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- by a system of inequalities

(often S is {0,1}-valued, giving “combinatorial optimization”) 

(often linear inequalities, giving “integer programming”)

- by a suitable oracle (membership, linear optimization, etc.)  

Framework for Nonlinear Discrete Optimization

It is generally intractable even for fixed d=1 and f the identity on R
(e.g., it may be NP-hard or even require exponential oracle-time).



Some Applications and Examples 

Where Our Theory Provides

Polynomial Time Algorithms
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- Vector Partitioning and Clustering:

- Shaped partition problems (SIAM Opt.)

- Partition problems with convex objectives (Math. OR)



Partition m items evaluated by k criteria to p players, to maximize social
utility that is function of the sums of vectors of items each player gets. 

The nonlinear function on k x p matrices is f(X) = ∑ Xij
3

Example: Consider m=6 items, k=2 criteria, p=3 players

The criteria-item matrix is: items

criteria

The social utility of π is f(Aπ) = 244432

The matrix of a partition such as π = (34, 56, 12) is:
players

criteria

Each player should get 2 items

Vector Partitioning
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All 90 partitions π
of items {1, …,6} To 
3 players where each 
player gets 2 items

π = (34, 56, 12)

players

criteria

f(Aπ) = 244432

The optimal partition is:

with optimal utility:
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Minimum Variance Clustering

Given m points v1, …, vm in Rk, group them into p (balanced) 
clusters so as to minimize the sum of cluster variances . 

P=3, k=3, m large
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Example - spanning trees:

Consider n=6, the graph G=K4 , d=2,

weights w, and the Euclidean norm

(squared)  f(x) = |x|2 = x1
2 + x2
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Example - spanning trees:

Consider n=6, the graph G=K4 , d=2,

weights w, and the Euclidean norm

(squared)  f(x) = |x|2 = x1
2 + x2

2

The optimal tree x has

w(x) = (0 1) + (-1 2) + (-2 3) = (-3 6)

and objective value f(w(x)) = |-3 6|2 = 45

- Spanning trees, polymatroids, intersections of matroids:

- Matroids and Their Applications:



Shmuel Onn

- Spanning trees, polymatroids, intersections of matroids:

- Systems of polynomial equations:
simultaneous computation of universal Gröbner bases
for all ideals on the Hilbert Scheme

- Matroids and Their Applications:





Gröbner Polyhedra
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- Convex matroid optimization (SIAM Disc. Math.)
- Convex combinatorial optimization (Disc. Comp. Geom.)
- Cutting corners (Adv. App. Math.)
- The Hilbert zonotope and universal Gröbner bases (Adv. App. Math.)
- Nonlinear matroid optimization and experimental design (SIAM Disc. Math.)
- Nonlinear optimization over a weighted independence system (submitted)

- Spanning trees, polymatroids, intersections of matroids:

- Experimental design and learning:
finding optimal multivariate polynomial model
that fits experiment-results or learning-queries

- Systems of polynomial equations:
simultaneous computation of universal Gröbner bases
for all ideals on the Hilbert Scheme

- Matroids and Their Applications:
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- The complexity of 3-way tables (SIAM Comp.)
- Markov bases of 3-way tables (J. Symb. Comp.)
- All linear and integer programs are slim 3-way programs (SIAM Opt.)
- N-fold integer programming (Disc. Opt. in memory of Dantzig) 
- Graver complexity of integer programming (Annals Combin.)
- Nonlinear bipartite matching (Disc. Opt.)
- Convex integer maximization (J. Pure App. Algebra)
- Convex integer minimization (submitted)

- Privacy and confidentiality in statistical data bases

- Error correcting codes

- Congestion avoiding (multiway) transportation

- Scheme for (nonlinear) optimization over any integer program

- Multiway Tables and Their Applications:



Some Geometric Methods:  

Convex Discrete Maximization



Consider the convex hull P = conv {S}  of the feasible set S in Zn.
When we can control the edge-directions of P,  we can reduce

convex to linear maximization in strongly polynomial time.     
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Convex Discrete Maximization

- Cubes: unit vectors  1i (e.g. 0-1 quadratic programming)

- Matroid polytopes:  pairs 1i - 1j (e.g. spanning trees}

- Transportations: nxp circuit matrices (e.g. partitioning, clustering)



Theorem:Theorem: Fix any d. Then for any S in Zn endowed with a set E that

covers all edge-directions of conv {S}, and any convex f presented 

by a comparison oracle, the convex discrete maximization problem

max { f(w1x, . . ., wdx)  :  x in S }

reduces to strongly polynomially linear counterparts over S. 
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Convex Discrete Maximization



Lemma: If E = {e1, …, em} covers all edge-directions of a polytope P

then the zonotope Z = [-1, 1] e1 + … + [-1, 1] em is a refinement of P.

Proof: preliminaries on zonotopes

(Minkowsky, Grunbaum , …, )
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Lemma: If E = {e1, …, em} covers all edge-directions of a polytope P

then the zonotope Z = [-1, 1] e1 + … + [-1, 1] em is a refinement of P.



Lemma: In Rd, the zonotope Z can be constructed from E = {e1, …, em} 
along with a vector ai in the cone of every vertex in O(md-1) operations.
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Proof: preliminaries on zonotopes

(Edelsbrunner, Gritzmann, Orourk, Seidel, Sharir, Sturmfels, …)
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Lemma: If E = {e1, …, em} covers all edge-directions of a polytope P

then the zonotope Z = [-1, 1] e1 + … + [-1, 1] em is a refinement of P.



Proof: the algorithm 
Input: S in Zn given by linear optimization oracle, set E of edge-directions
of P=conv {S}, d x n matrix w, and convex f on Rd given by comparison oracle
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Proof: the algorithm 
Input: S in Zn given by linear optimization oracle, set E of edge-directions
of P=conv {S}, d x n matrix w, and convex f on Rd given by comparison oracle
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1. Construct the zonotope Z generated by the
projection w●E, and find ai in each normal cone

2. Lift each ai in Rd to bi = wT● ai in Rn and solve 
linear optimization with objective bi over S
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Proof: the algorithm 
Input: S in Zn given by linear optimization oracle, set E of edge-directions
of P=conv {S}, d x n matrix w, and convex f on Rd given by comparison oracle
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Proof: the algorithm 
Input: S in Zn given by linear optimization oracle, set E of edge-directions
of P=conv {S}, d x n matrix w, and convex f on Rd given by comparison oracle

2. Lift each ai in Rd to bi = wT● ai in Rn and solve 
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Shmuel Onn



Rn

Rd

w

aa44

aa33

aa55

aa11

aa66
Z

aa22

P

bbii=wT●aaii

vi

3. Obtain the vertex vi of P
and the vertex w●vi of w●P

1. Construct the zonotope Z generated by the
projection w●E, and find ai in each normal cone

4. Output any vi
attaining maximum
value f(w● vi) using
comparison oracle

w●vi

w●P aaii

Proof: the algorithm 
Input: S in Zn given by linear optimization oracle, set E of edge-directions
of P=conv {S}, d x n matrix w, and convex f on Rd given by comparison oracle

2. Lift each ai in Rd to bi = wT● ai in Rn and solve 
linear optimization with objective bi over S
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max { f(w1x, . . ., wdx)  :  x in S }

Strongly Polynomial
Convex Combinatorial Maximization
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Theorem:Theorem: For any fixed d, there is a strongly polynomial time algorithm 
that, given any S in {0,1}n presented by membership oracle and endowed 
with set E covering all edge-directions of conv {S}, and convex f, solves

max { f(w1x, . . ., wdx)  :  x in S }

Strongly Polynomial
Convex Combinatorial Maximization

- Nonlinear bipartite matching (Disc. Opt.)

Natural case with exponentially many edge-directions –
permutation matrices and Birkhoff polytope - is treated in
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Consider maximizing wx over S, with E all edge-directions of conv {S}: 

Lemma: Membership     Augmentation
Proof: x in SS can be improved if and only if there is an edge 
direction e in E such that w● e > 0 and x + e = y for some y in SS.

Lemma: Augmentation     linear Optimization
Proof: Schulz-Weismantel-Ziegler and GrÖtschel–Lovász
using scaling ideas going back to Edmonds-Karp.

Lemma: Polynomial time      Strongly polynomial time
Proof: Frank-Tárdos show that using Diophantine approximation
can replace w by w’ of bit size depending polynomially only on n.

Proof: membership      augmentation     linear optimization
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Some Algebraic Methods: 

Nonlinear Integer Programming



min or max {f(w1x, . . ., wdx) : x ≥ 0,  Bx = b,  x integer}

Nonlinear Integer Programming

with w1x, . . ., wdx linear forms on Rn and f real valued function on Rd. 

Shmuel Onn

We now concentrate on the nonlinear integer programming problem:



N-Fold Systems
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Theorem 1:Theorem 1: For any fixed matrix A,  linear integer programming
over n-fold products of A can be done in polynomial time:

max { wx:  A(n)x = a, x ≥ 0, x integer} 
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Let A be (r+s) x t matrix with submatrices A1, A2 of first r and last s rows. 

N-Fold Systems

We have the following four theorems on n-fold integer programming:

max { f(w1x, . . ., wdx)  :  A(n)x = a, x ≥ 0, x integer}  

Theorem 2:Theorem 2: For any fixed d and matrix A,  convex integer maximization
over n-fold products of A can be done in polynomial time:
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Let A be (r+s) x t matrix with submatrices A1, A2 of first r and last s rows. 

N-Fold Systems

We have the following four theorems on n-fold integer programming:

min { f1(x1) + . . . + fnt(xnt)  :  A
(n)x = a, x ≥ 0, x integer}  

Theorem 3:Theorem 3: For fixed matrix A,  separable convex integer minimization
over n-fold products of A can be done in polynomial time:
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n
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Let A be (r+s) x t matrix with submatrices A1, A2 of first r and last s rows. 

N-Fold Systems

We have the following four theorems on n-fold integer programming:

Theorem 4:Theorem 4: For fixed matrix A, integer point lp-nearest to a given x
over n-fold products of A can be determined in polynomial time:

min { |x - x|p :  A(n)x = a, x ≥ 0, x integer}  



Define the n-fold product of A to be the following (r+ns) x nt matrix,

A(n) =

n
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Let A be (r+s) x t matrix with submatrices A1, A2 of first r and last s rows. 

N-Fold Systems

- N-fold integer programming (Disc. Opt. in memory of Dantzig) 
- Convex integer maximization via Graver bases (J. Pure App. Algebra)
- Convex integer minimization (submitted)
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A[n] =

n

Universality of N-Fold Systems

(1 1 1)[3] =

Consider m-products of the 1 x 3 matrix  (1 1 1). For instance,
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A[n] =

Universality of N-Fold Systems

{x integer : x ≥ 0,  (1 1 1)[m][n]x = a}

Universality Theorem: Universality Theorem: Any bounded set {x integer : x ≥ 0, Bx = b} is in
polynomial-time-computable coordinate-embedding-bijection with some
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A[n] =

Universality of N-Fold Systems

{x integer : x ≥ 0,  (1 1 1)[m][n]x = a}

Universality Theorem: Universality Theorem: Any bounded set {x integer : x ≥ 0, Bx = b} is in
polynomial-time-computable coordinate-embedding-bijection with some

- All linear and integer programs are slim 3-way programs (SIAM Opt.)



Define the n-product of A as the following variant of the n-fold operator:
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A[n] =

Universality of N-Fold Systems

{x integer : x ≥ 0,  (1 1 1)[m][n]x = a}

Universality Theorem: Universality Theorem: Any bounded set {x integer : x ≥ 0, Bx = b} is in
polynomial-time-computable coordinate-embedding-bijection with some

Scheme for Nonlinear Integer Programming:
any program: max {f(w1x, . . ., wdx) : x ≥ 0,  Bx = b,  x integer}

n-fold program: max {f(w’1x, . . ., w’dx) : x ≥ 0,  (1 1 1)[m][n]x = a,  x integer}
can be lifted to



The Computational Complexity of 

Nonlinear Integer Programming:

The Graver Complexity of K3,m
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Graver Bases

The Graver basis of an integer matrix A is the finite set G(A) of 
conformal-minimal nonzero integer vectors x satisfying Ax = 0. 

circuits: ±(2 -1 0),   ±(1 0 -1),   ±(0 1 -2)

Example: Consider A=(1 2 1).   Then G(A) consists of:

non-circuits: ±(1 -1 1) 

Vector x conforms to y if lie in same orthant and |xi| ≤ |yi| and for all i.
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Graver Bases of N-Products

(Aoki-Takemura, Santos-Sturmfels, Hosten-Sullivant)

Consider n-products of A:

Lemma: Every integer matrix A has a finite Graver complexity g(A) such 
that any element in the Graver basis G(A[n]) for any n has type  ≤ g(A).

The type of x = (x1, . . . , xn) is the number of its nonzero blocks.

A[n]=
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Theorem: Graver bases of A[n] and A(n) are computable in polynomial time. 

Consider n-products of A:
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Graver Bases of N-Products

Theorem: Graver bases of A[n] and A(n) are computable in polynomial time. 

Consider n-products of A:

Lemma: Every integer matrix A has a finite Graver complexity g(A) such 
that any element in the Graver basis G(A[n]) for any n has type  ≤ g(A).

The type of x = (x1, . . . , xn) is the number of its nonzero blocks.

A[n]=

Practicality: the complexity is high and dominated by ng(A),  but promising 
scheme is to consider Graver elements of gradually increasing type.
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The Graver Complexity of a Graph

Definition: The Graver complexity of a graph or a digraph G is the 
Graver complexity g(G):=g(A) of its vertex-edge incidence matrix A.
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The Graver Complexity of a Graph

Let g(m) := g(K3,m) = g((1 1 1)[m]).

Definition: The Graver complexity of a graph or a digraph G is the 
Graver complexity g(G):=g(A) of its vertex-edge incidence matrix A.
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The Graver Complexity of a Graph

Let g(m) := g(K3,m) = g((1 1 1)[m]).

g(3) = g

For instance,

= 9

Definition: The Graver complexity of a graph or a digraph G is the 
Graver complexity g(G):=g(A) of its vertex-edge incidence matrix A.
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The Graver Complexity of a Graph

Recall: g(m) := g(K3,m) = g((1 1 1)[m])

max {f(w1x, . . ., wdx) : x ≥ 0,  (1 1 1)[m][n]x = a,  x integer}

Theorem:Theorem: Consider the following universal nonlinear integer program:
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Theorem:Theorem: Consider the following universal nonlinear integer program:
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The Graver Complexity of a Graph

Recall: g(m) := g(K3,m) = g((1 1 1)[m])

max {f(w1x, . . ., wdx) : x ≥ 0,  (1 1 1)[m][n]x = a,  x integer}

1. 1. For any fixed m can solve it in polynomial time ng(m)

2. 2. For variable m it is universal and NP-hard

So ifSo if PP≠≠NP NP thenthen g(m) must grow with m. How fast ?

Theorem:Theorem: Consider the following universal nonlinear integer program:
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Theorem:Theorem: We have  Ω( 2m ) = g(m) = Ο( m46m ). 

Recall: g(m) := g(K3,m) = g((1 1 1)[m])
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The Graver Complexity of a Graph

Theorem:Theorem: We have  Ω( 2m ) = g(m) = Ο( m46m ). 

Also:Also: g(2)=3,   g(3)=9,   g(4) ≥ 27,   g(5) ≥ 61.

Recall: g(m) := g(K3,m) = g((1 1 1)[m])
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The Graver Complexity of a Graph

Theorem:Theorem: We have  Ω( 2m ) = g(m) = Ο( m46m ). 

Also:Also: g(2)=3,   g(3)=9,   g(4) ≥ 27,   g(5) ≥ 61.

- Graver complexity of integer programming (Annals Combin.)

Recall: g(m) := g(K3,m) = g((1 1 1)[m])
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- Compute the Graver basis of A(n) efficiently. 
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- Compute the Graver basis of A(n) efficiently. 

- Use an auxiliary n-fold program to find an initial feasible point.  

- Use integer caratheodory theorem and convergence property to show
that G(A(n)) allows to augment feasible to optimal point efficiently.
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Proof of Theorem 2 – Convex Maximization

Shmuel Onn

- Simulate linear optimization oracle using Theorem 1.

- Compute the Graver basis of A(n) efficiently. 

- Reduce convex to linear maximization using the Geometric Theorem
with the Graver basis G(A(n)) providing a set of edge-directions of

conv {x :  A(n)x = a, x ≥ 0, x integer} 
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- Compute Graver basis of n-fold product of auxiliary larger matrix.

- Use integer caratheodory, convergence property, and superadditivity, 
and use the Graver basis to augment feasible to optimal point.
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Shmuel Onn

- Compute Graver basis of n-fold product of auxiliary larger matrix.

- Use an auxiliary n-fold program to find an initial feasible point.  

- Use integer caratheodory, convergence property, and superadditivity, 
and use the Graver basis to augment feasible to optimal point.
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- For positive integer p this is the special case of Theorem 3 with

(|x - x|p)p =  |x1 – x1|p  + . . . + |xnt – xnt|p



Proof of Theorem 4 – lp-Nearest Point

Shmuel Onn

- For positive integer p this is the special case of Theorem 3 with

(|x - x|p)p =  |x1 – x1|p  + . . . + |xnt – xnt|p

- For p infinity this reduces to the case of finite q for suitably large q.
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A k-way table is an  m1 X . . . X mk array of nonnegative integers.
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A k-way table is an  m1 X . . . X mk array of nonnegative integers.
A margin of a table is the sum of all entries in some flat
of the table,  so can be a line-sum, plane-sum, and so on.
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0 2 2 
2 1 0 

Example: 2-way table of size 2 X 3:

A k-way table is an  m1 X . . . X mk array of nonnegative integers.
A margin of a table is the sum of all entries in some flat
of the table,  so can be a line-sum, plane-sum, and so on.

Multiway Tables and Margins
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0 2 2 
2 1 0 3

Example: 2-way table of size 2 X 3 with line-sums:

A k-way table is an  m1 X . . . X mk array of nonnegative integers.
A margin of a table is the sum of all entries in some flat
of the table,  so can be a line-sum, plane-sum, and so on.

Multiway Tables and Margins
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0 2 2 
2 1 0 3

2

Example: 2-way table of size 2 X 3 with line-sums:

A k-way table is an  m1 X . . . X mk array of nonnegative integers.
A margin of a table is the sum of all entries in some flat
of the table,  so can be a line-sum, plane-sum, and so on.

Multiway Tables and Margins
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0 2 2 
2 1 0 

4
3

2 3 2

Example: 2-way table of size 2 X 3 with line-sums:

A k-way table is an  m1 X . . . X mk array of nonnegative integers.
A margin of a table is the sum of all entries in some flat
of the table,  so can be a line-sum, plane-sum, and so on.

Multiway Tables and Margins
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Example: 3-way table of size 6 X 4 X 3:

A k-way table is an  m1 X . . . X mk array of nonnegative integers.
A margin of a table is the sum of all entries in some flat
of the table,  so can be a line-sum, plane-sum, and so on.

Multiway Tables and Margins
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24

Example: 3-way table of size 6 X 4 X 3 with a plane-sum:

0
3

5
03 32
0

1
4

1
2

A k-way table is an  m1 X . . . X mk array of nonnegative integers.
A margin of a table is the sum of all entries in some flat
of the table,  so can be a line-sum, plane-sum, and so on.

Multiway Tables and Margins
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0
3

5
03 32
0

1
4

1
2

8

Example: 3-way table of size 6 X 4 X 3 with a line-sum:

A k-way table is an  m1 X . . . X mk array of nonnegative integers.
A margin of a table is the sum of all entries in some flat
of the table,  so can be a line-sum, plane-sum, and so on.

Multiway Tables and Margins

Shmuel Onn
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The margin equations for m1 X . . . X mk X n tables form an n-fold system 
defined by a suitable (r+s) x t matrix A, where A1 controls the equations 
of margins involving summation over layers, whereas A2 controls the 
equations of margins involving summation within a single layer at a time.
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The margin equations for m1 X . . . X mk X n tables form an n-fold system 
defined by a suitable (r+s) x t matrix A, where A1 controls the equations 
of margins involving summation over layers, whereas A2 controls the 
equations of margins involving summation within a single layer at a time.

A(n) =

n

x = (x1, . . . , xn),

A1(x1 + . . .+ xn) = a0, A2xk = ak,   k=1, . . . n

a = (a0,a1, . . . , an)A(n) x = a,

Casting “Long” Multiway Tables as N-fold Programs
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The margin equations for m1 X . . . X mk X n tables form an n-fold system 
defined by a suitable (r+s) x t matrix A, where A1 controls the equations 
of margins involving summation over layers, whereas A2 controls the 
equations of margins involving summation within a single layer at a time.

Example:

The line-sum equations for 3 x 3 x n tables are defined by the
(9+6) x 9 matrix A where A1 is the 9 x 9 identity matrix and   

Casting “Long” Multiway Tables as N-fold Programs

Shmuel Onn

A2 = (1 1 1)[3] =



Corollary: nonlinear optimization over m1 X . . . X mk X n tables
with hierarchical margin constraints can be done in polynomial time.

Long Tables are Efficiently Treatable

Shmuel Onn
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Agencies allow web-access to information on their data bases
but are concerned about confidentiality of individuals.

Common strategy: disclose margins but not table entries.

If the value of an entry is the same in all tables with the disclosed 
margins then that entry is vulnerable;  otherwise it is secure.
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Privacy and Confidentiality in Statistical Data Bases:
Entry Uniqueness Problem

Agencies allow web-access to information on their data bases
but are concerned about confidentiality of individuals.

Common strategy: disclose margins but not table entries.

If the value of an entry is the same in all tables with the disclosed 
margins then that entry is vulnerable;  otherwise it is secure.

Corollary: For m1 X . . . X mk X n tables can check entry uniqueness
in polynomial time and refrain from margin disclosure if vulnerable.
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We wish to find minimum cost transportation or routing subject to  
demand and supply constraints and channel capacity constraints.
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Congestion Avoiding Transportation

f(x)  = ∑ij fij(xij)  = ∑ij cij|xij|
aij

The classical approach assumes fixed channel cost per unit flow.
But due to channel congestion when subject to heavy 

traffic or communication load, the delay and cost are better 
approximated by a nonlinear function of the flow such as

We wish to find minimum cost transportation or routing subject to 
demand and supply constraints and channel capacity constraints.
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Congestion Avoiding Transportation

In the high dimensional extension, wish to find an optimal multiway
table satisfying margin constraints and upper bounds on the entries.

We wish to find minimum cost transportation or routing subject to 
demand and supply constraints and channel capacity constraints.

f(x)  = ∑ij fij(xij)  = ∑ij cij|xij|
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The classical approach assumes fixed channel cost per unit flow.
But due to channel congestion when subject to heavy 

traffic or communication load, the delay and cost are better 
approximated by a nonlinear function of the flow such as
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Congestion Avoiding Transportation

Corollary: We can find congestion avoiding transportation over 
m1 X . . . X mk X n tables in polynomial time.

We wish to find minimum cost transportation or routing subject to 
demand and supply constraints and channel capacity constraints.

f(x)  = ∑ij fij(xij)  = ∑ij cij|xij|
aij

The classical approach assumes fixed channel cost per unit flow.
But due to channel congestion when subject to heavy 

traffic or communication load, the delay and cost are better 
approximated by a nonlinear function of the flow such as

In the high dimensional extension, wish to find an optimal multiway
table satisfying margin constraints and upper bounds on the entries.



Shmuel Onn

Error Correcting Codes



Shmuel Onn

We wish to transmit a message X on a noisy channel. The message 
is augmented with some “check-sums” to allow for error correction.

Error Correcting Codes



Shmuel Onn

We wish to transmit a message X on a noisy channel. The message 
is augmented with some “check-sums” to allow for error correction.

Multiway tables provide an appealing way of organizing the check 
sum protocol. The sender transmits the message as a multiway table 
augmented with slack entries summing up to pre-agreed margins.
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We wish to transmit a message X on a noisy channel. The message 
is augmented with some “check-sums” to allow for error correction.

Error Correcting Codes

The receiver gets a distorted table X and reconstructs the message
as that table X with the pre-agreed margins that is lp-nearest to X. 

Multiway tables provide an appealing way of organizing the check 
sum protocol. The sender transmits the message as a multiway table 
augmented with slack entries summing up to pre-agreed margins.
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We wish to transmit a message X on a noisy channel. The message 
is augmented with some “check-sums” to allow for error correction.

Corollary: We can error-correct messages of format 
m1 X . . . X mk X n in polynomial time.

Error Correcting Codes

The receiver gets a distorted table X and reconstructs the message
as that table X with the pre-agreed margins that is lp-nearest to X. 

Multiway tables provide an appealing way of organizing the check 
sum protocol. The sender transmits the message as a multiway table 
augmented with slack entries summing up to pre-agreed margins.
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