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1. Some Motivating Examples
Example 1: Spread of Infections

Suppose you want to study how infections (virus in computers
or diseases in the real world) spread in the real world.
Some questions of interest:

How many times does a person/computer catch a particular
disease/virus in a given time period?
What proportion of time is the person sick in a given period?
What proportion of time are more than half of the population
sick?
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Example 1: Discrete-time Contact Process

Identify a graph (a collection of nodes, with edges between
them representing connections) that describes the contact
network of people in a population
Each node has two states: 1 if infected and 0 if sick
Estimate probability of catching an infection given the state of
the population in your local contact neighborhood

• Various multi-state generalizations: SIS, SIR
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Example 1: Discrete-time Contact Process

State space S = {0, 1} = {healthy, infected}.
Parameters p, q ∈ [0, 1].
Xv (t) ∈ S , state of process at time t

The processes evolve as a discrete-time Markov chain

Transition rule: At time t, evolution of state of particle at node v
depends on state of particle at v and the neighbors’ empirical
distribution at that time:

µv (t) =
1
dv

∑
u∼v

δXu(t)

if state Xv (t) = 1, it switches to Xv (t + 1) = 0 w.p. q,
if state Xv (t) = 0, it switches to Xv (t + 1) = 1 w.p.

p

dv

∑
u∼v

Xu(t) = p

∫
yµv (t)(dy)

where recall dv = degree of vertex v .
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Some Motivating Examples
Example 2: Glauber Dynamics for the Ising Model

Ising model

Probability distribution on {−1, 1}V : for σ ∈ {−1, 1}V ,

P(X = σ) =
1
Zβ

e−βH(σ),

where β > 0 is a parameter referred to as the inverse temperature,
and H is the “Hamiltonian”:

H(σ) = −J
∑
i∼j

σiσj − h
∑
j

σj

for suitable parameters J, h ∈ R, and Zβ is the normalizing constant

Zβ =
∑

σ∈{−1,1}V
e−βH(σ).

Although there is an explicit expression for the probability, it is
typically computationally infeasible to calculate Zβ .
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Some Motivating Examples
Example 2: Glauber Dynamics for the Ising Model

Instead, to (approximately) sample from the distribution

P(X = σ) =
1
Zβ

e−βH(σ),

one constructs a reversible Markov chain (the so-called Glauber
dynamics) that has the target distribution as its stationary
distribution.

Note: The transition probability matrix of the Markov chain only
depends on ratios of the probabilities, and thus does not require
knowledge of Zβ .
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1. Some Motivating Examples
Example 3: Systemic Risk

Brownian Motion

Brownian motion {Wt , t ≥ 0} is an R-valued stochastic process
such that

t 7→Wt is (almost surely) continuous
for every 0 < s < t <∞, Wt −Ws is independent of Ws and
is distributed according to N (0, t − s).
W0 = 0 (standard Brownian motion)

d-dimensional Brownian motion {Bt , t ≥ 0} is an Rd -valued
stochastic process such that its components B i , i = 1, . . . , d , are
independent and identically distributed standard Brownian motions.
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1. Some Motivating Examples
Example 3: Systemic Risk

Systemic risk is the risk that in an interconnected system of
agents that can fail individually, a large number of them fails
simultaneously, or nearly so.
The interconnectivity of the agents, and its form of evolution,
plays an essential role in systemic risk assessment.

X i
t represents the state of risk of agent/component j

Given independent Brownian motions W j , j = 1, . . . , n,

dX j
t = −hU(X j

t )dt + θ(X̄t − X j
t )dt + σdW j

t ,

for some restoring potential U : R 7→ R, θ, σ > 0, and with some
given initial conditions, where X̄ is the empirical mean:

X̄t :=
1
n

n∑
i=1

X i
t .
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2. General Problem Formulation
Summary of Graph Terminology

An (undirected) graph G = (V ,E ) consists of a countable
collection V of vertices/nodes and a set E of edges, or
(unordered) pairs in V × V

The neighboring relation is often denoted u ∼ v if (u, v) ∈ E .
A graph G is said to be finite if |V | <∞.
The degree dv of a vertex v is the cardinality of its
neighborhood:

dv = |Nv | := |{u ∈ V : u ∼ v}|

An infinite graph G is said to be locally finite if dv <∞ for
every v ∈ V .
A graph G is said to be simple if it contains no loops (i.e., for
every v ∈ V , (v , v) /∈ E ).
the graph distance d(u, v) = dG (u, v) between two vertices u
and v is the length of the shortest path between the vertices.
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2. General Problem Formulation

Given a finite connected graph G = (V ,E ), we are interested in a
stochastic process

{X v
t , v ∈ G , t ∈ T},

with T = N0 or T = [0,∞) and the property that:

the evolution of the stochastic process is such that the state X v
t of

each node v ∈ V at time t evolves stochastically depending
only on its own state and those of its neighbors

at that time
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Networks of interacting Markov chains

For example, evolving as a discrete-time Markov chain:

X v
t+1 = F

(
X v
t , (X

u
t )u∼v , ξ

v
t+1
)
, v ∈ V ,

for a suitable function

F : S × SJ × U 7→ S.

state space S
continuous transition function F

independent noises ξvt , v ∈ V , t = 0, 1, . . . , taking values in
some space U.

Probabilistic cellular automata, synchronous Markov chains
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Networks of interacting Markov chains: a particular form

Symmetric Dependence on Neighbors
The state of each v ∈ V evolves stochastically depending

only on its own state and the empirical distribution of its neighbors

Then the discrete-time Markov chain takes the form:

X v
t+1 = F̄

(
(X v

t ), µvt , ξ
v
t+1
)
, v ∈ V ,

where
F̄ : S × P(S)× U 7→ S

and µvt ∈ P(S) is the local empirical measure at v :

µvt =
1
dv

∑
u∼v

δX u
t
.

K. Ramanan Scaling Limits



Networks of interacting Markov chains: a particular form

Symmetric Dependence on Neighbors
The state of each v ∈ V evolves stochastically depending

only on its own state and the empirical distribution of its neighbors

Then the discrete-time Markov chain takes the form:

X v
t+1 = F̄

(
(X v

t ), µvt , ξ
v
t+1
)
, v ∈ V ,

where
F̄ : S × P(S)× U 7→ S

and µvt ∈ P(S) is the local empirical measure at v :

µvt =
1
dv

∑
u∼v

δX u
t
.

K. Ramanan Scaling Limits



Networks of Interacting Diffusions

Brownian Motion

Brownian motion {Wt ,Ft , t ≥ 0} on a filtered probability space
(Ω,F , {Ft},P) is an R-valued stochastic process such that Wt is
Ft-measurable for every t ≥ 0,

t 7→Wt is (almost surely) continuous
for every 0 < s < t <∞, Wt −Ws is independent of Fs and
is distributed according to N (0, t − s).
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Networks of interacting diffusions

Or as a diffusion:

dX v
t =

1
dv

∑
u∼v

b(X v
t ,X

u
t )dt + dW v

t ,

where (W v )v∈V are independent d-dimensional Brownian motions.

For concreteness, assume standard conditions:
b is Lipschitz and has linear growth, σ is non-degenerate and has
an inverse,
◦ initial states (X v

0 )v∈V are i.i.d. and square-integrable.
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Networks of interacting stochastic processes

We will focus on
discrete-time Markov chains and diffusions

but one can consider different interacting stochastic evolutions,
including

continuous time Markov chains (A. Ganguly),
jump diffusions, etc. ...
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Networks of interacting stochastic processes

Key questions

Given a sequence of graphs Gn = (Vn,En) with |Vn| → ∞, how can
we describe the limiting behavior of...

the dynamics of a fixed or “typical particle” X v
t , t ∈ [0,T ]?

the empirical distribution of particles 1
|Vn|
∑

v∈Vn
δX v

t
?

A much-studied special case
Gn = Kn, the complete graph on n vertices
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3. The mean field case (McKean-Vlasov 1966)

Gn = Kn complete graph; wlog Vn = {1, . . . , n}
Particles i = 1, . . . , n interact according to

dX i
t =

1
n

n∑
k=1

b(X i
t ,X

k
t )dt + dW i

t , i = 1, . . . , n

where W 1, . . . ,W n are independent Brownian motions, with iid
initial conditions (X 1

0 , . . . ,X
n
0 ) with common law λ

This can be reformulated as

dX i
t = B(X i

t , µ̄
n
t )dt + dW i

t , µ̄nt =
1
n

n∑
k=1

δX k
t
,

where, for a probability measure m on Rd ,

B(x ,m) :=

∫
Rd

b(x , y)m(dy),
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Mean field systems, law of large numbers

Theorem (McKean ’67, Oelschlager ’84, Sznitman ’91, etc.)

(µ̄nt )t∈[0,T ] converges in probability to the unique solution
(µt)t∈[0,T ] of the McKean-Vlasov equation

dXt = B(Xt , µt)dt + dWt , µt = Law(Xt),

with X0 ∼ λ.
Moreover, the particles become asymptotically independent.
Precisely, for fixed k ,

(X 1, . . . ,X k)⇒ µ⊗k , as n→∞.
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Mean-Field Systems or McKean-Vlasov Limits

A Slightly Different Perspective
Kurtz and Kotelenez (’10)

The existence of a limit follows from general results on
exchangeable processes:
As n→∞, X (n) ⇒ X (∞), where

dX
(∞),i
t = b(X

(∞),i
t , µt)dt + dW i (t), i = 1, 2, . . . ,

with

µt = lim
n→∞

1
n

n∑
i=1

δ
X∞,i
t
.

One then characterizes the marginal dynamics of a single
partile in this infinite system.

The McKean-Vlasov equation
provides an autonomous description of this marginal dynamics
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4. Outline of the Proof
Background on the Theory of Weak Convergence

Consider random elements (Zn)n∈N, Z , taking values in a
Polish (complete, separable, metrizable) space X .

Definition of Weak Convergence
Then Zn is said to converge weakly to Z , as n→∞, denoted
Zn ⇒ Z , if for each bounded, continuous function f : X 7→ R,

E[f (Zn)]→ E[f (Z )] as n→∞.

Exercise
Suppose S = R, and Pn,P lie in P(R) and let Fn and F denote
their corresponding cumulative distribution functions. Then show
that Pn converges weakly to P if and only if

Fn(x)→ F (x), ∀x : F (x) = F (x−).
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Consider random elements (Zn)n∈N, Z , taking values in a
Polish (complete, separable, metrizable) space X .

Definition of Weak Convergence
Then Zn is said to converge weakly to Z , as n→∞, denoted
Zn ⇒ Z , if for each bounded, continuous function f : X 7→ R,

E[f (Zn)]→ E[f (Z )] as n→∞.

There is a metric (the Prohorov metric) on the space P(X ) of
probability measures on X that metrizes this notion of
convergence. The resulting space is again Polish.
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Background on Weak Converence, contd.

How does one prove convergence in general?
1 Show relative compactness of the sequence {Zn}.
2 Uniquely characterize any subsequential limit.

For weak convergence
Prohorov’s Theorem provides a criterion for relative compactness

Definition of Tightness

The sequence of random elements {Zn} is said to be tight if for
every ε > 0, there exists a compact space Kε ⊂ X such that

P(Zn 6∈ Kε) < ε.

Prohorov’s Theorem (1956)

A sequence {Zn} is relatively compact if and only if it is tight.

K. Ramanan Scaling Limits



Background on Weak Converence, contd.

How does one prove convergence in general?
1 Show relative compactness of the sequence {Zn}.
2 Uniquely characterize any subsequential limit.

For weak convergence
Prohorov’s Theorem provides a criterion for relative compactness

Definition of Tightness

The sequence of random elements {Zn} is said to be tight if for
every ε > 0, there exists a compact space Kε ⊂ X such that

P(Zn 6∈ Kε) < ε.

Prohorov’s Theorem (1956)

A sequence {Zn} is relatively compact if and only if it is tight.

K. Ramanan Scaling Limits



Interacting Diffusions on the Complete Graph

• Recall

dX i ,n
t = B(X i ,n

t , µ̄nt )dt + dW i ,n
t , µ̄nt =

1
n

n∑
k=1

δ
X k,n
t
,

for i = 1, . . . , n, where {W i ,n, i = 1, . . . , n} are independent
d-dimensional Brownian motions and where, for a probability
measure m ∈ P(Rd),

B(x ,m) =

∫
Rd

b(x , y)m(dy),

• We want to show weak convergence of {µ̄nt , t ≥ 0}
• Note that µ̄n is a random element taking values in the (Polish)
space X := C([0,∞) : P(Rd)) of continuous (probability)
measure-valued trajectories.
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Infinitesimal Generators
Useful in the study of Markov processes

The infinitesimal generator of a continuous-time stochastic
process {Xt , t ≥ 0} is a differential operator of the form:

Af (x) = lim
t→0

E[f (Xt)− f (x)

t
,

which acts on the set of functions f : Rd 7→ R for which the
above limit is well defined, called the domain of A.
A should be viewed as an “average derivative” along the flow
of a stochastic process {Xt , t ≥ 0}
For an SDE of the form:

dXt = b(Xt)dt + σ(Xt)dWt , X0 = x .

where a(x) = σ(x)σT (x), A takes the form

Af (x) =
∑
i

bi (x)∂i f (x) +
1
2

∑
ij

aij(x)∂i∂j f (x)

The domain of A includes Cb(Rd), the space of bounded
continuous real-valued functions on Rd .
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Outline of the Proof of the Mean-Field limit

Step 1: Show tightness of {µ̄n}n∈N
For this, use the “infinitesimal generator” of the original process

dX i ,n
t = B(X i ,n

t , µ̄nt )dt + σ(X i ,n
t , µ̄nt )dW i ,n

t , µ̄nt =
1
n

n∑
k=1

δ
X k,n
t
,

Set a(x , µ) := σ(x , µ)σT (x , µ), where µ = 1
n

∑n
i=1 δxi , and fix

g ∈ C 2
b (R), h ∈ C 2

b (Rd), 〈µ, h〉 =

∫
R
h(x)µ(dx)

For f (µ) = g(〈µ, h〉), define

An
h(µ) = g ′(〈µ, h〉)

{
〈µ, b(·, µ) · ∇h〉+

1
2
〈µ, aij(·, µ)∂ijh〉

}
+
1
2
g ′′ (〈µ, h〉) 1

n
〈µ, aij(·, µ)∂ih∂jh〉.

• Use the generator, martingale estimates and stochastic calculus
(Itô’s formula) to show that {µ̄n}n∈N is tight;
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Outline of Proof of the Mean-Field limit (contd.)

Recall that the evolution of µ̄n is characterized by

An
h(µ) = g ′(〈µ, h〉)

{
〈µ, b(·, µ) · ∇h〉+

1
2
〈µ, aij(·, µ)∂ijh〉

}
+
1
2
g ′′ (〈µ, h〉) 1

n
〈µ, aij(·, µ)∂ih∂jh〉.

Step 2: Show that any susbsequential limit µ̄ of {µn}n∈N
satisfies a certain martingale problem: or more precisely,
satisfies

A∞h (µ̄)= 0, ∀h ∈ Cb(Rd),

where

A∞h (µ) := g ′(〈µ, h〉)
{
〈µ, b(·, µ) · ∇h〉+

1
2
〈µ, aij(·, µ)∂ijh〉

}
Note that A∞(µ) is a nonlinear differential operator
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Outline of Proof of Mean-Field Limit (contd.)

Recall
Step 1: Show {µ̄n} is tight, and
Step 2: Every subsequential limit µ̄ of {µ̄n} satisfies

A∞h (µ̄)= 0, ∀h ∈ Cb(Rd), (1)

where

A∞h (µ) := g ′(〈µ, h〉)
{
〈µ, b(·, µ) · ∇h〉+

1
2
〈µ, aij(·, µ)∂ijh〉

}

Step 3: Show uniqueness of solutions to the (weak) PDE (29)
to conclude that {µ̄n} converges to the unique (weak) solution
µ̄ of the PDE (29).
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Outline of Proof of Mean-Field Limit (contd.)

dX i ,n
t = B(X i ,n

t , µ̄nt )dt + σ(X i ,n
t , µ̄nt )dW i ,n

t , µ̄nt =
1
n

n∑
k=1

δ
X k,n
t
,

Steps 1–3: We have shown that µ̄n → µ̄, the unique (weak)
solution to

A∞h (µ̄)= 0, ∀h ∈ Cb(Rd),

Step 4: We combine this with the above SDE for X i ,n and the
continuity of the map m 7→ B(x ,m) to conclude that as
n→∞, for any i , X i ,n converges weakly to X , which is the
unique solution to the (nonlinear or McKean-Vlasov) SDE:

dXt = B(Xt , µ̄t)dt + σ(Xt , µ̄t)dWt ,

for some Brownian motion (Wt)t≥0.
Step 5: Noting that the PDE for µ is the forward Kolmogorov
equation for X , we conclude that Law(Xt) = µt .
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Nonlinear Markov Processes

Theorem (McKean ’67, Oelschlager ’84, Sznitman ’91, etc.)

(µ̄n(t))t∈[0,T ] converges in probability to the unique solution
(µ(t))t∈[0,T ] of the McKean-Vlasov equation

dXt = B(Xt , µt)dt + dWt , µt = Law(Xt),

X0 ∼ λ. Here, µt satisfies a nonlinear PDE that is the forward
Kolmogorov equation for this inhomogeneous Markov process.
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An alternative approach: asymptotic independence

Recall

dX n,i
t = B(X n,i

t , µ̄nt )dt + dW i
t , µ̄nt =

1
n

n∑
k=1

δ
X n,k
t
,

for i = 1, . . . , n, where, for a probability measure m on Rd ,

B(x ,m) =

∫
Rd

b(x , y)m(dy),

Note: If X n,i , i = 1, . . . , n, n ∈ N, were independent,
the SLLN would tell us that µ̄nt → Law(X i

t )
What we have here is a weak sort of dependence – can show
asymptotic independence holds, to conclude

Theorem
(µ̄n(t))t∈[0,T ] converges in probability to the unique solution
(µt)t∈[0,T ] of the McKean-Vlasov equation

dXt = B(Xt , µt)dt + dWt , µt = Law(Xt).
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5. Mean-Field Limits for Sequences of Dense Graphs

Key questions

Given a sequence of graphs Gn = (Vn,En) with |Vn| → ∞, how can
we describe the limiting behavior of a “typical” particle X v

t ?

Theorem (Delattre-Giacomin-Luçon ’16; Bhamidi-Budhiraja-Wu
’19)

Under suitable conditions on the coefficients, suppose
Gn = G (n, pn) is Erdős-Rényi, with npn →∞. Then everything
behaves like in the mean field case.

See also Delarue ’17, Coppini, Dietert and Giacomin ’18, Reis and
Oliveira ’18

Observation: npn ≈ average degree, so npn →∞ means the
graphs are suitably dense.
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6. Beyond Mean-Field Limits

The Main Focus of this Lecture Series

the sparse graph regime

In this regime, there was not even an existing conjecture as to:

(i) whether it is possible to characterize the limiting dynamics of a
typical particle

(ii) what form this characterization would take
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6. Beyond Mean-Field Limits ...

X v
t+1 = F

(
X v
t , (X

u
t )u∼v , ξ

v
t+1
)
, v ∈ V ,

dXGn,v
t =

1
dv

∑
u∼v

b(XGn,v
t ,XGn,u

t )dt + dW v (t)

Key questions

Given a sequence of graphs Gn = (Vn,En) with |Vn| → ∞, how can
we describe the limiting behavior of...

the state of a “typical” or fixed particle XGn,v
t ?

the empirical measure of particles µGn
t := 1

|Vn|
∑

v∈Vn
δ
XGn,v
t

?

Our focus: The sparse regime, where degrees do not diverge.
How does the n→∞ limit reflect the graph structure?
Example: Erdős-Rényi G (n, pn) with npn → p ∈ (0,∞).
Open Question: in Delattre-Giacomin-Luçon
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6. Beyond Mean-Field Limits ...

X v
t+1 = F

(
X v
t , (X

u
t )u∼v , ξ

v
t+1
)
, v ∈ V ,

dXGn,v
t =

1
dv

∑
u∼v

b(XGn,v
t ,XGn,u

t )dt + dW v (t), v ∈ V

Specific Questions:
(1) Does the whole system admit a scaling limit?
(2) Is there an autonomous description of the limiting dynamics of
a typical particle?
(3) Does the (global) empirical measure

µ̄Gn =
1
|Vn|

∑
v∈Vn

δXGn,v (·)

have a scaling limit?
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6. Beyond Mean-Field Limits: A Peak into Lecture 2

Sequence of sparse graphs Gn = (Vn,En) with |Vn| → ∞,

X v
t+1 = F

(
X v
t , (X

u
t )u∼v , ξ

v
t+1
)
, v ∈ V ,

dXGn,v
t =

1
dv

∑
u∼v

b(XGn,v
t ,XGn,u

t )dt + dW v (t), v ∈ V

(Q1) Does the whole system admit a scaling limit?
(A1) Yes, wrt a generalized notion of local weak convergence
In fact, for this, we can allow more general heterogeneous
dynamics: e.g.,

X v
t+1 = Fv

(
t,X v

t , (X
u
t )u∼v , ξ

v
t+1
)
, v ∈ V ,

or

dXGn,v
t =

1
dv

∑
u∼v

bv (t,XGn,v
t ,XGn,u

t )dt + dW v (t), v ∈ V .
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