The Role of Mathematics in Understanding the Earth's Climate

Andrew Roberts

Outline

- What is climate (change)?
- History of mathematics in climate science
- How do we study the climate?
- Dynamical systems
- Large-scale (Atlantic) ocean circulation
- Ice ages and the mid-Pleistocene transition
-Winter is coming?

Weather vs. Climate

- Conditions of the atmosphere over a short period of time (minutes - months)
- Temp, humidity, precip, cloud coverage (today)
- Snowfall on November 14, 2014
- Heat wave in 2010
- Hurricane
- How the atmosphere "behaves" over a long period of time
- Average of weather over time and space (usually 30-yr avg)
- Historical average November precipitation
- Record high temperature
- Average number and strength of tropical cyclones, annually

Weather vs. Climate

- Climate is what you expect, weather is what you get
- Can view climate as a probability distribution of possible weather

What is Climate Change?

What is Climate Change?

What is Climate Change?

What is Climate Change?

Precipitation

Dry areas get dryer, wet areas get wetter

Climate scientists predict more floods and more droughts!

Mathematics and Climate Change

$$
\Delta T=Q(1-\alpha(T))-\sigma T^{4}
$$

- Energy balance equation
- Q : incoming solar radiation
- $(1-\alpha(T))$: proportion absorbed by the Earth
- σT^{4} :heat re-radiated back to space

Energy Balance

$$
\Delta T=0 \Rightarrow Q(1-\alpha(T))=\sigma T^{4}
$$

Greenhouse Effect

- Joseph Fourier attempted to calculate the average temperature of the Earth (c. 1820)
- Hypothesized what has come to be known as the "greenhouse effect" - something is trapping heat in the Earth's atmosphere
- 50 years before Stefan-Boltzmann energy balance equation
- 75 years before Arrhenius quantified how much colder the Earth "should" be

Greenhouse Effect

$$
\Delta T=Q(1-\alpha(T))-\varepsilon \sigma T^{4}
$$

Energy Balance Cartoon

Ice Ages

- Mid-1700s: speculation that ice ages exists
- 1830s: A few geologists claim ice-ages happend, ideas rejected
- 1842: Joseph Adhémar (mathematician) is first to propose ice-ages caused by variation in solar radiation

Ice Ages

- 1870s: Geologists reach consensus that ice-ages occurred (James Croll)
- 1912-1924: Milutin Milankovic
- Eccentriciy (100 kyr) Kepler 1609
- Obliquity/Axial tilt (41 kyr)Milankovic 1912
- Precession (23 kyr)-
 Hipparchus 130 B.C.

Milankovic Cycles

Milankovitch Cycles

Eccentricity

Obliquity

Precession

Snowball Earth

$$
\frac{\partial T(y)}{\partial t}=Q s(y)(1-\alpha(y, \eta))-(A+B T(y))-C(T(y)-\bar{T}(\eta))
$$

- Budyko and Sellers (1969) describe spatially dependent energy balance model
- Assume Northern and Southern hemisphere symmetric
- Assume temperature is the same for fixed latitude (y)

- Includes energy transport term

Snowball Earth

- 2 stable states of ice coverage:

- Warm climate (like now - and even ice ages)
- Snowball climate (entire Earth covered in ice)
- Dismissed as "mathematical artifact" until 1990s
- New consensus: 3 snowball events (all over 600 myr ago)

How do we study the climate?

How do we study the climate?

How do we study the climate?

How do we study the climate?

Model Hierarchies

Conceptual Models

- Pros:
- Examples: Energy balance models
- Simple enough to be analyzed by a person
- Typically model 1 or 2 processes/phenomena
- Large-scale average behavior
- Help explain climate to nonexperts
- Motivate large experiments
- Can explore all possibilities
- Intuition
- Cons:
- Too simple to prove scientific results definitively
- Adding more processes could destroy phenomenon

Intermediate Complexity and Process Models

- Some spatial resolution
- More processes (but not too many)
- Simple enough for some interpretation
- Too complex to analyze "by hand"

KNMI (The Netherlands)

GCMs and ESMs

- Too complicated to interpret causality
- Too complicated to explore all possibilities (where do we look?)
- Millions of lines of code (bugs?)
- Expensive (financially and computationally)
- Treated as "experimental Earths"
- Useful for prediction*

Weather Prediction

Observation of Current State

Model

Weather Prediction

Observation of Current State

Model

Prediction
(1 hour)

Weather prediction

Observation of Current State

Model

Prediction
(1 hour)

Model
Prediction
(2 hour)

Observations have error

Observed state
\oint
Actual
(initial)

state

Error grows

Observed State after 1

and grows...

Lorenz Butterly

Climate Prediction

Climate Prediction

Climate Prediction

Climate Prediction

Where do observations come in?

Confronting Models with Data

Confronting Models with Data

Confronting Models with Data

Data Assimilation

Data Assimilation

Data Assimilation

The Role of Mathematics in Climate Science

Field

Theory
Lab

Simulations
as Experiments

ESMs

 GCMsConceptual Models Math

Dynamical Systems

Derivative (from Calculus)

$$
\frac{d x}{d t}=f(t)
$$

$$
\frac{d x}{d t}=t^{3}-t+k
$$

$$
x(t)=\frac{t^{4}}{4}-\frac{t^{2}}{2}+k t+C
$$

Dynamical Systems

Derivative

Example
(from Calculus)

$$
\frac{d x}{d t}=f(t) \quad \frac{d x}{d t}=t^{3}-t+k
$$

$$
\text { What if } \frac{d x}{d t}=f(x) \text { ? }
$$

More than one variable?

System of

Differential Equations

$$
\begin{aligned}
& \dot{x}=f(x, y) \\
& \dot{y}=g(x, y)
\end{aligned}
$$

Defines a
Vector Field

Vector Fields

$$
\begin{gathered}
\text { System of } \\
\text { Differential Equations } \\
\dot{x}=y-x^{3}+x \\
\dot{y}=x-2 y+k \\
\text { Defines a } \\
\text { Vector Field }
\end{gathered}
$$

Equilibrium Points

$$
\begin{aligned}
& \dot{x}=y-x^{3}+x \\
& \dot{y}=x-2 y+k
\end{aligned}
$$

Equilibrium points occur when

$$
\begin{aligned}
& \dot{x}=0 \\
& \dot{y}=0
\end{aligned}
$$

Solutions

$$
\begin{aligned}
& \dot{x}=y-x^{3}+x \\
& \dot{y}=x-2 y+k
\end{aligned}
$$

Even if equations can't be solved, we can understand

Qualitative Behavior

Varying k

$$
\begin{aligned}
& \dot{x}=y-x^{3}+x \\
& \dot{y}=x-2 y+0
\end{aligned}
$$

$$
\dot{x}=y-x^{3}+x
$$

$$
\dot{y}=x-2 y-2
$$

Bifurcation in Algebra I

Quadratic equation

$$
a x^{2}+b x+c=0
$$

Bifurcation in Algebra I

Quadratic equation

$$
a x^{2}+b x+c=0
$$

Bifurcation parameter: Discriminant

$$
b^{2}-4 a c>0
$$

2 Real Roots

Bifurcation in Algebral

Quadratic equation

$$
a x^{2}+b x+c=0
$$

No qualitative change for small change in equation
Bifurcation parameter: Discriminant

$$
b^{2}-4 a c>0
$$

2 Real Roots

Bifurcation in Algebra I

Quadratic equation

$$
a x^{2}+b x+c=0
$$

Bifurcation parameter:
Discriminant

$$
b^{2}-4 a c<0
$$

0 Real Roots

Big enough change in system leads to qualitatively different solutions

Bifurcation in Algebral

Quadratic equation

$$
a x^{2}+b x+c=0
$$

Bifurcation occurs when solutions collide

Bifurcation parameter:
Discriminant

$$
b^{2}-4 a c=0
$$

1 Real Root

Bifurcations as
 Tipping Points

Bifurcations as
 Tipping Points

Bifurcations as
 Tipping Points

Bifurcations as Tipping Points

Hysteresis

Bifurcation vs. Intrinsic Dynamics

- Idea of bifurcations assumes modeler has control over how parameters change - i.e., do NOT depend on state of system
- Snowball Earth: bifurcation "parameter" depends on GHGs (which in turn depend on temperature and ice)

- How does behavior change?

Fast/Slow Dynamics

- Fast variable is like state of system as before
- Slow variable is acts partly like parameter, partly like state variable
- Example of parameter: Milankovic cycles depend only on time (influence climate, but not influenced by climate)

$$
\dot{x}=f(x ; \lambda)
$$

$$
\lambda(t)=\tilde{g}(t)
$$

- Examples of slow variable: GHGs, Ice coverage

Picturing the difference

$$
\begin{aligned}
\dot{x} & =f(x ; \lambda) \\
\lambda(t) & =\tilde{g}(t)
\end{aligned}
$$

$$
\begin{aligned}
& \dot{x}=f(x, y) \\
& \dot{y}=\varepsilon g(x, y) \\
& \varepsilon \ll 1
\end{aligned}
$$

Example in Ocean Circulation

Stommel's Circulation Model

Figure: Schematic of Stommel's model (1961)—from Saha (2011).
Circulation variable: ψ

Stommel's Circulation Model

Model Reduces: $x \sim T_{e}-T p \rightarrow 1$

Get one state variable:

$$
y \sim S_{e}-S_{p}
$$

parameter:

$$
\mu \sim \frac{\Delta S^{A}}{\Delta T^{A}} \quad \dot{y}=\mu-y-A|1-y| y
$$

$\mu \rightarrow$ slow variable

$$
\begin{aligned}
\dot{y} & =\mu-y-A|1-y| y \\
\dot{\mu} & =\delta_{0}(\lambda-y)
\end{aligned}
$$

(a) Stable periodic orbit when $A=5, \lambda=0.8$, and $\delta=0.1$

(c) Canard trajectory when $A=1.1, \lambda=0.995$, and $\delta_{0}=0.01$.

(b) Time series for ψ for the trajectory in

(d) Super-explosion when
$A=1.5, \lambda=0.995$, and
$\delta_{0}=0.01$.

Mixed-mode Oscillations

- 2D dynamical systems can have up to 3 end states:
- Fixed equilibrium
- Periodic equilibrium (with fixed amplitude and period)
- Run-away behavior
- MMOs have big and small oscillations-need 3D system!
- 3D dynamics much more complicated (chaos)

Ice Ages over the last 400 kyr

$$
\begin{aligned}
\dot{x} & =y-x^{3}+3 x-k \\
\dot{y} & =\varepsilon\left[p(x-a)^{2}-b-m y-(\lambda+y-z)\right] \\
\dot{z} & =\varepsilon r(\lambda+y-z)
\end{aligned}
$$

Ice Ages over the last 400 kyr

$$
\begin{aligned}
\dot{x} & =y-x^{3}+3 x-k \\
\dot{y} & =\varepsilon\left[p(x-a)^{2}-b-m y-(\lambda+y-z)\right] \\
& =\varepsilon r(\lambda+y-z)
\end{aligned}
$$

~ice volume
~ oceanic carbon
~atmospheric carbon

Ice Ages over the last 400 kyr

$$
\begin{aligned}
\dot{x} & =y-x^{3}+3 x-k \\
\dot{y} & =\varepsilon\left[p(x-a)^{2}-b-m y-(\lambda+y-z)\right] \\
\dot{z} & =\varepsilon r(\lambda+y-z)
\end{aligned}
$$

Fast

Ice Ages over the last 400 kyr

$$
\begin{aligned}
& \dot{x}=y-x^{3}+3 x-k \\
& \dot{y}=\varepsilon\left[p(x-a)^{2}-b-m y-(\lambda+y-z)\right] \\
& \dot{z}=\operatorname{\varepsilon r}(\lambda+y-z)
\end{aligned}
$$

Change in ice volume depends on temperature, but temperature depends on the amount of ice and how much GHGs are in the atmosphere

Ice Ages over the last 400 kyr

$$
\begin{aligned}
& \dot{x}=y-x^{3}+3 x-k \\
& \dot{y}=\varepsilon\left[p(x-a)^{2}-b-m y-(\lambda+y-z)\right] \\
& \dot{z}=\varepsilon r(\lambda+y-z)
\end{aligned}
$$

Land-atmosphere carbon flux

Ice Ages over the last 400 kyr

$$
\begin{aligned}
& \dot{x}=y-x^{3}+3 x-k \\
& \dot{y}=\varepsilon\left[p(x-a)^{2}-b-m y-(\lambda+y-z)\right] \\
& \dot{z}=\varepsilon r(\lambda
\end{aligned}
$$

Ocean-atmosphere carbon flux

Ice Ages over the last 400 kyr

El Niño-Southern Oscillation

How does ENSO work?

The Data

Predicting ENSO

August predictions

Talk of an El Niño year cools, but don't despair yet about winter

While a 'super' El Niño looks to be off the table, what does develop this year might not deliver what many Canadians are hoping for

Don’t dismiss a 2014 ‘super’ El Niño just yet

Predicting ENSO

- October Prediction
- August Prediction
-?
- Probability of ENSO: 0.68
- November Prediction
- September prediction
- Probability of ENSO: low
- 58% chance of ENSO
- Normal to weak ENSO

ENSO

$$
\begin{aligned}
& \dot{x}=\varepsilon\left(x^{2}-a x\right)+x\left[x+y-n z+d-c\left(x-\frac{x^{3}}{3}\right)\right] \\
& \dot{y}=-\varepsilon\left(a y+x^{2}\right) \\
& \dot{z}=m\left(k-z-\frac{x}{2}\right)
\end{aligned}
$$

ENSO

$$
\begin{aligned}
\dot{x} & =\varepsilon\left(x^{2}-a x\right)+x\left[x+y-n z+d-c\left(x-\frac{x^{3}}{3}\right)\right] \\
\dot{y} & =-\varepsilon\left(a y+x^{2}\right) \\
\dot{z} & =m\left(k-z-\frac{x}{2}\right) \\
& \quad \text { temperature gradient }
\end{aligned}
$$

y temp of W Pacific
thermocline dept in W Pacific

ENSO

$$
\begin{aligned}
\dot{x} & =\varepsilon\left(x^{2}-a x\right)+x\left[x+y-n z+d-c\left(x-\frac{x^{3}}{3}\right)\right] \\
\dot{y} & =-\varepsilon\left(a y+x^{2}\right) \\
\dot{z} & =m\left(k-z-\frac{x}{2}\right)
\end{aligned}
$$

Upwelling feedback

ENSO

$$
\begin{aligned}
& \dot{x}=\varepsilon\left(x^{2}-a x\right)+x\left[x+y-n z+d-c\left(x-\frac{x^{3}}{3}\right)\right] \\
& \dot{y}=-\varepsilon\left(a y+x^{2}\right) \\
& \dot{z}=m\left(k-z-\frac{x}{2}\right)
\end{aligned}
$$

Thermocline adjustment

ENSO

$$
\begin{aligned}
\dot{x} & =\varepsilon\left(x^{2}-a x\right)+x\left[x+y-n z+d-c\left(x-\frac{x^{3}}{3}\right)\right] \\
\dot{y} & =-\varepsilon\left(a y+x^{2}\right) \\
\dot{z} & =m\left(k-z-\frac{x}{2}\right)
\end{aligned}
$$

Advection

ENSO

Simulation 1

Simulation 1

Simulation 2

Simulation 2

Model Output

Cubic Approximation-Dimensionalized

Winter?

