Relations on solid angles of low-dimensional polytopes

Kristin A. Camenga kristin.camenga@houghton.edu

June 13, 2008

Outline

1 α - and γ -vectors

2 Unimodality and Non-negativity

3 Affine Spaces of γ -vectors

1 α - and γ -vectors

2 Unimodality and Non-negativity

3 Affine Spaces of γ -vectors

1 α - and γ -vectors

2 Unimodality and Non-negativity

3 Affine Spaces of γ -vectors

1 α - and γ -vectors

2 Unimodality and Non-negativity

3 Affine Spaces of γ -vectors

Interior Angles

Let *P* be a *d*-polytope. The interior angle $\alpha(F, P)$ measures the fraction of directions that one can move from a face *F* into *P*.

That is,

$$\alpha(F,P) = \frac{\operatorname{vol}(S_{\varepsilon}(x) \cap P)}{\operatorname{vol}(S_{\varepsilon}(x))}$$

where x is in the interior of F and $S_{\varepsilon}(x)$ is the (d - 1)-sphere of radius ε centered at x for ε sufficiently small.

Interior Angles

Let *P* be a *d*-polytope. The interior angle $\alpha(F, P)$ measures the fraction of directions that one can move from a face *F* into *P*.

That is,

$$\alpha(F, P) = \frac{\operatorname{vol}(S_{\varepsilon}(x) \cap P)}{\operatorname{vol}(S_{\varepsilon}(x))}$$

where x is in the interior of F and $S_{\varepsilon}(x)$ is the (d - 1)-sphere of radius ε centered at x for ε sufficiently small.

Angle Sums

The angle sums of *P* for $0 \le i \le d$ are

$$\alpha_i(P) = \sum_{i-\text{faces } F \subseteq P} \alpha(F, P).$$

In particular, note that $\alpha_{d-1}(P) = \frac{1}{2}f_{d-1}(P)$ and $\alpha_d(P) = 1$. We say $\alpha_{-1}(P) = 0$.

The α -vector of P is

$$\alpha(P) = (\alpha_0(P), \alpha_1(P), \ldots, \alpha_d(P)),$$

The angle sums of *P* for $0 \le i \le d$ are

$$\alpha_i(P) = \sum_{i-\text{faces } F \subseteq P} \alpha(F, P).$$

In particular, note that $\alpha_{d-1}(P) = \frac{1}{2}f_{d-1}(P)$ and $\alpha_d(P) = 1$. We say $\alpha_{-1}(P) = 0$.

The α -vector of P is

$$\alpha(P) = (\alpha_0(P), \alpha_1(P), \dots, \alpha_d(P)),$$

The angle sums of *P* for $0 \le i \le d$ are

$$\alpha_i(P) = \sum_{i-\text{faces } F \subseteq P} \alpha(F, P).$$

In particular, note that $\alpha_{d-1}(P) = \frac{1}{2}f_{d-1}(P)$ and $\alpha_d(P) = 1$. We say $\alpha_{-1}(P) = 0$.

The α -vector of P is

$$\alpha(\boldsymbol{P}) = (\alpha_0(\boldsymbol{P}), \alpha_1(\boldsymbol{P}), \dots, \alpha_d(\boldsymbol{P})),$$

Relations on the α -vector

Theorem (Gram Relation (1874, 1967))

For any d-polytope P,

$$\sum_{i=0}^{d-1} (-1)^i \alpha_i(P) = (-1)^{d-1}.$$

Theorem (Perles Relations, 1967)

For any simplicial polytope P and $-1 \le k \le d-1$,

$$\sum_{j=k}^{d-1} (-1)^j \binom{j+1}{k+1} \alpha_j(P) = (-1)^d (\alpha_k(P) - f_k(P)).$$

Theorem (Gram Relation (1874, 1967))

For any d-polytope P,

$$\sum_{i=0}^{d-1} (-1)^i \alpha_i(P) = (-1)^{d-1}.$$

Theorem (Perles Relations, 1967)

For any simplicial polytope P and $-1 \le k \le d-1$,

$$\sum_{j=k}^{d-1} (-1)^j \binom{j+1}{k+1} \alpha_j(P) = (-1)^d (\alpha_k(P) - f_k(P)).$$

$$\gamma_i(P) = \sum_{j=0}^i (-1)^{i-j} \binom{d-j}{d-i} \alpha_{j-1}(P).$$

For all polytopes P,

$$\gamma_0(P) = 0$$

$$\gamma_1(P) = \alpha_0(P)$$

$$\gamma_i(\boldsymbol{P}) = \sum_{j=0}^{i} (-1)^{i-j} \binom{\boldsymbol{d}-j}{\boldsymbol{d}-i} \alpha_{j-1}(\boldsymbol{P}).$$

For all polytopes P,

$$\bullet \gamma_0(P) = 0$$

$$\gamma_1(P) = \alpha_0(P)$$

$$\gamma_i(\boldsymbol{P}) = \sum_{j=0}^{i} (-1)^{i-j} \binom{\boldsymbol{d}-j}{\boldsymbol{d}-i} \alpha_{j-1}(\boldsymbol{P}).$$

For all polytopes P,

$$\bullet \gamma_0(P) = 0$$

$$\gamma_1(P) = \alpha_0(P)$$

$$\gamma_i(P) = \sum_{j=0}^i (-1)^{i-j} \binom{d-j}{d-i} \alpha_{j-1}(P).$$

For all polytopes P,

$$\bullet \gamma_0(P) = 0$$

$$\gamma_1(P) = \alpha_0(P)$$

$$\gamma_i(\boldsymbol{P}) = \sum_{j=0}^{i} (-1)^{i-j} \binom{d-j}{d-i} \alpha_{j-1}(\boldsymbol{P}).$$

For all polytopes P,

•
$$\gamma_0(P) = 0$$

$$\gamma_1(P) = \alpha_0(P)$$

The Perles relations and the γ -vector

Theorem (Perles Relations)

For a simplicial d-polytope P, $\gamma_i(P) + \gamma_{d-i}(P) = h_i(P)$ for $0 \le i \le d$.

- Are γ-vectors non-negative?
- Are γ -vectors unimodal?
- How can we characterize γ -vectors?

Theorem (Perles Relations)

For a simplicial d-polytope P, $\gamma_i(P) + \gamma_{d-i}(P) = h_i(P)$ for $0 \le i \le d$.

- Are γ-vectors non-negative?
- Are γ -vectors unimodal?
- How can we characterize γ -vectors?

Theorem (Perles Relations)

For a simplicial d-polytope P, $\gamma_i(P) + \gamma_{d-i}(P) = h_i(P)$ for $0 \le i \le d$.

- Are γ-vectors non-negative?
- Are γ-vectors unimodal?
- How can we characterize γ -vectors?

Theorem (Perles Relations)

For a simplicial d-polytope P, $\gamma_i(P) + \gamma_{d-i}(P) = h_i(P)$ for $0 \le i \le d$.

- Are γ-vectors non-negative?
- Are γ-vectors unimodal?
- How can we characterize γ-vectors?

Simplices

Theorem

The γ -vectors of a d-simplex Δ^d , $d \leq 4$, are non-decreasing and therefore non-negative.

Conjecture

The γ -vectors of d-simplices Δ^d for all d are non-negative and non-decreasing.

Simplices

Theorem

The γ -vectors of a d-simplex Δ^d , $d \leq 4$, are non-decreasing and therefore non-negative.

Conjecture

The γ -vectors of d-simplices Δ^d for all d are non-negative and non-decreasing.

Lemma

For all simplices Δ , $\gamma_1(\Delta) \leq \frac{1}{2}$.

This is based on two facts:

- No vector is in the interior of two vertex angles; the vertex angles are disjoint.
- If a vector is in the union of the interiors of the vertex angles, its negation is not.

Lemma

For all simplices Δ , $\gamma_1(\Delta) \leq \frac{1}{2}$.

This is based on two facts:

- No vector is in the interior of two vertex angles; the vertex angles are disjoint.
- If a vector is in the union of the interiors of the vertex angles, its negation is not.

Lemma

For all simplices Δ , $\gamma_1(\Delta) \leq \frac{1}{2}$.

This is based on two facts:

- No vector is in the interior of two vertex angles; the vertex angles are disjoint.
- If a vector is in the union of the interiors of the vertex angles, its negation is not.

Lemma

For all simplices Δ , $\gamma_1(\Delta) \leq \frac{1}{2}$.

This is based on two facts:

- No vector is in the interior of two vertex angles; the vertex angles are disjoint.
- If a vector is in the union of the interiors of the vertex angles, its negation is not.

Lemma For all simplices Δ , $\gamma_1(\Delta) \leq \frac{1}{2}$.

This is based on two facts:

- No vector is in the interior of two vertex angles; the vertex angles are disjoint.
- If a vector is in the union of the interiors of the vertex angles, its negation is not.

Lemma For all simplices Δ , $\gamma_1(\Delta) \leq \frac{1}{2}$.

This is based on two facts:

- No vector is in the interior of two vertex angles; the vertex angles are disjoint.
- If a vector is in the union of the interiors of the vertex angles, its negation is not.

Recall that $\gamma_0(\Delta^d) = 0$ and $\gamma_d(\Delta^d) = 1$.

Since $0 \leq \gamma_1(\Delta^d) < \frac{1}{2}$ and $\gamma_1(\Delta^d) + \gamma_{d-1}(\Delta^d) = h_1(\Delta^d) = 1$, $\frac{1}{2} < \gamma_{d-1}(\Delta^d) \leq 1$.

Also, we know that $\gamma_2(\Delta^4) = \frac{1}{2}$ by the Perles relations.

Recall that $\gamma_0(\Delta^d) = 0$ and $\gamma_d(\Delta^d) = 1$.

Since $0 \leq \gamma_1(\Delta^d) < \frac{1}{2}$ and $\gamma_1(\Delta^d) + \gamma_{d-1}(\Delta^d) = h_1(\Delta^d) = 1$, $\frac{1}{2} < \gamma_{d-1}(\Delta^d) \leq 1$.

Also, we know that $\gamma_2(\Delta^4) = \frac{1}{2}$ by the Perles relations.

Recall that $\gamma_0(\Delta^d) = 0$ and $\gamma_d(\Delta^d) = 1$.

Since $0 \leq \gamma_1(\Delta^d) < \frac{1}{2}$ and $\gamma_1(\Delta^d) + \gamma_{d-1}(\Delta^d) = h_1(\Delta^d) = 1$, $\frac{1}{2} < \gamma_{d-1}(\Delta^d) \leq 1$.

Also, we know that $\gamma_2(\Delta^4) = \frac{1}{2}$ by the Perles relations.

Recall that $\gamma_0(\Delta^d) = 0$ and $\gamma_d(\Delta^d) = 1$.

Since $0 \leq \gamma_1(\Delta^d) < \frac{1}{2}$ and $\gamma_1(\Delta^d) + \gamma_{d-1}(\Delta^d) = h_1(\Delta^d) = 1$, $\frac{1}{2} < \gamma_{d-1}(\Delta^d) \leq 1$.

Also, we know that $\gamma_2(\Delta^4) = \frac{1}{2}$ by the Perles relations.

Recall that $\gamma_0(\Delta^d) = 0$ and $\gamma_d(\Delta^d) = 1$.

Since $0 \leq \gamma_1(\Delta^d) < \frac{1}{2}$ and $\gamma_1(\Delta^d) + \gamma_{d-1}(\Delta^d) = h_1(\Delta^d) = 1$, $\frac{1}{2} < \gamma_{d-1}(\Delta^d) \leq 1$.

Also, we know that $\gamma_2(\Delta^4) = \frac{1}{2}$ by the Perles relations.

We will consider the effect of pyramid and prism constructions on the γ -vector. We begin with a (d - 1)-polytope Q placed in the $x_d = 0$ plane in \mathbb{R}^d and choose a height $x_d = k$ for the second copy of Q (directly above the first) or the apex (above the centroid).

Since the angles of the pyramid will change with the height k, we will write P_kQ . We note two limiting cases that make angle sums easy to determine: P_0Q and $P_{\infty}Q$.

We will consider the effect of pyramid and prism constructions on the γ -vector. We begin with a (d - 1)-polytope Q placed in the $x_d = 0$ plane in \mathbb{R}^d and choose a height $x_d = k$ for the second copy of Q (directly above the first) or the apex (above the centroid).

Since the angles of the pyramid will change with the height k, we will write P_kQ . We note two limiting cases that make angle sums easy to determine: P_0Q and $P_{\infty}Q$.

 $\gamma(B^*Q) = (\gamma(Q), 1).$

$$\gamma(P_0 Q) = (0, \frac{1}{2}h_0(Q), \frac{1}{2}h_1(Q), \dots, \frac{1}{2}h_{d-2}(Q), 1).$$
$$\gamma(P_\infty Q) = \frac{1}{2}\left[(0, \gamma(Q)) + (\gamma(Q), 1)\right].$$

 $\gamma(B^*Q) = (\gamma(Q), 1).$

$$\gamma(P_0 Q) = (0, \frac{1}{2}h_0(Q), \frac{1}{2}h_1(Q), \dots, \frac{1}{2}h_{d-2}(Q), 1).$$
$$\gamma(P_\infty Q) = \frac{1}{2}[(0, \gamma(Q)) + (\gamma(Q), 1)].$$

$$\gamma(B^*Q) = (\gamma(Q), 1).$$

$$\gamma(P_0Q) = (0, \frac{1}{2}h_0(Q), \frac{1}{2}h_1(Q), \dots, \frac{1}{2}h_{d-2}(Q), 1).$$

$$\gamma(P_{\infty}Q) = \frac{1}{2} \left[(0, \gamma(Q)) + (\gamma(Q), 1) \right].$$

$$\gamma(B^*Q) = (\gamma(Q), 1).$$

$$\gamma(P_0Q) = (0, \frac{1}{2}h_0(Q), \frac{1}{2}h_1(Q), \dots, \frac{1}{2}h_{d-2}(Q), 1).$$
$$\gamma(P_{\infty}Q) = \frac{1}{2}[(0, \gamma(Q)) + (\gamma(Q), 1)].$$

$$\gamma(B^*Q) = (\gamma(Q), 1).$$

$$\gamma(P_0Q) = (0, \frac{1}{2}h_0(Q), \frac{1}{2}h_1(Q), \dots, \frac{1}{2}h_{d-2}(Q), 1).$$

$$\gamma(P_{\infty}Q) = \frac{1}{2}[(0, \gamma(Q)) + (\gamma(Q), 1)].$$

- Based on the constructions, by taking a very short pyramid over a simplicial polytope *Q*, we can have γ-vectors (0, ½h₀(*Q*), ½h₁(*Q*), ..., ½h_{d-2}(*Q*), 1), which are clearly non-negative and peak in the middle.
- By taking prisms over such short pyramids, we can make the peak of the γ-vector move as far forward of the middle as we wish.
- Using any of the three constructions, we would preserve non-negativity and unimodality of the γ-vector of the base.

- Based on the constructions, by taking a very short pyramid over a simplicial polytope *Q*, we can have γ-vectors (0, ½h₀(*Q*), ½h₁(*Q*), ..., ½h_{d-2}(*Q*), 1), which are clearly non-negative and peak in the middle.
- By taking prisms over such short pyramids, we can make the peak of the γ-vector move as far forward of the middle as we wish.
- Using any of the three constructions, we would preserve non-negativity and unimodality of the γ-vector of the base.

- Based on the constructions, by taking a very short pyramid over a simplicial polytope *Q*, we can have γ-vectors (0, ½h₀(*Q*), ½h₁(*Q*), ..., ½h_{d-2}(*Q*), 1), which are clearly non-negative and peak in the middle.
- By taking prisms over such short pyramids, we can make the peak of the γ-vector move as far forward of the middle as we wish.
- Using any of the three constructions, we would preserve non-negativity and unimodality of the γ-vector of the base.

3-Dimensional Pyramids and Prisms

(Joint work with Robert Zima)

Lemma

For all 3-dimensional pyramids over an n-gon P_n $\gamma_1(P_n) + \gamma_2(P_n) = \frac{n-1}{2}$.

Theorem

All 3-dimensional pyramids over an n-gon P_n have non-negative γ -vectors.

_emma

For all 3-dimensional prisms over an n-gon B_n $\gamma_1(B_n) + \gamma_2(B_n) = \frac{n}{2}$.

3-Dimensional Pyramids and Prisms

(Joint work with Robert Zima)

Lemma

For all 3-dimensional pyramids over an n-gon P_n $\gamma_1(P_n) + \gamma_2(P_n) = \frac{n-1}{2}$.

Theorem

All 3-dimensional pyramids over an n-gon P_n have non-negative γ -vectors.

_emma

For all 3-dimensional prisms over an n-gon B_n $\gamma_1(B_n) + \gamma_2(B_n) = \frac{n}{2}$.

3-Dimensional Pyramids and Prisms

(Joint work with Robert Zima)

Lemma

For all 3-dimensional pyramids over an n-gon P_n $\gamma_1(P_n) + \gamma_2(P_n) = \frac{n-1}{2}$.

Theorem

All 3-dimensional pyramids over an n-gon P_n have non-negative γ -vectors.

Lemma

For all 3-dimensional prisms over an n-gon B_n $\gamma_1(B_n) + \gamma_2(B_n) = \frac{n}{2}$.

To prove this, we subdivide P_n into n-2-simplices T_i , i = 1, ..., n-2 and use earlier results about the non-negativity of simplices.

We know $\gamma_0(P_n) = 0$, $\gamma_1(P_n) = \alpha_0(P_n) > 0$, and $\gamma_3(P_n) = 1$.

We compute

•
$$\gamma_1(P_n) + \gamma_2(P_n) = \alpha_1(P_n) - \alpha_0(P_n) = \alpha_2(P_n) - \alpha_3(P_n) = \frac{n-1}{2}.$$

•
$$\gamma_1(P_n) = \alpha_0(P_n) = \sum_{i=1}^{n-2} \alpha_0(T_i) < \frac{n-2}{2}.$$

To prove this, we subdivide P_n into n-2-simplices T_i , i = 1, ..., n-2 and use earlier results about the non-negativity of simplices.

We know $\gamma_0(P_n) = 0$, $\gamma_1(P_n) = \alpha_0(P_n) > 0$, and $\gamma_3(P_n) = 1$.

We compute

• $\gamma_1(P_n) + \gamma_2(P_n) = \alpha_1(P_n) - \alpha_0(P_n) = \alpha_2(P_n) - \alpha_3(P_n) = \frac{n-1}{2}.$

•
$$\gamma_1(P_n) = \alpha_0(P_n) = \sum_{i=1}^{n-2} \alpha_0(T_i) < \frac{n-2}{2}.$$

•
$$\gamma_2(P_n) = \frac{n-1}{2} - \gamma_1(P_n) > \frac{1}{2}$$

To prove this, we subdivide P_n into n-2-simplices T_i , i = 1, ..., n-2 and use earlier results about the non-negativity of simplices.

We know $\gamma_0(P_n) = 0$, $\gamma_1(P_n) = \alpha_0(P_n) > 0$, and $\gamma_3(P_n) = 1$.

We compute

•
$$\gamma_1(P_n) + \gamma_2(P_n) = \alpha_1(P_n) - \alpha_0(P_n) = \alpha_2(P_n) - \alpha_3(P_n) = \frac{n-1}{2}$$
.

•
$$\gamma_1(P_n) = \alpha_0(P_n) = \sum_{i=1}^{n-2} \alpha_0(T_i) < \frac{n-2}{2}.$$

• $\gamma_2(P_n) = \frac{n-1}{2} - \gamma_1(P_n) > \frac{1}{2}.$

To prove this, we subdivide P_n into n-2-simplices T_i , i = 1, ..., n-2 and use earlier results about the non-negativity of simplices.

We know
$$\gamma_0(P_n) = 0$$
, $\gamma_1(P_n) = \alpha_0(P_n) > 0$, and $\gamma_3(P_n) = 1$.

We compute

•
$$\gamma_1(P_n) + \gamma_2(P_n) = \alpha_1(P_n) - \alpha_0(P_n) = \alpha_2(P_n) - \alpha_3(P_n) = \frac{n-1}{2}$$
.

•
$$\gamma_1(P_n) = \alpha_0(P_n) = \sum_{i=1}^{n-2} \alpha_0(T_i) < \frac{n-2}{2}$$

• $\gamma_2(P_n) = \frac{n-1}{2} - \gamma_1(P_n) > \frac{1}{2}.$

To prove this, we subdivide P_n into n-2-simplices T_i , i = 1, ..., n-2 and use earlier results about the non-negativity of simplices.

We know
$$\gamma_0(P_n) = 0$$
, $\gamma_1(P_n) = \alpha_0(P_n) > 0$, and $\gamma_3(P_n) = 1$.

We compute

•
$$\gamma_1(P_n) + \gamma_2(P_n) = \alpha_1(P_n) - \alpha_0(P_n) = \alpha_2(P_n) - \alpha_3(P_n) = \frac{n-1}{2}$$
.

•
$$\gamma_1(P_n) = \alpha_0(P_n) = \sum_{i=1}^{n-2} \alpha_0(T_i) < \frac{n-2}{2}.$$

•
$$\gamma_2(P_n) = \frac{n-1}{2} - \gamma_1(P_n) > \frac{1}{2}$$

Unimodality and Prisms

$\gamma(P_n)$ is unimodal.

- If $\gamma_2(P_n) \leq 1$, then the γ -vector is non-decreasing.
- If $\gamma_2(P_n) > 1$, then the γ -vector is unimodal with peak at γ_2 .

We have not yet found a subdivision of a prism that gives a conclusive result for non-negativity of general prisms. The best result is that $\gamma_2(B_n) > -n + 3$, so all triangular prisms have non-negative γ -vectors.

$\gamma(P_n)$ is unimodal.

If $\gamma_2(P_n) \leq 1$, then the γ -vector is non-decreasing.

If $\gamma_2(P_n) > 1$, then the γ -vector is unimodal with peak at γ_2 .

We have not yet found a subdivision of a prism that gives a conclusive result for non-negativity of general prisms. The best result is that $\gamma_2(B_n) > -n + 3$, so all triangular prisms have non-negative γ -vectors.

$\gamma(P_n)$ is unimodal.

- If $\gamma_2(P_n) \leq 1$, then the γ -vector is non-decreasing.
- If $\gamma_2(P_n) > 1$, then the γ -vector is unimodal with peak at γ_2 .

We have not yet found a subdivision of a prism that gives a conclusive result for non-negativity of general prisms. The best result is that $\gamma_2(B_n) > -n + 3$, so all triangular prisms have non-negative γ -vectors.

$\gamma(P_n)$ is unimodal.

- If $\gamma_2(P_n) \leq 1$, then the γ -vector is non-decreasing.
- If $\gamma_2(P_n) > 1$, then the γ -vector is unimodal with peak at γ_2 .

We have not yet found a subdivision of a prism that gives a conclusive result for non-negativity of general prisms. The best result is that $\gamma_2(B_n) > -n+3$, so all triangular prisms have non-negative γ -vectors.

Non-negativity and Unimodality Summary

- 3- and 4-simplices have non-decreasing, non-negative γ-vectors. It is conjectured that all simplices have non-decreasing, non-negative γ-vectors.
- Prisms and pyramids do not all have non-decreasing γ-vectors. However, all 3-pyramids have non-negative γ-vectors.
- Since the prism and pyramid constructions preserve non-negativity and unimodality, repeated prisms and pyramids over 3-simplices, 4-simplices, triangular prisms or 3-pyramids have non-negative, unimodal γ-vectors.

Non-negativity and Unimodality Summary

- 3- and 4-simplices have non-decreasing, non-negative γ-vectors. It is conjectured that all simplices have non-decreasing, non-negative γ-vectors.
- Prisms and pyramids do not all have non-decreasing γ-vectors. However, all 3-pyramids have non-negative γ-vectors.
- Since the prism and pyramid constructions preserve non-negativity and unimodality, repeated prisms and pyramids over 3-simplices, 4-simplices, triangular prisms or 3-pyramids have non-negative, unimodal γ-vectors.

Non-negativity and Unimodality Summary

- 3- and 4-simplices have non-decreasing, non-negative γ-vectors. It is conjectured that all simplices have non-decreasing, non-negative γ-vectors.
- Prisms and pyramids do not all have non-decreasing γ-vectors. However, all 3-pyramids have non-negative γ-vectors.
- Since the prism and pyramid constructions preserve non-negativity and unimodality, repeated prisms and pyramids over 3-simplices, 4-simplices, triangular prisms or 3-pyramids have non-negative, unimodal γ-vectors.

Theorem

The affine span of the γ -vectors of d-simplices has dimension $\lfloor \frac{d-1}{2} \rfloor$.

Theorem

The affine span of the γ -h-vectors of simplicial d-polytopes has dimension d - 1.

Theorem

The affine span of the γ -h-vectors of general d-polytopes has dimension 2d - 3 for $d \ge 2$.

Theorem

The affine span of the γ -vectors of d-simplices has dimension $\lfloor \frac{d-1}{2} \rfloor$.

Theorem

The affine span of the γ -h-vectors of simplicial d-polytopes has dimension d - 1.

Theorem

The affine span of the γ -h-vectors of general d-polytopes has dimension 2d - 3 for $d \ge 2$.

Theorem

The affine span of the γ -vectors of d-simplices has dimension $\lfloor \frac{d-1}{2} \rfloor$.

Theorem

The affine span of the γ -h-vectors of simplicial d-polytopes has dimension d - 1.

Theorem

The affine span of the γ -h-vectors of general d-polytopes has dimension 2d - 3 for d \geq 2.

Theorem

The affine span of the γ -vectors of d-simplices has dimension $\lfloor \frac{d-1}{2} \rfloor$.

Theorem

The affine span of the γ -h-vectors of simplicial d-polytopes has dimension d - 1.

Theorem

The affine span of the γ -h-vectors of general d-polytopes has dimension 2d - 3 for $d \ge 2$.

- Do all simplices have non-decreasing γ -vectors?
- Do all polytopes have non-negative γ-vectors? If not, for which class of polytopes do we have non-negativity?
- Do all polytopes have unimodal γ-vectors? If not, for which class of polytopes do we have unimodality?

- Do all simplices have non-decreasing γ -vectors?
- Do all polytopes have non-negative γ-vectors? If not, for which class of polytopes do we have non-negativity?
- Do all polytopes have unimodal γ-vectors? If not, for which class of polytopes do we have unimodality?

Open Questions

Do all simplices have non-decreasing γ-vectors?

- Do all polytopes have non-negative γ-vectors? If not, for which class of polytopes do we have non-negativity?
- Do all polytopes have unimodal γ-vectors? If not, for which class of polytopes do we have unimodality?

- Do all simplices have non-decreasing γ-vectors?
- Do all polytopes have non-negative γ-vectors? If not, for which class of polytopes do we have non-negativity?
- Do all polytopes have unimodal γ-vectors? If not, for which class of polytopes do we have unimodality?

- Do all simplices have non-decreasing γ-vectors?
- Do all polytopes have non-negative γ-vectors? If not, for which class of polytopes do we have non-negativity?
- Do all polytopes have unimodal γ-vectors? If not, for which class of polytopes do we have unimodality?