The decimal system and a strange world of p-adic numbers

Julia Gordon

University of British Columbia/ Cornell University
September 23, 2017

Warm-up

A number represented by digits a, b, c in the decimal system is:

$$
\overline{a b c}=100 * a+10 b+c
$$

Interestingly, we read it from right to left! This has cool consequences:

$$
\overline{a b c}-(a+b+c)=99 a+9 b
$$

so we can detect remainder of a number mod 9 by the sum of its digits.

$1001=7 \times 11 \times 13$

...and less elegant consequences: to decide whether a really big number is divisible by 7 or 13 , can break it into 3-digit blocks and take the alternating sum:

$$
\begin{aligned}
& \overline{\text { abcdefghiklmnopqr }}- \\
& (\overline{p q r}-\overline{m n o}+\overline{i k l}-\overline{f g h}+\overline{c d e}-\overline{a b}) \\
& =1001(\overline{m n o}+999 \overline{i k l} \\
& +999001 \overline{f g h}+999999999 \overline{c d e} \\
& +999000999001 \overline{a b})
\end{aligned}
$$

The starting point

"God created the integers, all else is work of Man"
Leopold Kronecker, 1823-1891 (Germany)

Then ...

Man made the rational numbers: $\frac{a}{b} ; a, b \in \mathbb{Z}$, and decimal expansions:

Why does this work:

Then...
Man made the rational numbers: $\frac{a}{b} ; a, b \in \mathbb{Z}$, and decimal expansions:

$$
\frac{1}{3}=0.333 \ldots
$$

Why does this work:

Then...
Man made the rational numbers: $\frac{a}{b} ; a, b \in \mathbb{Z}$, and decimal expansions:

$$
\frac{1}{3}=0.333 \ldots
$$

$$
\frac{5}{26}=0.19230769230769 \ldots
$$

Why does this work:

Then...

Man made the rational numbers: $\frac{a}{b} ; a, b \in \mathbb{Z}$, and decimal expansions:

$$
\frac{1}{3}=0.333 \ldots
$$

$$
\frac{5}{26}=0.19230769230769 \ldots
$$

Why does this work:

$$
\begin{aligned}
& 3 \frac{1}{10}+3 \frac{1}{10^{2}}+\cdots=\frac{3}{10} \frac{1}{1-\frac{1}{10}}=\frac{1}{3} \\
& 0.19+\frac{1}{100} \frac{230769}{10^{6}} \sum_{n=0}^{\infty} \frac{1}{10^{6 n}}=\frac{5}{26}
\end{aligned}
$$

This leads to minor problems:
$0.9999999 \cdots=1$:

This leads to minor problems:

$$
0.9999999 \cdots=1:
$$

$$
\frac{9}{10} \frac{1}{1-\frac{1}{10}}=1
$$

Axiomatically ...

The reals are defined by the axioms:

- Algebraic axioms (\mathbb{R} is a field).
- Ordering axioms (\mathbb{R} is an ordered field).
- The completeness axiom (The least upper bound axiom):
If a set of real numbers has an upper bound, it has the least upper bound.
Using the least upper bound axiom, we can establish a bijection between the axiomatically-defined reals, and the set of decimal expansions (have to deal with minor problem of non-uniqueness).

Axiomatically ...

The reals are defined by the axioms:

- Algebraic axioms (\mathbb{R} is a field).
- Ordering axioms (\mathbb{R} is an ordered field).
- The completeness axiom (The least upper bound axiom):
If a set of real numbers has an upper bound, it has the least upper bound.
Using the least upper bound axiom, we can establish a
bijection between the axiomatically-defined reals, and the
set of decimal expansions (have to deal with minor problem
of non-uniqueness).

Axiomatically ...

The reals are defined by the axioms:

- Algebraic axioms (\mathbb{R} is a field).
- Ordering axioms (\mathbb{R} is an ordered field).
- The completeness axiom (The least upper bound axiom):
If a set of real numbers has an upper bound, it has the least upper bound.
Using the least upper bound axiom, we can establish a bijection between the axiomatically-defined reals, and the set of decimal expansions (have to deal with minor problem of non-uniqueness).

But do we know any real numbers?

$$
\pi=3.141592653589793238462643383279502884197169399
$$

But do we know any real numbers?

$\pi=3.141592653589793238462643383279502884197169399$

37510582097494459230781640628620899862803482534211 70679821480865132823066470938446095505822317253594 08128481117450284102701938521105559644622948954930 81964428810975665933446128475648233786783165271201 09145648566923460348610454326648213393607260249141 73724587006606315588174881520920962829254091715364 67892590360011330530548820466521384146951941511609 33057270365759591953092186117381932611793105118548 74462379962749567351885752724891227938183011949129 33673362440656643086021394946395224737190702179860 43702770539217176293176752384674818467669405132000 54201995611212902196086403441815981362977477130996 51870721134999999837297804995105973173281609631859 02445945534690830264252230825334468503526193118817 01000313783875288658753320838142061717766914730359 25349042875546873115956286388206548586327886593615 38182796823030195203530185296899577362259941389124 72177528347913151557485724245415069595082953311686 72785588907509838175463746493931925506040092770167 13900984882401285836160356370766010471018194295559

We have:

- approximations
- algebraic equations: $\sqrt{2}$ is defined by $x^{2}=2$.
- special properties: π, e, and a handful of others.

References and further reading

- C. Cunningham, "A report from the ambassador to Cida-2", College Mathematics Journal 39:5, 2008.
- A. Rich, "Leftist Numbers", same issue of College Math Journal. http://arxiv.org/pdf/1108.6310v1.pdf

