices: Bounds on γ1

We know that γ1(P) = α0(P) for all polytopes P.

Lemma
For all simplices ∆, γ1(∆) ≤ 1

2 .

This is based on two facts:

Given a realization of a simplex ∆ in a �xed coordinate system,
No vector is in the interior of two vertex angles; the vertex
angles are disjoint.
If a vector is in the union of the interiors of the vertex
angles, its negation is not.



Simplices: Bounds on γ1

We know that γ1(P) = α0(P) for all polytopes P.

Lemma
For all simplices ∆, γ1(∆) ≤ 1

2 .

This is based on two facts:

Given a realization of a simplex ∆ in a �xed coordinate system,
No vector is in the interior of two vertex angles; the vertex
angles are disjoint.
If a vector is in the union of the interiors of the vertex
angles, its negation is not.



Simplices: Bounds on γ1

We know that γ1(P) = α0(P) for all polytopes P.

Lemma
For all simplices ∆, γ1(∆) ≤ 1

2 .

This is based on two facts:

Given a realization of a simplex ∆ in a �xed coordinate system,
No vector is in the interior of two vertex angles; the vertex
angles are disjoint.
If a vector is in the union of the interiors of the vertex
angles, its negation is not.



Simplices: Bounds on γ1

We know that γ1(P) = α0(P) for all polytopes P.

Lemma
For all simplices ∆, γ1(∆) ≤ 1

2 .

This is based on two facts:

Given a realization of a simplex ∆ in a �xed coordinate system,
No vector is in the interior of two vertex angles; the vertex
angles are disjoint.
If a vector is in the union of the interiors of the vertex
angles, its negation is not.



Simplices: Bounds on γ1

We know that γ1(P) = α0(P) for all polytopes P.

Lemma
For all simplices ∆, γ1(∆) ≤ 1

2 .

This is based on two facts:

Given a realization of a simplex ∆ in a �xed coordinate system,
No vector is in the interior of two vertex angles; the vertex
angles are disjoint.
If a vector is in the union of the interiors of the vertex
angles, its negation is not.



Simplices: Bounds on γ1

We know that γ1(P) = α0(P) for all polytopes P.

Lemma
For all simplices ∆, γ1(∆) ≤ 1

2 .

This is based on two facts:

Given a realization of a simplex ∆ in a �xed coordinate system,
No vector is in the interior of two vertex angles; the vertex
angles are disjoint.
If a vector is in the union of the interiors of the vertex
angles, its negation is not.



Non-decreasing γ-vectors for Simplices

Let ∆d be a d-simplex.

Recall that γ0(∆d) = 0 and γd(∆d) = 1.

Since 0 ≤ γ1(∆d) < 1
2 and γ1(∆d) + γd−1(∆d) = h1(∆d) = 1,

1
2 < γd−1(∆d) ≤ 1.

Also, we know that γ2(∆4) = 1
2 by the Perles relations.

It follows that the γ-vectors of d-simplices, d ≤ 4, have
non-decreasing γ-vectors, and are therefore non-negative.
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Pyramid and Prism Constructions

We will consider the effect of pyramid and prism constructions
on the γ-vector. We begin with a (d − 1)-polytope Q placed in
the xd = 0 plane in Rd and choose a height xd = k for the
second copy of Q (directly above the �rst) or the apex (above
the centroid). B Q

Q

v
PQ*

Since the angles of the pyramid will change with the height k ,
we will write PkQ. We note two limiting cases that make angle
sums easy to determine: P0Q and P∞Q.
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Effect of Constructions on the γ-vector

We can show the following facts based on the effect of the
constructions on the α-vector.

γ(B∗Q) = (γ(Q), 1).

γ(P0Q) = (0,
1
2h0(Q),

1
2h1(Q), . . . ,

1
2hd−2(Q), 1).

γ(P∞Q) =
1
2 [(0, γ(Q)) + (γ(Q), 1)] .

We can get γ-vectors arbitrarily close to these idealized
γ-vectors.
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Observations about Pyramid and Prism Constructions

Based on the constructions, by taking a very short pyramid
over a simplicial polytope Q, we can have γ-vectors
(0, 1

2h0(Q), 1
2h1(Q), . . . , 1

2hd−2(Q), 1), which are clearly
non-negative and peak in the middle.
By taking prisms over such short pyramids, we can make
the peak of the γ-vector move as far forward of the middle
as we wish.
Using any of the three constructions, we would preserve
non-negativity and unimodality of the γ-vector of the base.
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3-Dimensional Pyramids and Prisms

(Joint work with Robert Zima)

Lemma
For all 3-dimensional pyramids over an n-gon Pn
γ1(Pn) + γ2(Pn) = n−1

2 .

Theorem
All 3-dimensional pyramids over an n-gon Pn have
non-negative γ-vectors.

Lemma
For all 3-dimensional prisms over an n-gon Bn
γ1(Bn) + γ2(Bn) = n

2 .
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Non-negativity of γ(Pn)

To prove this, we subdivide
Pn into n − 2-simplices Ti ,
i = 1, . . . , n − 2 and use
earlier results about the
non-negativity of simplices.

We know γ0(Pn) = 0, γ1(Pn) = α0(Pn) > 0, and γ3(Pn) = 1.

We compute
γ1(Pn)+γ2(Pn) = α1(Pn)−α0(Pn) = α2(Pn)−α3(Pn) = n−1

2 .
γ1(Pn) = α0(Pn) =

∑n−2
i=1 α0(Ti) < n−2

2 .
γ2(Pn) = n−1

2 − γ1(Pn) > 1
2 .
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Unimodality and Prisms

γ(Pn) is unimodal.
If γ2(Pn) ≤ 1, then the γ-vector is non-decreasing.
If γ2(Pn) > 1, then the γ-vector is unimodal with peak at γ2.

We have not yet found a subdivision of a prism that gives a
conclusive result for non-negativity of general prisms. The best
result is that γ2(Bn) > −n + 3, so all triangular prisms have
non-negative γ-vectors.
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Non-negativity and Unimodality Summary

3- and 4-simplices have non-decreasing, non-negative
γ-vectors. It is conjectured that all simplices have
non-decreasing, non-negative γ-vectors.

Prisms and pyramids do not all have non-decreasing
γ-vectors. However, all 3-pyramids have non-negative
γ-vectors.

Since the prism and pyramid constructions preserve
non-negativity and unimodality, repeated prisms and
pyramids over 3-simplices, 4-simplices, triangular prisms
or 3-pyramids have non-negative, unimodal γ-vectors.
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Dimension of spaces of γ-vectors.

Using the pyramid and prism constructions in a manner similar
to Bayer and Billera (1984), we can span the spaces of vectors
de�ned by the Gram and Perles relations.

Theorem
The af�ne span of the γ-vectors of d-simplices has dimension⌊d−1

2
⌋
.

Theorem
The af�ne span of the γ-h-vectors of simplicial d-polytopes has
dimension d − 1.

Theorem
The af�ne span of the γ-h-vectors of general d-polytopes has
dimension 2d − 3 for d ≥ 2.
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