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Introduction

• Our goal in this lecture is to describe results concerning the con-

struction of low regularity solutions of partial differential equations,

depending on a random parameter.

• The motivations for these studies are multiple. However, at the

end, the obtained results and the methods leading to these results

are conceptually close to each other.
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The nonlinear wave equation

Theorem 1 (classical)

• For every (u0, u1) ∈ H1(T3) × L2(T3) there exists a unique global

solution of

(∂2
t −∆)u+ u3 = 0, u(0, x) = u0(x), ∂tu(0, x) = u1(x) .

in the class (u, ∂tu) ∈ C(R;H1(T3)× L2(T3)) .

• If in addition (u0, u1) ∈ Hs(T3)×Hs−1(T3) for some s ≥ 1 then

(u, ∂tu) ∈ C(R;Hs(T3)×Hs−1(T3)) .

The dependence with respect to the initial data is continuous.

• The local in time part of Theorem 1 can be extended to the case

(u0, u1) ∈ Hs(T3)×Hs−1(T3), s ≥ 1/2, and the global in time part to

s > 3/4 (Kenig-Ponce-Vega, Gallagher-Planchon, Roy).

• We conjecture that Theorem 1 remains true for s ≥ 1/2 (proved

recently by Dodson in the radial case of R3).
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Limit of the deterministic methods

Theorem 2

Let s ∈ (0,1/2) et (u0, u1) ∈ Hs(T3) × Hs−1(T3). There exists a
sequence

uN(t, x) ∈ C∞(R× T3), N = 1,2, · · ·

such that

(∂2
t −∆)uN + u3

N = 0

with

lim
N→+∞

‖(uN(0)− u0, ∂tuN(0)− u1)‖Hs(T3)×Hs−1(T3) = 0

but for every T > 0,

lim
N→∞

sup
0≤t≤T

‖uN(t)‖Hs(T3) = +∞.

• The well-posedness in Hadamard sense includes the existence, the
uniqueness and the continuous dependence with respect to the initial
data. Theorem 2 contradicts the continuous dependence with respect
to the initial data.
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Solving the equation by probabilistic methods

• We can ask whether some form of well-posedness survives for initial

data in

Hs(T3)×Hs−1(T3), s < 1/2. (1)

• The answer of this question is positive if we endow the space (1)

with a non degenerate probability measure such that we have the ex-

istence, the uniqueness, and a form of continuous dependence almost

surely with respect to this measure.
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Choice of the measure

• We will choose the initial data among the realisations of the follow-

ing random series

uω0(x) =
∑
n∈Z3

gn(ω)

〈n〉α
ein·x , uω1(x) =

∑
n∈Z3

hn(ω)

〈n〉α−1
ein·x . (2)

Here {gn}n∈Z3 et {hn}n∈Z3 are two families of independent random

variables conditioned by gn = g−n and hn = h−n, so that uω0 and uω1
are real valued.

• In addition, we suppose that for n 6= 0, gn and hn are complex gaus-

sians from NC(0,1), and that g0 and h0 are standard real gaussians

from N (0,1).

• The initial data (2) belong almost surely to Hs(T3)×Hs−1(T3) for

s < α− 3
2. Moreover, the probability of the event

(uω0, u
ω
1) ∈ Hα−3

2(T3)×Hα−5
2(T3)

is zero.

5



Reformulation of the ill-posedness result

Theorem 3

Let α ∈ (3/2,2) and 0 < s < α−3/2. For almost every ω, there exists

a sequence

uωN(t, x) ∈ C∞(R× T3), N = 1,2, · · ·

such that

(∂2
t −∆)uωN + (uωN)3 = 0

with

lim
N→+∞

‖(uωN(0)− uω0, ∂tu
ω
N(0)− uω1)‖Hs(T3)×Hs−1(T3) = 0

but for every T > 0,

lim
N→∞

sup
0≤t≤T

‖uωN(t)‖Hs(T3) = +∞.

We can however prove the following result:

6



Theorem 4 (Burq-Tz. (2010))

Let α ∈ (3/2,2) and 0 < s < α− 3/2. Define (thanks to the classical

well-posedness result) the sequence (uN)N≥1 of solutions of

(∂2
t −∆)u+ u3 = 0 (3)

with C∞ initial data

uω0(x) =
∑
|n|≤N

gn(ω)

〈n〉α
ein·x , uω1(x) =

∑
|n|≤N

hn(ω)

〈n〉α−1
ein·x .

The sequence (uN)N≥1 converges almost surely as N →∞ in C(R;Hs(T3))

to a (unique) limit u which satisfies (3) in the distributional sense.

• The type of the approximation of the initial data is crucial when we

prove probabilistic low regularity well-posedness.

• We can prove uniqueness in a suitable functional framework.

• We can consider more general randomisations (this fact had an

important impact in the field).
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Going further

Theorem 5 (Oh-Pocovnicu-Tz. (2018))

Let α ∈ (5
4,

3
2) and s < α−3/2. There exist positive constants γ, c, C,

T0 and a divergent sequence (cN)N≥1 such that for every T ∈ (0, T0)
there exists a set ΩT of residual probability ≤ C exp(−c/T γ) such that
if we denote by (uωN)N≥1 the solution of

∂2
t u−∆u− cNu+ u3 = 0, (4)

with initial data given by

uω0,N(x) =
∑
|n|≤N

gn(ω)

〈n〉α
ein·x , uω1,N(x) =

∑
|n|≤N

hn(ω)

〈n〉α−1
ein·x

then for every ω ∈ ΩT the sequence (uωN)N≥1 converges as N → ∞
in C([−T, T ];Hs(T3)). In particular, for almost every ω there exists
Tω > 0 such that (uωN)N≥1 converges in C([−Tω, Tω];Hs(T3)).

• Theorem 5 is the first step in the study of the nonlinear wave
equation in Sobolev spaces of negative indexes.
• The ultimate goal is to arrive to α = 1 ...
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Invariant measures for the nonlinear Schrödinger equation

(i∂t + ∆)u− |u|2u = 0, u(0, x) = u0(x) x ∈ T2. (5)

• (5) is a Hamiltonian PDE. Therefore

E(u) =
∫
T2

(
|∇xu(t, x)|2 + |u(t, x)|2 +

1

2
|u(t, x)|4

)
dx

is a (formally) conserved quantity for (5).
• The Gibbs measure associated with (5) is a renormalization of the
completely formal object

exp(−E(u))du .

• The measure obtained by this renormalization is absolutely con-
tinuous with respect to the gaussian measure given by the random
series

uω0(x) =
∑
n∈Z2

gn(ω)

〈n〉
ein·x

where {gn}n∈Z2 is a family of independent (complex valued) gaussians
from NC(0,1).
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Theorem 6 (Bourgain (1996))

• Let (uωN)N≥1 be the sequence of solutions of

(i∂t + ∆)u− |u|2u = 0 (6)

with C∞ initial data given by

uω0(x) =
∑
|n|≤N

gn(ω)

〈n〉
ein·x .

For every s < 0, the sequence(
exp

(
it

2π2
‖uωN(t)‖2

L2

)
uωN(t)

)
N≥1

converges almost surely in C(R;Hs(T2)) to a limit which satisfies a

renormalised version of (6).

• Moreover, the Gibbs measure is invariant under the resulting flow.
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Remarks

• The statement of the results by Bourgain and Burq-Tz. are simi-

lar. A notable difference is that in the Bourgain theorem, in order to

obtain a limit one needs to reanormalize the sequence of approximate

solutions (uωN)N≥1. Moreover in Bourgain’s theorem the randomisa-

tion is ”rigid”.

• We can formulate the Bourgain theorem in the spirit of the result

by Oh-Pocovnicu-Tz. More precisely, one can prove the convergence

of the solutions of

i∂tu+ ∆u+ cNu− |u|2u = 0

with data

uω0(x) =
∑
|n|≤N

gn(ω)

〈n〉
ein·x ,

where (cN(ω))N≥1 is a sequence of real numbers almost surely diver-

gent to +∞.
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Singular stochastic PDE’s

• The problematic considered in the previous slides is close to the

analysis of parabolic PDE’s in the presence of a singular random

source term (noise).

• The closest to the previously considered models is the nonlinear

heat equation

∂tu−∆u+ u3 = ξ, u(0, x) = 0 x ∈ T3. (7)

• Here ξ is the space-time white noise on [0,∞[×T3. It is the source

term ξ which represents the singular randomness in (7) (in the previous

slides it was the low regularity random initial data which represented the singular

randomness).

• The white noise on [0,∞[×T3 may be written as

ξ =
∑
n∈Z3

β̇n(t)ein·x, (8)

where βn are independent Brownian motions, conditioned by βn = β−n
(β0 is real and for n 6= 0, βn is with values in C).
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Singular stochastic PDE’s (sequel)

• For N � 1, an approximation of ξ by smooth functions is given by

ξN(t, x) = ρN ?ξ where ρN(t, x) = N5ρ(N2t,Nx) with ρ a test function

with integral 1 on [0,∞[×T3.

Theorem 7 (Hairer (2014), Mourrat-Weber (2018))

There is a sequence (cN)N≥1 of positive numbers, divergent as N →∞
such that if we denote by uN the solution of

∂tuN −∆uN − cNuN + u3
N = ξN , u(0, x) = 0

then (uN)N≥1 converges in probability as N →∞.

•We can also have almost sure convergence in suitable Hölder spaces.

The initial data u(0, x) can be different from zero : it suffices that it

belongs to a suitable functional framework.
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Remarks

• The result remains true for a noise ξ defined by

ξ =
∑
m∈Z

∑
n∈Z3

gm,n(ω)eimt ein·x,

where {gm,n}(m,n)∈Z4 is a family of independent complex gaussians

conditioned so that ξ is real valued (white noise on T× T3).

• The two dimensional case is treated in the work by Da Prato-

Debussche (2003).

• There are other parabolic PDE’s for which one can obtain results

in similar spirit, the most popular being probably the KPZ equation.
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On the structure of the proofs

• The proofs of the previously described results follow the same
scheme.

• First, we construct local in time solutions. Then we use a global in-
formation which is either an invariant measure or an energy estimate
in order to get global in time solutions.

• In order to construct the solutions locally in time, we look for the
solution in the form

u = u1 + u2,

where u1 contains the singular part of the solution.
• Using probabilistic arguments, close the the ones in the previous
lecture, we prove that u1 has properties better than the properties
given by deterministic methods. All probabilistic part of the argument
is in this part of the analysis.
• In the proof of the result by Burq-Tz. we use a.s. improvements
of the Sobolev embedding while all the other results use products in
Sobolev spaces of negative indexes.
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On the structure of the proofs (sequel)

•We then solve the problem for u2 by purely deterministic arguments.

Here the nature of the equation becomes even more important. In

the case of the heat equation, the basic tool is the elliptic regularity

while for the other equations we exploit the time oscillations in a

crucial way (these oscillations are captured by the Bourgain spaces,

for instance).

• The passage from local to global solutions in the result by Bourgain

uses an invariant measure as a global control on the solutions. In the

result by Burq-Tz. the globalisation is done by energy estimates. It

is remarkable that in the context of the nonlinear heat equation these

two techniques are also used to globalise the solutions.
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An important remark

• In the work by Burq-Tz. we allow more general randomisations

compared to Bourgain’s work. However, the proof does not say any-

thing about the nature of the transported by the flow initial measure

while in the work by Bourgain the initial gaussian measure is quasi-

invariant under the flow.

• This fact motivated recent work on quasi-invariant measures for

nonlinear dispersive equations.

17


