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The goal of this thesis is to illustrate the AdS/CFT Conjecture of High-Energy Physics in a mathematical light.
This thesis will begin with an exposition of the analytical nature and background of AdS/CFT in terms of a
specific type of Yamabe problem and Sasaki-Einstein manifolds. This will conclude with a brief discussion of the
Yp,q manifolds of String Theory, which disprove a conjecture of G. Tian and J. Cheeger. The thesis will then
discuss a (hopefully) balanced view of Generalized Complex Geometry, oscillating between the coordinate-focused
exposition of Koerber and the G-Structure and Gerbe focused viewpoints of Gualtieri and Hitchin. A (hopefully)
cleaner presentation of Sparks’ Generalized Sasaki Manifolds will conclude the expository portion of this thesis.
At the end, a new and explicit example of a Generalized Sasakian Metric will be presented.
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1 Brief History

Much of the early history of the close relationship between Physics and Mathematics is well-known, for one often
hears of Isaac Newton, Joseph Louis Lagrange and Pierre Simon Laplace in early calculus and mechanics classes.
The close relationship continued through the 19th century with the outstanding contributions of Gauss, Maxwell
and Hamilton that led to drastic improvements in understanding the then-novel force of electromagnetism. At
the dawn of the 20th century, the intuitive and geometric wizardry of Einstein helped formulate the equations
of General Relativity and subsequently led to an explosion of research into Lorentzian Geometry. Modern Math
Historians often claim that the apex of this relationship occurred in the 1920s and 1930s with the works of John
von Neumann and Paul Dirac on Quantum Mechanics. This relationship is exemplified in the following quote of
Paul Dirac:

The steady progress of physics requires for its theoretical formulation a mathematics that gets con-
tinually more advanced. This is only natural and to be expected. What, however, was not expected
by the scientific workers of the last century was the particular form that the line of advancement
of the mathematics would take, namely, it was expected that the mathematics would get more and
more complicated, but would rest on a permanent basis of axioms and definitions, while actually the
modem physical developments have required a mathematics that continually shifts its foundations
and gets more abstract. Non-euclidean geometry and non-commutative algebra, which were at one
time considered to be purely fictions of the mind and pastimes for logical thinkers, have now been
found to be very necessary for the description of general facts of the physical world. It seems likely
that this process of increasing abstraction will continue in the future and that advance in physics
is to be associated with a continual modification and generalisation of the axioms at the base of
the mathematics rather than with a logical development of any one mathematical scheme on a fixed
foundation.
— Paul A.M. Dirac, Quantised Singularities in the Electromagnetic Field, Proceedings of the
Royal Society A, 1931.

However, Dirac’s prediction of theoretical physics requiring increasing mathematical sophistication was for
the most part left unfulfilled from the 1930s to the 1970s as the interest in General Relativity waned (perhaps due
to the war) and the great practitioners of Quantum Field Theory found it far easier to employ techniques that
were ill-defined mathematically, but agreed well with accelerator experiments. However, many of the problems
that arose in describing Quantum Chromodynamics stymied physicists in the 1960s and 1970s and were resolved
when Murray Gell-Mann discovered the eightfold path and its relation to the representation theory of semi-simple
Lie Groups. This realization that mathematicians may have "inadvertently" discovered some of theory behind
modern physical conundrums led to an increased level of cooperation between the mathematics and physics
communities. A hallmark moment in this relationship of mathematics and physics took place in 1975 when C.N.
Yang invited mathematician James Simons to Stony Brook to give a series of lectures explaining the mathematics
behind the "non-integrable phase factors" that Dirac introduced in Quantised Singularities in the Electromagnetic
Field. During these lectures, Yang learned about Fiber Bundles, Differential Forms, Characteristic Classes and
in particular Chern-Weil Theory, which relates the Lie Algebra g associated to a principal-G bundle to certain
characteristic classes. By 1979, Yang had realized that mathematicians had invented a theoretical framework
for the non-abelian gauge theories that he had stumbled upon while formulating what became Yang-Mills gauge
theory.

The above two descriptions point out examples of mathematics furthering an understanding of physics and
in the late 1970s and early 1980s, examples of the converse began to occur; that is, physical concepts played an
important role in the proofs of various important theorems. The most prominent example of such an occurrence
is the following theorem of Simon Donaldson:

Theorem 1.1. (Donaldson, 1983) A simply connected, smooth 4-manifold with positive definite intersection form1

q has the property that q is always diagonalizable over Z to q = diag(1, . . . , 1)
1M. Freedman defined the intersection form for a 4-dimensional topological manifold M as a map q :

H2(M,Z)×H2(M,Z)→ Z, q(α,β) = (α^ β)[M], where [M] is the fundamental class if M is orientable.
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The significance of this theorem in mathematics is that it gives a sufficient condition for a manifold to be
smooth as opposed to piecewise linear or simply a topological manifold. As such one can begin to classify the
smooth structures on a 4-manifold via this theorem, a feat that surprised the mathematical community at the
time of its publication.The proof heavily relies on the use of the Yang-Mills action, which concerns the finite-
dimensional moduli space of connections on line bundles, to determine the eigenvalues of a given intersection
form.

The main subject of this thesis, Generalized Sasakian Geometry, is closely related to String Theory and
indeed its roots lie in both Mathematics and Physics. Just as in the proceeding examples, String Theory has had
an enormous amount of interaction with the mathematical community and for better or for worse, it is often the
"poster-child" of the close relationship between Mathematics and Theoretical Physics.

2 What is a Field Theory?

From a mathematical perspective, one is used to hearing that "quantum field theories are ill-defined." However,
some of the mathematical structures involved can be described precisely and can provide a mathematician with
some intuition into what a "field theory" might be. In the case of String Theory, one cares about effective field
theories. Before going any further, let’s establish the definitions for effective field theories:

• An effective field theory is a field theory that has an energy scale E, which can roughly be thought
of as an approximation to the "maximum" allowable energy, such that all observed physical phenomena
can be produced if the systems energy is less than E. Note that this also means that one need not know
anything about the degrees of freedom at higher energies; this is a key point for the existence of String
Theory. String Theory purports to reduce in certain limits to an effective field theory with energy scale of
E ≈ 1.22 × 1019 GeV (the Planck Energy) that reproduces known phenomena that are at far lower energy
scales. The mathematical objects required to specify an effective field theory are:

– A smooth n-manifold M that serves as a model of spacetime
– The configuration space C is a smooth manifold with metric g that serves as the space that the scalar
fields take values in. The scalar fields are simply smooth maps M → C and represent a coordinate-
independent, scalar observable, such as temperature or pressure at a point. Note that we can define
the time-derivative of a scalar field Ωφ as Ωφ = φ∗(∂t) where ∂t is the tangent vector conjugate to the
distinguished time coordinate of M. In this paper, we will see that C = ∧•M.

– A function V : C → R is known as the potential and is used to determine the equations of motion. In
particular, if φ ∈ S = {f :M→ C} is a scalar field then we construct a Lagrangian L : S → R by

L(φ) = 1
2
g(Ωφ,Ωφ) + V ◦ φ (1)

– A complex vector bundle F with metric Λg over C in which the fermions take values. In the case
of interest for this paper, F will be ∧•C; the reasons for this will be elucidated in part III. Note
that the Lagrangian (1) only includes scalar fields. It is possible (and physically necessary) to include
fermionic contributions so that in general one defines the potential as a map V : S × FM → R, where
FM = {f :M→ F : f smooth}. We can naturally define the Lagrangian for α ∈ FM,

L(φ,α) = 1
2

(
g(Ωφ,Ωφ) +Λg(Ωα,Ωα)

)
+ V ◦ φ+ V ◦ α (2)

– A Lie group G with a free action on C which serves as the set of symmetries of the scalar fields and
the Fermions via a free, transitive and often proper action on them.

– A bilinear form Y : F ⊗ F |φ → R known as the coupling determines the experimental constants that
V depends on.

• An N = 1 supersymmetric effective field theory is an effective field theory with the following additional
pieces of data:
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– The configuration space C is now a complex manifold with Hermitian metric h and Kähler form ω

– The Lie group G now acts via holomorphic isometries; that is the action of g ∈ G preserves h,ω
– A moment map µ : g∗ × g→ R for that action of G is now specified.
– The potential V is replaced by a holomorphic superpotential W : C → C which is a G-invariant. In
fact we define the real potential by V = g(∂W, ∂W) + |µ|2, where ∂ is the holomorphic gradient

The equations of motion are constructed by extremizing the functional S : S × F → R defined in (2). Finally
note that if F is a principal G-bundle, there are often additional terms in this functional that descend from a
g-valued connection A with curvature F = dA + A ∧ A on M. Note that G is often Spin(n). Terms of this form
include the Yang-Mills action,

SYM =
1

4g2

∫
M

Tr (F∧ ∗F) (3)

and also Chern-Simons terms2,

SCS =
k

4π

∫
M

Tr
(
A∧ dA+

2
3
A∧A∧A

)
(4)

where Tr is a G-invariant bilinear form on g. An example of how this form is constructed and used in physics
will be defined explicitly in the section on supersymmetry.

3 String Theory

To many philosophers, the main problem of physics is the question, "How can we describe the natural universe
in a quantitatively consistent manner?" Some theoretical physicists believe that String Theory provides an answer
to this question; however, the theory has much humbler roots. String Theory generally finds its roots in the 1970s
with the ambiguity over the discovery of the strong nuclear force. In 1970, the existence of smaller particles that
made up protons and neutrons in the nucleus was well-known with the discovery of the quark. However, the
mystery of why these particles "stuck" together and created coherent objects, such as a proton, was still unsolved.
Quantum Chromodynamics (QCD) was invented later in the 1970s to describe this mysterious force that assembled
quarks giving rise to hadrons.3 However until the introduction of QCD, theorists proposed alternative models for
the strong interaction, such as String Theory.

Development of the String
The model that later became String Theory was known as the dual-resonance model, proposed by Gabriele
Veneziano in 1968. In the 1960s, theories attempted to use scattering amplitudes, which correspond to the energy
of a scattered particle, to demystify the unexplainable experimental evidence for the strong force. One of the
fundamental problems of the time was the issue of how the Strong Force and the particles found during scattering
experiments were related. Veneziano’s model proposed a relationship between the incoming particles and outgoing
particles in a scattering experiment that treated the intermediate particle formed during the reaction as a simple
harmonic oscillator. By 1970, Nombu and Susskind generalized this scattering reaction to an ensemble of N

2Let us define the Chern-Simons Form, since this is often overlooked in the String Theory literature. Let
π : P → M be a principal G-bundle. Recall that the Chern-Weil Homomorphism is a map from R[g]Ad(G),
the polynomials of g with coefficients in R invariant under the Adjoint action to H•(BG,R) where BG is the
classifying space for principal G-bundles. The Chern-Simons form is a form θP ∈ ∧•P such that dθP = P(F)
where P ∈ R[g]Ad(G) and F is the Lie algebra-valued curvature form so that θP determines a real characteristic
class. Hence these terms, loosely speaking, give some information about non-trivial characteristic classes (hence
topology) of the space constructed from the minimization of either SYM, SCS

3Hadrons were particles that were once thought to be fundamental; however, once thirty or so of them were
discovered physicists began to believe that they were made up of tinier particles. This guess came to fruition with
the discovery of the quark. Thus a hadron can be defined as any particle made up of three quarks (Baryons) or
of one quark and one antiquark, the charge conjugate of a quark.
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particles and interpreted the harmonic oscillator that connected the incoming and outgoing particles as a one-
dimensional object or string. This interpretation gave a small troupe of physicists the idea that the fundamental
particle of nature was not point-like and 0-dimensional as quantum field theory implicitly assumes, but instead
a one-dimensional object whose various vibrational modes give rise to the particle-like behavior observed in
experiments. By instead starting from this assumption, various physicists were able to construct a physical
theory based on these one-dimensional objects by minimizing the area swept out over time by these objects.
Mathematically, the "area swept out" is a two-dimensional Riemann Surface Σ that is known as the worldsheet
In particular, one attempts to minimize the Nambu- Goto functional SNB : A→ R, A = {f : Σ→ RD}, which is
defined as,

SNG = −
1

2πα ′

∫√
−detg dq0dq1 Extremized via: d

dε
SNG(x+ εy)|ε=0 = 0 (5)

where g = x∗(η) is the metric on the worldsheet Σ induced by the parametrization x : Σ → RD for some D > 0
and such that g is Lorentzian, detg < 0. Note that this action is conformally-invariant since a standard result
of Lorentzian geometry shows that every two-dimensional Lorentz manifold is conformally flat; in other words
if (M,g) is a Lorentzian manifold then,

∃Ω ∈ C∞(M), ψ :M→ R1,1 such that ψ∗g = Ω2η

where η is the standard metric on R1,1. As such, any solution to (5) determines an entire conformal class
of solutions. In order to make meaningful physical computations, one needs to choose a specific conformal
representative. In particular if (σ, τ) are local coordinates on Σ, the conformal gauge is the following set of
constraints:

∂2x

∂σ2
−
∂2x

∂τ2
= η

(
∂x

∂σ
,
∂x

∂τ

)
= 0

η

(
∂x

∂σ
,
∂x

∂σ

)
+ η

(
∂x

∂τ
,
∂x

∂τ

)
= 0 η

(
∂x

∂σ
,
∂x

∂τ

)
< 0 (6)

At the time of discovery, the intuitive choice of D = 4 was not enforced since it turned out that there are
anomalous, physically-unrealistic solutions if D = 4. In particular, if D 6= 26 then upon enforcing an ersatz
canonical quantization, it is possible to construct states with negative mass. The fact that one requires a 26-
dimensional spacetime as well as the lack of fermions (e.g. electrons) made this theory quite unsatisfactory and
it was treated as a toy model until the advent of supersymmetry.

4 Supersymmetry

The advent of the concept of Supersymmetry in the 1980s allowed for the (Bosonic) 26-dimensional theory to
become a ten-dimensional theory that admits both Bosons and Fermions. Physically, Bosons are particles that
have spin (defined in the proceeding sections) in Z while Fermions are particles that have spin angular momentum
in 1

2Z − Z. The mathematical definitions will be given in the first subsection with physical intuition for why
such objects are needed in the subsequent section. Heuristically, one can define supersymmetry as an operation
that takes a boson (resp. fermion) and yields a fermion (resp. boson). Supersymmetry has been exploited in
differential geometry as a purely mathematical tool in the form of Seiberg-Witten, Donaldson-Floer-Witten and
Gromov-Witten invariants and as such there is a relatively strong mathematical definition.

4.1 Mathematics of Supersymmetry
Before describing Bosons and Fermions, one needs to consider the representation theories of SU(2) and SO(3)
which represent the fundamental difference between spin angular momentum and orbital angular momentum,
respectively.

SU(2), SO(3)

In physics, representations of Lie group and Lie algebra actions are of importance because they represent the
symmetries of a system. In quantum mechanics one is given a complex, separable, infinite-dimensional Hilbert
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Space (H, (·, ·)〉) and is interested in characterizing the transformations H → H that preserve leave the map
ψ 7→ |(ψ,ψ)|2 invariant. Note that if c ∈ S1 ↪→ C, then |(cψ, cψ)|2 = |(ψ,ψ)|2 so that we can quotient by the action
of S1 ∼= U(1). In particular, we define the Projective Hilbert Space P(H) = H/ ∼ where ∼ is the equivalence
relation ψ ∼ cψ, if c ∈ U(1). We are now in a position to formally define a symmetry:

Definition 4.1. A symmetry of a quantum system H is a bijection Λ : P(H) → P(H) such that |(Λ[ψ], Λ[ψ])|2 =
|([ψ], [ψ])|2, ∀ψ ∈ P(H)

From a mathematical perspective, one the main reasons that Quantum Mechanics is a linear theory is due to
the following theorem of Wigner:

Theorem 4.1 (Wigner). Every symmetry is induced by a unitary or antiunitary operator of P(H) and the set of
symmetries form a group denoted S(H). In particular, if G is a connected Lie group and λ : G → S(H) is a group
homomorphism, then for each g ∈ G there exists a unitary operator L(g) ∈ S(H) such that λ(g) is induced by L(g).
As such any representation G→ S(H) is a unitary representation

Before leaving the realm of purely abstract definitions, let us recall the notion of a central extension of a Lie
group:

Definition 4.2. Suppose that A is an abelian group and G is an arbitrary Lie group. One says that the Lie group
E is an extension of G by A if the following sequence is exact:

{e}→ A
ι→ E

π→ G→ {e}

where ι : A→ E, π : E→ G are the natural inclusion and projection, respectively. E is known as a central extension
if ι(A) ⊂ Z(E), the center of E

In particular, if G is a connected Lie group and p : ΛG → G is its universal cover, then kerp := p−1(eG) has
the discrete topology and is contained in the center of ΛG. This allows us to regard ΛG as a central extension of G
by kerp.

We can now speak of SU(2), SO(3) directly. Recall that SU(2) is treated as a real Lie group of Hermitian
matrices of determinant 1, whereas SO(3) is defined as the connected component of the identity of the set of
matrices O(3) ⊂ GL(3,R) that preserve the quadratic form x21 + x

2
2 + x

2
3. Moreover, recall that Lie(SU(2)) := su(2)

is the set of trace 0, Hermitian 2× 2 matrices, which can always be put in the form,

H =

(
x1 x2 + ix3

x2 − ix3 −x1

)
xi ∈ R

In particular, this means that detH = −x21 − x
2
2 − x

2
3. Note that under the action of Ad(G), we have detgHg−1 =

detH, ∀g ∈ SU(2) so that we can treat any element of SU(2) as an element of O(3). Note that under this
(surjective) map f : SU(2) → O(3), Z2 ∼= {±1} ∈ SU(2) are sent to the same element so that ker f ∼= Z2. Moreover
as SU(2) is connected, f(SU(2)) = SO(3). From the previous discussion, this means that SU(2) is the central
extension of SO(3) by Z2 and as {e} is the only proper subgroup of Z2, SU(2) is the universal cover of SO(3).

Finally let’s discuss the implications that this has on representation theory. A known fact (for example, see
[27]) is that for a vector space V , any irreducible projective unitary representation SO(3) → PGL(V) is finite-
dimensional and arises from any ordinary irreducible unitary representation SU(2) → GL(V). Now note that a
general representation of SU(2) is parametrized by j ∈ 1

2Z and is of dimension 2j+1. Subsequently, representations
of SO(3) are those for which j ∈ Z. The first fact can be seen from the action of SU(2) on the vector space of
homogeneous polynomials of degree 2j in z1, z2 ∈ C2, which is vector space of dimension 2j+1. On the other hand,
if the dimension of the representation is 2j+ 1, then the spin representation sends −1 ∈ SU(2) to (−1)2j ∈ SO(3),
so j must be an integer. The number j is the weight of the representation and physically represents the spin of
the particle.

Bosons and Fermions

The main physical premise behind separating particles into those of integer and half-integer spin arises when
one has a system where the constituents are effectively all identical particles. This is a quantum mechanical
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phenomena and mathematically we require some tenets of tensor algebra to describe the two systems. From
a physical perspective, the two main examples of a Boson and a Fermion are the photon γ and electron e−,
respectively. We will use these two examples as building blocks for the general definition. Now suppose that we
have N-particles of interest with associated Hilbert Spaces of states {Hi}Ni=1. Since we are attempting to look at
the simultaneous state of the system, we need to consider the tensor product of these spaces, H := H1⊗· · ·⊗HN so
that if the ith particle in state ψi then the state of the whole N-particle system is ψ1⊗· · ·⊗ψN. However in order
to take into account the fact that the particles are indistinguishable, we have to consider different permutations
equivalent, depending on whether a particle is has half-integer spin (Fermion) or has integer spin (Boson).

For the case of N electrons, the antisymmetric case holds — that is, the ordered state (ψ1, ψ2, · · · , ψn) ∈⊕N
i=1Hi should be the negative of (ψ2, ψ1, · · · , ψn) ∈

⊕N
i=1Hi. Hence we define a Fermion to be an ele-

ment of the exterior algebra ∧N(He−) where He− is the single electron Hilbert space. When the system has
N photons, experiments and physical rationales dictate that all permutations are equal and the ordered state
(ψ1, ψ2, · · · , ψn) ∈

⊕N
i=1Hi is invariant under the action of the symmetric group SN on the particle labels. Hence

the space of Bosons is Sym(Hγ), the space of symmetric tensors in H⊗Nγ where Hγ is the single photon Hilbert
space.

Let’s mention a few properties of these spaces. If Pe− : H⊗N
ei
→ ∧N(He−) is an orthogonal projections and

ψ, ζ, α ∈ He− , then we see that

Pe
−

(ψ⊗ ζ · · · ⊗ψ⊗ α) =

{
0 if N ≥ 2
ψ if N = 1

This is the overly formal statement of the Pauli Exclusion Principle, which states that two Fermions in an N
particle ensemble cannot occupy the same state simultaneously.

Next, let’s construct a system and its associated Hilbert space H that has a combination of Bosons and
Fermions. If H0 is the Hilbert Space of states for one Boson and H1 is the Hilbert space of states for one
Fermion, then we simply define H := H0 ⊕H1. The N-particle space HN is then:

HN =
⊕

1≤d≤N

Symd(H0)⊗∧N−d(H1) (7)

and if the particle number is not fixed then we simply define the total space to be ΛH = Sym(H0)⊗∧(H1). Given
this formulation of a many particle system, one might inquire about the symmetries of ΛH or HN. However,
the physical motivation for such an inquiry only occurred in the 1970s when physicists Zumino and Wess
considered these spaces as graded vector spaces and introduced a notation of infinitesimal symmetry (e.g.
Action of a something analogous to a Lie Algebra) on such vector spaces. If a generator of such an infinitesimal
symmetry were g then out of purely mathematical convenience, Zumino and Wess defined the action of g in
such a way that g · Sym•(H0) ⊂ ∧•(H1) and g · ∧•(H1) ⊂ Sym•(H0). Any such action became known as a
Supersymmetry and due to the works of Pierre Deligne and F. A. Berezin solid definitions of the objects
involved in describing this symmetry were formulated. One of the unique features of supersymmetry is that the
one-parameter unitary semigroups t → S(H) associated to Stone-von Neumann theorem became representations
∧•Rn → S(H)0 ⊗ S(H)1, θi 7→ eθi(ψ0 ⊗ ψ1). In order to deal with this peculiarity, one needs to define the
notations of super Lie algebras and supermanifolds. We will go through the most basic definitions and state
some of the theorems — however, this is a rather rich area of mathematics and one can find further information
in [52, 44, 16] .

Before jumping into the definitions, let’s consider what the mathematical intuition is behind prefixing a large
number of mathematical objects with the word "super." One of the great achievements of Algebraic Geometry
in the 1950s and 1960s was Alexander Grothendieck’s introduction of the spectrum of a commutative ring.
Note that the intuition behind this construction is that one would like to generalize the concept of the spectrum
of an operator algebra to a specific structure or function sheaf over an algebraic variety in such a way that
ideals of the spectrum correspond to open sets in the Zariski Topology. This allows for one to take an arbitrary
commutative ring and associate to it a geometric object, which upon being topologized with the Zariski Topology
can be interpreted as a locally-ringed space. This means that to each set we can associate a general ring to
each open set that generalizes the notion of the ring of continuous real-valued functions over an open set in a
topological space. One of the important examples of something found in this generalization that is not found in
the standard structure sheaves such as the sheaf of continuous functions or the sheaf of holomorphic functions
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over a space is that the local ring associated to an open set can have a nilpotent element. From a functional
analytic perspective, nilpotent elements can be thought of as an analogue of local (in the Zariski sense) nilpotent
operators A : V → V,An = 0 over a vector space V . The only difference is that instead of algebraically dealing with
the module of polynomials in A,R[A], the local ring R(U) associated to an open set U is the set of maps U→ A,
where A is some associative algebra. This seemingly artificial construction of taking the standard structure sheaf
of continuous functions and turning it into a structure sheaf of possibly non-commutative functions U→ A ends
up playing an important role in physics. It is in this sense, the objects associated with supersymmetry generalize
this construction by instead associating to each open set of a topological space, a ring of functions U → A that
need not be commutative. By extending the Hilbert-Gel’fand Principle which states that the geometric structure4

of a space X can be recovered from the commutative algebra of functions on X, Grothendieck setup the framework
for the close relationship between geometry and physics without realizing it.

Let’s now go through some of the definitions and briefly discuss how linear algebra and the theory of smooth
manifolds changes when one switches perspectives along the lines of the previous paragraph. Firstly, any object
dealing with supersymmetry will have necessarily involve a grading that preserves the empirical fact (due to the
requirements of the Dirac Equation) that Fermions need to be represented by elements of a Clifford Algebra so
that if ei, ej are Fermions then {ei, ej}. As such a super vector space is a Z2-graded vector space V = V0 ⊕ V1
where elements of V0 are said to be even and elements of V1 are known as odd. We define a map p : V → Z2
called the parity map such that p(a) = 0 if a is even and p(a) = 1 if a is odd. Note that in all other constructions,
the parity map takes the same definition even though the grading may not be explicitly given. In the case of
(7), the Bosons are represented by even elements while the Fermions are represented by odd elements. Finally,
let’s go through the established notation of the literature. If K is a field and V = Kp+q with the standard basis
{ei}

p+q
i=1 and define ei to be even if i ≤ p and odd if i > p, then V is a super vector space with,

V0 =

{
p∑
i=1

kiei : k
i ∈ K

}
V1 =


p+q∑
i=p+1

kiei : k
i ∈ K


This super vector space is denoted Kp|q and will serve as the local model for supermanifolds.

Since Fermions are considered elements of a Clifford Algebra, we will need to speak of superalgebras:

Definition 4.3. A superalgebra is an a super vector space A which is also an associative algebra with (even) unit
1lA such that the parity map A⊗ A → A is a morphism, p(ab) = p(a) + p(b), ∀a, b ∈ A. A superalgebra is said to
be supercommutative if,

ab = (−1)p(a)p(b)ba a, b ∈ A (8)

The most common example of a superalgebra A is A = End(V) for a super vector space V . Note that we define
End(V) as the set of all linear maps and one says that the even maps preserve the grading while the odd maps
reverse the grading. For physics considerations, this is the most common example since quantum mechanics says
that one looks at expectation values of operators in End(V). In the beginning of this section, it was mentioned
that supersymmetry manifests itself as an "infinitesimal symmetry" similar to the action of a Lie Algebra. In
order to speak of such symmetries we need to define a Super Lie Algebra:

Definition 4.4. A Super Lie Algebra is a super vector space g with a bracket [, ] : g⊗ g→ g such that:

a) [a, b] = −(−1)p(a)p(b)[b, a]
b) [a, [b, c]] + (−1)p(a)p(b)+p(a)p(c) [b, [c, a]] + (−1)p(a)p(c)+p(b)p(c) [c, [a, b]] = 0

Note that the decomposition g = g0 ⊕ g1 allows one to regard g1 as a left g0-module and g0 as a right g1-module.

The last piece of the definition represents the mathematical essence of supersymmetry: We want to consider
the G-sets of actions of gi on gj, i 6= j. Furthermore the bracket preserves the physical intuition that for Bosons
(i.e. even degree) we the bracket is a commutator whereas for Fermions the bracket is an anticommutator. Note

4Examples of this are:
{Compact Hausdorff Spaces} ∼= {Commutative Banach ∗ -algebras},
{Affine C-Algebraic varieties} ∼= {Finitely-generated algebras over Cwith no nonzero nilpotents}
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that when we speak about generalized brackets in part III of this thesis, we will be brackets that generalize
the bracket of a Super Lie Algebra, so all of the results that hold here will automatically hold in the case of
generalized complex geometry. Note that if we have a super algebra A = End(V) for some super vector space
V , we can define a bracket [a, b] := ab − (−1)p(a)p(b)ba to turn End(V) into a super Lie Algebra that we will
denote gl(V). If V = Rp|q, one finds (in both the physics and mathematics literature) this Lie Algebra denoted
gl(p|q). Moreover note that the adjoint action AdXg→ g,AdX(Y) = [X, Y] satisfies the same naturality property as
in the case of a standard Lie Algebra. Recall that in (3) there was an operator Tr which was vaguely defined as
a specific G-invariant bilinear form on the Lie algebra of g. We are now in a position to define Tr:

Definition 4.5. Let V = V0 ⊕ V1 be a finite-dimensional super vector space and let X ∈ gl(V) be represented as(
X00 X01
X10 X11

)
(9)

where Xij : Vj → Vi is a linear map such that for all v ∈ Vj, Xijv is the projection of Xv onto Vi. The supertrace
of X is defined by:

Tr(X) = tr(X00) − tr(X11) (10)

Due to physical considerations, all of the Lie super algebras g = g considered in this thesis will satisfy the
following conditions:

1. g is a real Lie super algebra.

2. g1 is a spinorial g0 −module. This means that g1 is a quadratic module (i.e. it has a C-quadratic form)
such that End(g0) ∼= C`(g1), the Clifford Algebra5 of g1. This says that the space of Bosons acts on the set
of Fermions in a manner that preserves the spinorial nature of Fermions.

3. The spacetime momenta are described by commutators [A,B], A, B ∈ g1. That is, the translations of object
in g0 (Bosons) are generated by commutators of objects in g1 (Fermions).

Now let’s consider the most important example, the Super Poincaré Algebra which generalizes Poincaré In-
variance to the case of super vector spaces.

Super Poincaré Algebra

Recall that the Poincaré group6 P is the set of inhomogeneous Lorentz Transformations, P = L o R1,3 where
L is the group of isometries of the Minkowski metric, L ∼= SO(1, 3)0. It’s Lie algebra is known as the Poincaré
algebra p. Physically, the action of p on R1,3 represents the set of infinitesimal isometries of R1,3. To make this
more precise, we can think of generators of P as generators of rotations (physically, angular momentum) and
generators of translations (physically, momentum). In order to construct the algebra, it make sense to consider L
and R1,3 separately. Since SL(2,C) is the universal cover of SO(1, 3), we can consider SO(1, 3) as a subset of the
diffeomorphisms of R4 so that so(1, 3) can be thought of as set of vector fields. There are six generators of this
group, labelled Mµν, µ, ν ∈ {0, 1, 2}, which correspond to two null rotations (i.e. rotations of elements with null
norm), one boost (i.e. change of inertial frame in one direction) and three rotations around each of the spatial
axes. These have non-trivial commutation relations that are preserved in the Poincaré algebra. On the other
hand, the Lie algebra of R1,3 is generated by four vector fields Pη, η ∈ {0, 1, 2, 3} corresponding to a translation in
each direction. Since translations commute, we only need to consider the commutation relation of a generator
of SO(1, 3) and a Pη. By respecting the semi-direct product, one can define p as the algebra generated by the set
of {Mµν, Pη} under the commutation relations,

[Pη, Pζ] = 0 (11)
− i[Mµν, Pη] = ηµηPν − ηνηPµ (12)
− i[Mµν,Mρσ] = ηνρMνσ − ηµσMνρ − ηνρMµσ + ηνσMµρ (13)

5Clifford Algebras are defined in part III
6For reference, the product operation for this group is (L, x)(L ′, x ′) = (x+ Lx ′, LL ′)
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Note that the i comes from the fact that in physics one determines the Lie algebra via representations of the
universal cover SL(2,C).

To pass to the Super Poincaré Algebra p = p0 ⊕ p1, we set p0 ∼= p, so that the aforementioned Poincaré
invariance is preserved for Bosons. This decomposition implies that there exists an action of the Poincaré Group
P on p1. The main constraint used to determine p is that we require p to be the minimal extension of p0 in the
sense that there does not exist a sub super Lie Algebra p ′ such that p0 ⊂ p ′ ⊂ Λp. An argument involving Lie’s
Theorem on solvable actions in [52] forces p1 to be irreducible, in the sense that the Clifford action of p0 on p1
is irreducible.

Now let’s introduce physics notation for Group Representations. In the case at hand, we want to find the
induced representations of sl(2,C) (as a real Lie algebra) on C2n (the space of Dirac spinors). Recall that a
representation of a Lie Algebra is a Lie algebra homomorphism ρ : g → gl(V) for a n-dimensional vector space
V . In the case of a Lie group G, since the Lie algebra is isomorphic to the tangent space at the identity, the
pushforward of a group representation ρ : G → GL(V), ρ∗ is known as the induced Lie algebra representation.
The representations of this group are tensor products of the holomorphic representations of dimension r with the
complex conjugate of a representation of dimension k. Physicists denote one such representation r⊗ k. Since P
acts on R4 ∼= C2 and the Dirac Spinors7 lie in C2, we want to consider actions on C2 ⊕ C2. In particular, the
representation of 2⊕ 2, presented as an action of g ∈ SL(2,C) on C2 ⊕ C2 of the form:

(u, v) 7→ (g · u, g · u)

where · is standard matrix multiplication. We can think of 2 ⊕ 2 as a free spinorial module since C`(2) ∼=
C`(1, 3) ∼=M2(R)⊗M2(C), the 2×2 complex matrices and as End(2) =M2(R)⊗M2(C), where an endomorphism
acts by conjugation to preserve determinant. If we define the map σ : (u, v) 7→ (v, u), then physicists Gol’fand
and Likhtman showed that p1 ∼= (2⊕ 2)σ, e.g. the conjugation of the representation of 2⊕ 2 by σ. They explicitly
defined the bracket on p as an extension of the bracket on p by the a map [a, b] = L(a ⊗ b), a, b ∈ p1, where
L : p1 ⊗ p1 → R1,3 ⊗ C ⊂ p ⊗ C is a linear map induced by the inclusion p0 ↪→ p (See [52], Sec. 2, Page 13-15
for details). It turns out that this superalgebra is the unique super Lie algebra g such that g1 is spinorial,
[, ]|g1⊗g1

6= 0 and g is minimal.
Given this extremely brief survey of the representation theoretic arguments for the existence and uniqueness of

the super Poincaré algebra, let’s consider it’s expression in coordinate form. This will be useful in understanding
why the moduli space for supersymmetric gauge theories is a complex manifold. As before, let Pµ,Mµν be the
generators of p = p0 and let Qα be a basis for 2⊕ 2 (recall that it is a free, spinorial module). Then the defining
relations of the super Poincaré algebra are:

[Pµ, Qα] = 0 [Mµν, Qα] = −iσµναβQβ {Qα, Qβ} = −2(γµC−1)αβPµ

where:

• γµ are the Dirac Matrices, which are representations of C`(2) ∼= C`(1, 3) on C2n

• σµν = 1
4 [γ

µ, γν]

• C := iγ2γ0 is the Charge Conjugation matrix. Physically, C it represents an operator that sends the charge
q of a particle to −q. It negates the flavor, isospin and baryon quantum numbers.8

• {·, ·} is the anticommutator (i.e. the commutator on the odd elements of a superalgebra)

Before getting to the physics of supersymmetry and concrete examples of the aforementioned structures, let’s
briefly define what a supermanifold is since these will serve as models of space-time. As mentioned before,
a mathematical description of supermanifolds requires thinking about smooth manifolds from the perspective of
algebraic geometry. Suppose that M is a topological manifold; that is, M is a topological space with an open
cover {Uα} locally homeomorphic to Rn and M is Hausdorff and Second-Countable. Instead of thinking of a
smooth structure on M as a set of C∞ transition functions, we can think of it as a space such that for each open

7See Part III for a definition
8Quantum numbers are physically relevant quantities that uniquely characterize a state in quantum system.

As in the case of spin, quantum numbers are mathematically the weights of certain Lie algebra representations
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set Uα with homeomorphism hα : Uα → U ⊂ Rn, hα induces an isomorphism between C∞(U) and C∞(Uα). We
need to be a bit more careful and add compatibility conditions so that hα also induces an isomorphism between
C∞(V) and C∞(hα(V)),∀V ⊂ U. While this definition isn’t as geometrically appealing as the usual definition of
a smooth structure, it provides an easy way to make the notion of a smooth structure algebraic via the notion of
a locally ringed space, which is defined below.

Definition 4.6. Let X be a topological space. The pair (X,OX) is known as a locally ringed space

4.2 Physics of Supersymmetry
In the mid-1970s, before QCD was experimentally validated, String Theories discovered that the worldsheet
of a string required every bosonic (resp. fermionic) particle to have an associated fermionic (resp. bosonic)
particle. These partner particles came to be known as superparticles. For example, the fermionic quark q has a
superparticle partner (often shortened to "superpartner") known as the squark. Supersymmetries are introduced as
a way to relate the internal symmetries of a particle, such as spin, isospin and baryon number, to the symmetries
of spacetime (i.e. diffeomorphism group of a manifold). While the notion of additional internal symmetries
seems physically unmotivated, it turns out that there are stringent restrictions on the symmetry groups that
relate and preserve both internal and spacetime symmetries. These restrictions are encapsulated in the Coleman-
Mandula theorem, which we will discuss in a simplified situation below. Upon discovering these restrictions
and realizing the incompatibility of Quantum Field Theory, which focuses with internal symmetries, and General
Relativity, which focuses on spacetime symmetries, Theoretical Physicists began began to construct symmetry
groups that obeyed the Coleman-Mandula theorem and contained both types of symmetries. The "groups" that
were constructed turned out to be actually be super Lie algebras. The physicists who played a major role in early
construction of these algebras in the 1970s include:

• Jean-Loup Gervais

• Yuri Gol’fand

• Evgenii P. Likhtman

• Bunji Sakita

• Julius Wess

• Bruno Zumino

From a mathematician’s perspective, it is easy to dismiss such symmetry considerations and physical assumptions
as mathematically negligible or trivial. However the connection to modern mathematics hidden within the unifi-
cation of internal and spacetime symmetries is precisely the same global-local interface within the development
of manifolds, sheaves and schemes: one wants to find a way to unite local properties (internal symmetries) with
global properties (spacetime symmetries) in a manner that preserves a mathematical structure, which in physics
can be anything from a Spin Bundle to Symplectic Structure.

Let’s explore the Coleman-Mandula theorem by considering a simplistic physical system. We will only consider
the most simple scattering reactions where we have two particles a, b which are initially in a state a⊕b ∈ Ha⊕Hb,
the Hilbert Space of possible simultaneous states of a and b. These particles will then come together, interact and
form various products and then separate. The statement that Quantum Mechanics is a linear theory means that ∃
(densely-defined) operator S ∈ End(Ha⊕Hb) such that the final state after the reaction is (A⊕B)(a⊕b). If Ha,Hb
are finite-dimensional of dimensions n and m, respectively, we define the Scattering Matrix or S-matrix to be
the n×m real matrix ΘS defined as:

ΘSij :=
(
i⊕ j, S(a⊗ b)

)
Ha⊕Hb

(14)

where (·, ·)Ha⊕Hb is the inner product induced by the inner product on the individual Hilbert Spaces. Each term(
i⊕ j, (A⊕ B)(a⊕ b)

)
Ha⊕Hb

represents a scattering amplitude which is interpreted as the probability that one
finds state i ⊕ j in an experiment, given an initial state a ⊕ b. In our case, we will assume that Ha = Hb
so that S is an operator and ΘS is an n × n matrix (in the finite-dimensional case). If the Hilbert Space is not
finite-dimensional, we can construct ΘSij in an analogous manner using spectral measures.
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Since the S-matrix contains most of the statistical data that one would need to evaluate a theory at an
accelerator, it can serve as a simplistic model of a Quantum Field Theory. Coleman and Mandula ([12]) define
a symmetry transformation of the S-matrix to be a unitary operator U on the many particle Hilbert Space,
Htot =

⊕
i∈N
H(n), where the n particle states H(n) are defined to be subspaces of H⊗n, where H is the Hilbert

Space of single particle states. This operator needs to satisfy three conditions:

1. U maps one-particle states to one-particle states, i.e. U(H) ⊂ H

2. U acts on many-particle states as if they were tensor products of one-particle states. Mathematically this is
a naturalness condition that says that U extends to the Htot while respecting the morphisms of the category
of Hilbert Spaces.

3. [S,U] = 0. This implies that ΘS doesn’t change under the action of U

If a set of operators satisfies these conditions and is a group, this is known as the symmetry group GS of
S and S is Lorentz-invariant if GS is isomorphic to the Poincaré group or its universal cover SL(2,C) o R1,3.
In the initial paper ([12]), whether G was a Lie Group and/or whether G was finite-dimensional was unclear.
However, some of the techniques used in the proof force G to be a Lie group. Since infinite-dimensional Lie
groups are difficult to deal with mathematically and as most Lie groups in physics are finite-dimensional, we
will assume without the loss of generality that G is finite-dimensional. The condition of Lorentz-invariance is
forcing the S-matrix to have the global, spacetime symmetries of Special Relativity. Hence, we need to define
what the internal symmetries. One of the easiest compatibility conditions that we can enforce is commutativity
of an internal symmetry and a spacetime symmetry so that both leave ΘS invariant. This is precisely the definition
of Coleman and Mandula. Note that this is an important physical fact since it means that the experimental data
collected, which can be directly compared to the S-matrix, is not affected by internal and spacetime symmetries,
as desired. The Coleman-Mandula theorem places restrictions on the types of symmetry groups that admit both
internal symmetries and Poincaré invariance. The statement of the theorem is:

Theorem 4.2. (Coleman-Mandula) Let G be a connected symmetry group of the S matrix such that the following
hold:

1. (Test Functions):
The set of one-particle states of the system H(1) is isomorphic to the Schwartz Space S of test functions,
where

S =
{
f ∈ L2(Rn) | ‖xnf(m)‖Wm,2(Rn),∀n,m

}
where Dβ is the standard notation for a multi-index differential operator on Rn

2. (Lorentz Invariance):
G contains a subgroup isomorphic to either the Poincaré group P or it’s universal cover ΛP.

3. (Integral Kernel Assumption):
The generators of G can be considered integral operators that act on the set of momentum eigenstates.9 As
integral operators with kernel K, we find that K is a tempered distribution. More precisely, ∃ a neighborhood
N of the identity e in G such that every element of N lies on a one-parameter subgroup g : R→ G of G. Given
this one-parameter group, the distributional assumption states that the functional,

1
i

d

dt
(x, g(t)y) = (x,Ay)

is continuous in the Schwartz topology for all x, y ∈ H(1) and linear in y, anti-linear in x

4. (Particle Finiteness)
Physical Statement: "All particle types correspond to positive energy representations and for a finite mass M

9The state p ∈ Htot is a momentum eigenstate if it an eigenstate of a representation of Pµ. That is, if
ρ : P → GL(Htot) is a representation of the Poincaré group on Htot, then ρ(Pµ)p = λp for some λ ∈ C.
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there are only a finite number of particle types with mass less than M."
Mathematical Statement: Any element h ∈ Htot transforms only under positive weight representations of G
and that for each weight w, there are only finitely many orbits of the G-action that correspond to representa-
tions with weight w ′ ≤ w.

5. (Weak elastic analyticity)
Physical Statement: "Elastic-scattering amplitudes are analytic functions of center-of-mass energy s and
invariant momentum transfer t in some neighborhood of the physical region except at normal thresholds."
Mathematical Statement: The variables s, t are known as Mandelstam Variables and correspond to quadratic
functions of the incoming momenta p1, p2 and outgoing momenta p3, p4 in a scattering reaction. This conditions
says that the entries of the S-matrix are real analytic functions of s, t. Note one of the early attempts at
constructing a String Theory, the theory of Regge’s trajectories and pomerons, defined s, t to be complex
functions. This theorem still holds in that situation, except that we require the S-matrix to have holomorphic
entries.

6. (Occurrence of scattering)
If p, p ′ ∈ Htot are momentum eigenstates with Pµp = λpp, Pµp

′ = λp ′p
′ and p⊗ p ′ is the two-particle state

for this system then T(p⊗ p ′) 6= 0, where T is defined as S = 1lHtot − (2π)4δ(λp − λp ′)T where δ is the Dirac
distribution.

Then G = GI × P or G = GI ×ΘP where GI is the group of internal symmetries.

The hypotheses of this theorem seem specific and appear to apply to a very specific physical system. However,
many particle reactions obey the physical conditions and the mathematical conditions are mild given that we are
talking about the symmetries associated to a single operator. This theorem effectively says that under reasonable
physical and mathematical assumptions, any combination of spacetime symmetries and internal symmetries must
be a trivial product of groups. In the construction of the Super Poincaré Algebra we see this immediately,
since the algebra is isomorphic to p⊕m, where p is the Poincaré algebra. Many of the most prominent, classically
anomalous internal symmetries are those related to intrinsic spin. As such the assumption that any Lie super
algebra in physics g = g0 ⊕ g1 is such that C`(g1) ∼= End(g0) is natural, since it "builds in" the necessary
mathematical machinery10 of Clifford Algebras (and Spin bundles)

Given these facts, one might wonder if supersymmetry "supercedes" all of the previous use of Lie groups in
physics to represent symmetries. There is however an important caveat to this — supersymmetry has not been
found in nature. It serves as a wonderful mathematical tool and a decent physical tool in its ability to link local
and global pieces of information. The mathematical use of supersymmetry is easy to grasp when one considers
the large in-roads that have been made in the classification of 4-manifolds, mirror symmetry and generalized
complex geometry due to supersymmetric considerations. However, the physical implications are hard to decipher
without an explicit example.

10An interesting fact to note is that we’ve now run into a topological condition enforced by supersymmetry
on spacetime. In order for one to have global supersymmetry, one needs to be able to consider the adjoint
g-bundle for super Lie Algebras g that act on supermanifolds. The isomorphism C`(g1) ∼= End(g0) implies that
such a bundle has a principal subbundle that is Spin. Recall that a manifold M only admits a spin bundle iff the
second Stiefel-Whitney class of M, w2(M) vanishes.
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Part II

AdS/CFT and Analysis
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5 Introduction

The Anti-de-Sitter Space/Conformal Field Theory correspondence is a derived result of String Theory that posits a
geometric relationship between Gauge Theories and the space-times of General Relativity [40, 2]. Physically, the
AdS/CFT correspondence states that if one has the n-dimensional Anti de Sitter Space, M = AdSn as a model
of spacetime, then the partition function associated to a given conformal structure on M is determined by the
vacuum expectation value of a linear functional J on Sym(2, ∂M), the set of symmetric 2-tensors on ∂M. On the
other hand, the correspondence conjectures a mathematical relationship between an asymptotically hyperbolic,
Einstein metric g on a n+ 1-dimensional manifold with boundary M and the restriction to ∂M of the nth term
in the Fefferman-Graham expansion of geodesically equivalent Einstein metric. In physics, such a relationship
arose from the discovery that certain 5-dimensional Riemannian Manifolds X5 give rise to a string background
AdS5×X5 such that the choice of metric g on X5 could determine the central charge of a Conformal Field Theory
on ∂(AdS5).

The goal of this part is to describe the AdS/CFT correspondence from a mathematical perspective as a
problem in analysis. Unlike many other areas of String Theory and String Theory-related research, the AdS/CFT
correspondence provides a direct connection to geometric analysis since the conjecture relates the partition
function of a field theory with a Boltzmann-like sum of Einstein-Hilbert actions. In particular, the AdS/CFT
correspondence can be thought of as a specific example of the Yamabe problem on Asymptotically Hyperbolic
Einstein Manifolds for which String Theoretic considerations as well as the Einstein Field Equations provide
enough data to guarantee existence and uniqueness up to local isometry. After briefly describing this relation to
analysis, we will look at the recently discovered Yp,q manifolds that disprove a conjecture of Tian and Cheeger
that states that no irregular Sasaki-Einstein manifolds exist. This solution was motivated by M-theory solutions
related to AdS/CFT and serves as an excellent example of the recent interplay between mathematics and physics.

This paper is structured so that both the physical and mathematical problems at hand are explicitly described. §2
will provide a brief introduction to the breadth of mathematics required to elucidate the AdS/CFT correspondence
while providing the analytical definition of what exactly the correspondence is claiming. §3 will provide a review
of the physics involved and the motivations for studying the manifolds Yp,q. §4 will provide a brief description of
Sasaki-Einstein manifolds as well as the explicit metrics involved. §5 will conclude this paper with a description
of the problem at hand.

6 Formal statement of the AdS/CFT correspondence

6.1 Formulating a Conformal Field Theory
While many mathematicians tend to look at String Theory as most similar to Algebraic Geometry, the AdS/CFT
correspondence provides both an analytic and differential geometric point-of-view of String Theory and Conformal
Field Theories. Before arriving at the more analytic description of the correspondence, let’s consider the bare
necessities for a mathematical formulation of a Conformal Field Theory. Let M be an n-dimensional Manifold
that will serve as our Configuration Space of possible physical states. In order to describe a Conformal Field
Theory, one needs a linear functional11 J : TM ⊗ T ∗M → R, called an action, that is (locally) invariant under
the group of conformal transformations of Rn,Conf(Rn). In order to determine quantities of interest, one would
ideally like to compute how the action (which contains all the physics) describes the time-evolution of a particle
over a specific path γ : [0, 1] → M. However, this implies that we are integrating over the set of all C∞ paths
γ. This set is necessarily an infinite-dimensional space, since for each chart ϕα : Uα ⊂ M → Rn, the set
of all paths contained in Uα is C∞([0, 1],Rn). It is a standard result of Real Analysis that there exists no
translational-invariant, infinite-dimensional measure on C∞([0, 1],Rn) and as such a "sum over all paths" is not
mathematically well-defined. A crucial symmetry in physics in Poincaré Symmetry, which is invariance of J under
the action of the n-dimensional Poincaré Group SO(n)oRn. Intuitively, this invariance says that the energetics
of a physical system, as predicted by the action J, should not change under a change of origin (translation) or a
rotation. As such it is physically necessary that the action J be translational-invariant, so a precise formulation
of the "expectation of physical event A with respect to the constraints contained in J" is currently unknown.
However, physicists have come up with clever ways to approximate such "non-existent" expectations.

11Notation: TM is the tensor algebra of TM amd T ∗M is the tensor algebra of T∗M
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In the physics literature, the expectation value of the functional J is typically presented in the form of a
Feynman Path Integral that sums over the restriction to ∂M of "all Einstein metrics" on M. While this initially
seems to be an ill-defined object, G. Segal and M. Kontsevich have proposed a mathematical definition12 of the
expectation with respect to a Gaussian measure on Teich(M), the Teichmüller Space of M [46]. From an analytic
perspective this should be well-defined, since the Teich(M) is in general a Banach Space. This paper will not be
concerned with the ambiguity in the expectation value since the main goal of this thesis is analytic in nature.

6.2 Analytic Definition of the correspondence
We will assume that any manifold M defined is of class C∞. Moreover, we will restrict ourselves to the category
of Einstein Manifolds (M,gE), which have Ric(u, v) = κgE, u, v ∈ TM, κ ∈ R. Let us first define what exactly a
Conformally Compact metric is [7]:

Definition 6.1. Suppose that we have an n + 1 dimensional Riemannian Manifold with non-empty boundary,
(M,g). Let M be the interior of M and let ∂M be the boundary of M. A complete Riemannian metric g on M is
conformally compact if there exists a function ρ ∈ Ω0(M) such that g = ρ2g, ρ−1(0) = ∂M and dρ 6= 0 on ∂M.
Such a function ρ is called a defining function13 for the pair (M,M)

Define γ := g|∂M which is the boundary metric on M and let M,M∂ be the moduli spaces of metrics and
boundary metrics on conformally compact, n + 1 dimensional Einstein manifolds with non-empty boundary,
respectively. The choice of γ is in general not unique because there can be many defining metrics for a given M.
Instead, we will work with boundary metrics γ defined up to conformal transformation; that is, we consider the
equivalence class [γ] under the relation,

γ ′, γ ∈M∂, γ
′ ∼ γ⇐⇒∃f :M→ R, Im(f) ⊂ (0,∞), γ ′ = fγ

Note that since we are considering boundary metrics up to conformal transformation we are indeed only inter-
ested in M∂ := Teich(M)/MCG(M) as opposed to Teich(M), since diffeomorphic manifolds will have the same
conformal structure. Moreover, note that the physical interpretation of the boundary metric [γ] is embodied in
Penrose’s notion of Conformal Infinity. The idea is that the causal structure of spacetime (i.e. whether a geodesic
is timelike, null or spacelike) is preserved under conformal transformations so that singularities (such as Black
Holes) can be more easily analyzed.

In order to simply the mathematical content of the AdS/CFT correspondence, assume that we are in a regime
that satisfies the vacuum Einstein equations, Gµν = 0, where Gµν is the Einstein Tensor. We define the
Einstein-Hilbert action, SEH :M→ R by

SEH(g) :=

∫
M

KdVg

where K is a Gaussian Curvature of (M,g) and dVg is the volume form associated to g. In coordinates,
this reduces to the more recognizable action, SEH =

∫
M
dn+1x

√
gR, where R is the Ricci Scalar Curvature.

Heuristically, one can say that the AdS/CFT correspondence takes boundary data (∂M, [γ]) and derives a partition
function for (M,g). Finally let M(∂M,[γ]) :=

{
g ∈M|∃ρ ∈ Ω0(M) 3 g = ρ2g, γ = g|∂M

}
so that given these

definitions, the AdS/CFT correspondence can be summarized by the following equation:

ZCFT (∂M, [γ]) =
∑

g∈M(∂M,[γ])

e−SEH(g) (15)

12Segal and Kontsevich formulate two-dimensional Conformal Field Theories in terms of Cobordism Classes
of compact, connected 2-manifolds that resemble the worldsheets of String Theory. This functorial definition
constructs Conformal Field Theory in terms of a Generalized Cohomology Theory, with two compact, connected
Riemann Surfaces M,N deemed equivalent iff M is cobordant to N. I have a bit of trouble connecting this
description with the analytic aspects of Field Theories, so I’ve chosen to ignore it for the most part.

13Note that we assuming that ρ is of class C∞. This definition has been expanded in the following way: A
metric g is said to be Lk,p or Cm,α conformally compact if there exists a defining function such that g has an
Lk,p or Cm,α extension to M, where Lk,p is the (k, p)−Sobolev Space and Cm,α is the (m,α)−Hölder space. See
[3] for details
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where ZCFT is the partition function associated to a conformal field theory associated with the conformal structure
[γ] on ∂M. Note that the principal concept behind the sum on the right hand side is that we are summing over
all Conformally Compact Einstein Manifolds (M,g) given the boundary data (∂M, [γ]). However, it is clear
that (15) doesn’t provide any intuition as to the analytic aspects of the AdS/CFT conjecture. This is where the
Fefferman-Graham expansion and the asymptotic hyperbolicity of the metric come into play. Recall that a metric
g is hyperbolic if it has constant, negative sectional curvature. We can now define what an asymptotically
hyperbolic metric is:

Definition 6.2. Again suppose that we have an n+ 1 dimensional Riemannian Manifold with non-empty boundary,
(M,g). LetM be the interior ofM and let ∂M be the boundary ofM. We say that g is asymptotically hyperbolic
if g|∂M is hyperbolic.

Now there are some interesting properties about asymptotically hyperbolic Einstein metrics, namely that they
have a canonical form in which they can be expressed as a cone over a a family of hypersurface metrics. This
splitting comes via the Gauss Lemma and represents the first analytic formulation of the AdS/CFT conjecture. Let
detail this process a bit. Suppose that we choose a defining function ρ(x) = dΨg(x, ∂M) in a collar neighborhood14

of ∂M. A defining function of this type is called a geodesic defining function, since the minimization of ρ(x)
will solve a geodesic-like problem on the conformal infinity (ΨM,Ψg).

It is possible to prove that given a boundary metric [γ] in the conformal infinity of (M,g) there exists a
unique geodesic defining function ργ that has γ as the boundary metric on (ΨM,Ψg) [4]. The proof boils down to
reformulating the uniqueness problem in terms of a Cauchy problem on the collar neighborhood U. Recall the
Gauss Lemma of Riemannian Geometry [49]:

Lemma 6.1. (Gauss) The radial geodesic through the point p = exp(ξ), ξ ∈ TpM is orthogonal to the Riemann
Hypersurface Σp that passes through p.

If we choose p ∈ ∂M, then this says that in some normal (or inertial) neighborhood U of p, we can write the
metric Ψg|U = dt2 + gΣp |U. Since we can choose a boundary metric up to conformal transformation, the choice of
a geodesic defining function gives a conformal class of metrics such that globally we have Ψg = dt2 +gt, where gt
is a family of metrics on hypersurfaces where t = t ′. Now we can define the Fefferman-Graham expansion of the
metric Ψg as the truncated Taylor Series expansion of gt. Explicitly for an n-dimensional Riemannian Manifold
(M,g) with conformal infinity, this expansion is [23]:

gt = g0 + tg1 + t
2g2 + t

3g3 + . . .+ t
ng(n) +O(t

n+α) (16)

Given the above background, the conjecture is effectively the dimension n = 5 version of the following
dimension n = 4 theorem [3, 6]:

Theorem 6.1. Suppose that dimM = 4 and the boundary metric γ is of class15 C7,α. Then the pair (γ, g(3)) on ∂M
uniquely determine an Asymptotically Hyperbolic Einstein metric up to local isometry. This means that if g1, g2 are
two AH Einstein metrics on manifoldsM1,M2 with ∂M = ∂M1 = ∂M2 such that with respect to the aforementioned
compactifications (ΨM1,Ψg1), (ΨM2,Ψg2), we have:

γ1 = γ2 and g1(3) = g
2
(3)

then g1, g2 are locally isometric and M1,M2 have diffeomorphic universal covers.

This effectively says that given a boundary metric γ and an n-th order approximation of the interior metric
g, we can compute g up to local isometry. For physical purposes, one desires knowledge of the null and timelike
geodesics, so that this uniqueness up to local isometry is "good enough." Moreover, the choice of boundary

14Recall that a collar neighborhood U of an n-manifoldM with boundary is an open set U ⊂ R2n such that U is
diffeomorphic to ∂M× [0, ε). The Whitney Embedding Theorem guarantees the existence of such a neighborhood
in R2n.

15Recall that the Hölder Spaces Ck,α(Ω),Ω ∈ Rn are the topological vector spaces of functions f : Ω→ R that
are k times continuously differentiable and such that f is Hölder continuous with exponent α. This means that
∀x, y ∈ Ω, |f(x) − f(y)| ≤ C|x− y|α.
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metric γ effectively defines the boundary Energy-Momentum Tensor, so the above theorem will yield the Energy-
momentum tensor for the entire spacetime M. The case of dimM = 5 appears to not have been proved completely
yet. In the next section, we will show how a choice of String Theory background (a geometric constaint) fixes
the equivalence class [γ] so that the above theorem can be used.

6.3 Geometric Description of the correspondence
As mentioned in the introduction, the AdS/CFT correspondence is closely tied together with Complex Geometry
and String Theory. Let’s first give a short description of the geometric structures associated with String Theory.
String Theory purports that if strings that obey known symmetries16 as well as supersymmetry exist, then the
total spacetime manifold M must be 10-dimensional. As such, most early formulations of string theory assumed
that M = R1,3 ×X6, where X6 is either a 6-dimensional real manifold or a 3-dimensional complex manifold. The
idea is that if X6 ↪→ R12 ∼= C6 is contained in a ball of radius r in R12 or C6, then as r → 0, M would begin to
look like Minkowski Space, R1,3. This means that all known physics, which requires a background of Minkowski
space or a locally-Minkowski space (i.e. a Lorentzian Manifold), could be preserved if the embedding radius r of
X6 is quite small. Note that because Complex Manifolds inherently have an integrable structure with an easy way
to check symplectic and differentiable structure integrability (i.e. via the Newlander-Nirenberg Theorem), almost
all models for X6 were complex.

However in the early-1990s, there was some compelling evidence that suggested that one should consider
spacetime manifolds M that decompose as M = X× Y with dimX = dim Y = 5. The idea stemmed from the fact
that the 5-dimensional Anti de Sitter space, AdS5 can be viewed as the Lorentzian analogue of the hyperbolic
space Hn [2]. More precisely, we can define AdS5 via the locus of the quadratic polynomial f on R4,2 with
coordinates (x1, x2, x3, x4, S, T),

f(x1, x2, x3, x4, S, T) := x
2
1 + x

2
2 + x

2
3 + x

2
4 − S

2 − T 2 + 1 (17)

It is clear that f is a submersion, since dF(~x) = (2x1, 2x2, 2x3, 2x4,−2S,−2T) so that the submersion level set
theorem says that this zero locus is an embedded, 5-dimensional submanifold of R6. Note that the induced
metric on AdS5 is gAdS5(∂1, . . . , ∂4, ∂S, ∂T ) = dx

1 + . . . dx4 − dS2 − dT 2, so that AdS5 is the Lorentzian analogue
of the Hyperbolic Space H5. Moreover, note that the surfaces with constant x1, T are copies of R1,3 As such we
can view AdS5 as a set of hypersurfaces Σx1,T that are isometric to R1,3 with a scaling factor of R2 := x21 − T

2.
The idea is that we are using one of the six remaining (and remember, required) dimensions to construct a space
that heuristically "warps" Minkowski Space.

As it turns out, our current knowledge of physics and our desire to have supersymmetry heavily constrains
the choice of manifold Y we choose. Let us briefly review some of the main assumptions in the decomposition
of spacetime as M = R1,3 × X6. The main condition enforced is that X6 has a Kähler metric and is Ricci-Flat17.
The Kähler metric can be heuristically justified on the grounds that classical mechanics formally requires a
symplectic form while quantum mechanics requires symmetries to be preserved under unitary transformations.
The Ricci-Flat condition implies that our X6 satisfies the vacuum Einstein equations G(Θeµ,Θeν) = T(Θeµ,Θeν) where
G is the Einstein 2-tensor, G(Θeµ,Θeν) := Ric(Θeµ,Θeν) − 1

2gX6(Θeµ,Θeν)R and T ∈ TM⊗ TM is a symmetric 2-tensor18.
A complex manifold that is Kähler and Ricci-Flat is known as a Calabi-Yau Manifold. Physicists have been
interested in these manifolds precisely because they are compatible with the symmetries of nature and serve as
a good starting point. However, while Yau proved that such manifolds exist, no explicit metric has ever been
found so this has made analysis on these spaces difficult. For completeness and for use in §4, let us give some
equivalent definitions of a Calabi-Yau Manifold:

Theorem 6.2. For a compact complex n-manifold (M,g), the following are equivalent:
16Recall that for a symplectic manifold (M,ω), the Lagrangian formulation of physics onM allows for all phys-

ical quantities to be written in terms of a linear functional that can be extremized via an Euler-Lagrange equation.
For purposes of this paper, we will consider the Lagrangian to be a linear functional Λ : L2(

∧•
M,dm)→ R. In

this situation, a symmetry of a Lie Group G with an action on Γ(TM) such that ∀f ∈ L2(
∧•
M,dm), f,ω are

invariant under the flows of g ·~v,~v where ~v ∈ Γ(TM)
17This means that the Ricci Scalar R := tr(Ric(Θei,Θej)), for any local frame {Θei} vanishes
18Physically, this is the Energy-Momentum Tensor
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• M is a Calabi-Yau

• Holg(M) ⊂ SU(n)

• The first Chern Class of M, c1(M) vanishes

• The canonical bundle of M is trivial

• M admits a global, non-vanishing holomorphic n-form

The AdS/CFT correspondence effectively conjectures that for a certain class of 5-manifolds Y, we can still
preserve the symmetries required to have a well-defined string theory and that the choice of metric on Y uniquely
determines the conformal boundary [γ] of AdS5 [2, 40, 4]. The conjecture was initially formulated with AdS5×S5,
where S5 is given the round metric and with AdS5 × S2 × S3, where S2 × S3 is given the homogeneous metric.19

However, these examples are considered trivial in that they admit free, proper U(1) actions so that given a U(1)
action, any quotient of S5 or S2×S3 by this action will be a Kähler-Einstein Manifold with positive curvature [41].
However, this condition is too restrictive both mathematically and in physical applications. We can loose the type
of U(1) action by requiring that we have a periodic U(1) orbit as opposed to a free U(1) orbit. Recently, a new
infinite class of 5-manifolds that are compatible with AdS/CFT correspondence and admit both free and non-free
U(1) orbits have been constructed. This class of manifolds subsumes S5, S2 × S3 and represent Sasaki-Einstein
Manifolds. These manifolds are defined and analyzed in §4. The physical importance of these manifolds stems
from their closed relationship with Calabi-Yau Manifolds, which have been studied extensively as models for the
internal space of String Theory. This allows for a much simpler description of a N = 1 superconformal field
theory than one could hope for on an arbitrary Kähler manifold. See [1] for more details.

7 The geometry of the the Yp,q Manifolds

7.1 Brief Overview of Sasaki-Einstein Manifolds
In this section, we will only consider manifolds of dimension 5 and higher. Let us start with the most cogent
definition of a Sasaki-Einstein Manifold:

Definition 7.1. An odd-dimensional, compact, real Riemannian manifold (M,g) is Sasaki-Einstein iff it is Einstein
and its metric cone (C(M), g), C(M) ∼= R+ ×M,g = dr2 + r2gM is Kähler and Ricci-flat, or in other words Calabi-
Yau. We will naturally identity M via as {1}×M ⊂ C(M)

This brief introduction will will follow §1 of [48] and portions of Chapters 3,6 and 11 of [8], which is relatively
recent and complete monograph on Sasakian Geometry. Since a Sasaki-Einstein Manifold has a Kähler cone,
it inherits many of the nice features of Kähler and Symplectic manifolds. In particular, the odd dimensional
cousins of Kähler and Symplectic geometries are CR and Contact Geometries, respectively. One can think of
contact geometry as an odd-dimensional analogue of symplectic geometry, inspired by classical mechanics with a
configuration space that also depends on time. More formally, we define a Contact Structure (M,η) on an 2n+ 1
manifold M with one-form η if η ∧ (dη)n is a volume form. In that case of a Sasaki-Einstein Manifold M, if
ωg is the Kähler form of C(M), then one can prove ([8], §6.4-6.5) that the Kähler potential can always be put in
the form ωg = d(r2η) for a one-form η on C(M). This means that r2η is a Kähler potential and moreover that
for r = 1, we get a non-vanishing one-form on M. Since dη is also globally non-vanishing, by Kählerity, we get
an induced contact structure on M. The following proposition is quite important (from [8], §6.1):

Proposition 7.1. On a contact manifold (M,η) of dimension 2n+ 1, there exists a unique vector field ξ called the
Reeb Vector Field satisfying the conditions, ξyη = 1, ξydη = 0

The proof is relatively straightforward and gives some intuition about where ξ comes from, so let’s go through
it:

19Recall that S2 ≈ SO(3)/SO(2) and S3 ≈ SU(2) so that the product can be considered a homogeneous space
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Proof. Since (M,η) is a contact manifold20 we have a volume form η ∧ (dη)n. By the musical isomorphism
TM ∼= T∗M, there exists a unique ξ ∈ Γ(TM) such that ξyη = 1 so that ξyη ∧ (dη)n = (dη)n. since (dη)n =
dη∧ dη · · ·∧ dη︸ ︷︷ ︸

n

, is alternating this means that ξy(dη)n = 0.

For a Sasaki-Einstein manifold, the Reeb Vector Field takes a rather simple form, via a slightly opaque
construction. Consider the homothetic vector field, ζ on C(M) is simply ζ := r∂r. Let ∇,∇ be the Levi-Civita
connections associated to g, g, respectively. In order to construct a vector field on M that extends naturally to a
vector field on C(M), we need to ensure that we have a real analytic vector field on M. Let’s first look at the
transport behavior of ζ via the following formulas [48] hold for X, Y ∈ Γ({1}×M) ↪→ Γ(C(M)) :

∇ζζ = ζ (18)
∇ζX = ∇Xζ = X (19)
∇XY = ∇XY − g(X, Y)ζ (20)

Heuristically equations (18),(19) imply that a vector field X on the base M doesn’t change as we move it up
the cone via ζ. Now since C(M) is Kähler, we know that the Almost Complex Structure J : TC(M) → TC(M)
associated to C(M) is parallel, i.e. ∇J = 0. Using these facts we can prove the following claim:
Claim 7.1. The homothetic vector field ζ is real analytic, i.e. LζJ = 0.
Proof. Since ∇,∇ are Levi-Civita connections, the torsion tensor for both connections vanishes. This means that
LζJ = ∇ζJ −∇Jζ. Using (19), it is clear that this vanishes. Similarly if we restrict to the hypersurface {1} ×M,
then using (19), (20), we have,

Lζ|MJ = ∇ζ|MJ−∇J|Mζ = ∇ζ|MJ+ g(ζ|M, J)ζ−∇Jζ|M − g(J, ζ|M)ζ = 0

where the last equality holds since the metric is symmetric.

Now define ξ = J(r∂r). We now will show that the η = 1
r2
ξ[ is a contact form. Recall that given an almost

Hermitian Manifold (M,g, J), we define the Kähler form ωg : TM⊗TM→ R by ωg(X, Y) := g(X, JY). The musical
isomorphism gives the formula η(X) = 1

r2
g(X, ξ) = 1

r2
ωg(X, r∂r). Since r2η is the Kähler potential, it is clear that

η is non-vanishing and more over, since the Kähler form is also symplectic, (dη)n is also non-vanishing. As
such, η ∧ (dη)n is a non-vanishing 2n + 1-form, or in other words it is a volume form. Finally, note that there
is a closed relationship between the Kähler form ω on the metric cone and the contact 1-form η:

ω =
1
2
d(r2η) (21)

7.2 The Yp,q metrics
Background

Until 2004, it was widely believed that irregular Sasaki-Einstein Manifolds did not exist as per a conjecture by
Tian and Cheeger [10]. However, in 2004 a landmark paper of Sparks, Martelli, Gauntlett and Waldram [22]
constructed an infinite sequence of Sasaki-Einstein metrics on S2× S3 which included irregular and quasiregular
Sasaki-Einstein Manifolds. These manifolds, denoted Yp,q are indexed by p, q ∈ Z, (p, q) = 1. Initially, the
metrics were described in coordinates; however, soon after an argument using the Gysin Spectral Sequence to the
natural U(1) fibration, U(1) ↪→ Yp,q � Yp,q/U(1) was presented in order to show that Yp,q was homotopically
S2× S3. Finally, the Smale-Poincaré Theorem implies that homotopy spheres are homeomorphic, so that we have
a homeomorphism Yp,q ∼= S2 × S3. Later, an explicit diffeomorphism between S2 × S3 and Yp,q was found [17].
Soon thereafter, a paper that generalized the construction of Yp,q to a larger family of metrics that could be
defined in any odd dimension 2n+ 1 on Sn × Sn+1 was completed [14, 15]. One of these larger family of metrics
is denoted Lp,q,r, p, q, r ∈ Z,0 ≤ p ≤ q,0 < r < p + q, (p, q) = (p, r) = (q, r) = 1 and its construction is far less
complicated than the original construction in [22]. Note that if p + q = 2r, then Lp,q,r = Yp,q. This section will
construct the Lp,q,r metric due to simplicity and subsequently, we will restrict ourselves to the Laplacian for the
Yp,q case.

20When the phrase ’contact manifold’ is used, we will mean an strict contact manifold in the sense of [8], page
181
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Construction

We will follow the methodology of [14], which provides a direct route to the Lp,q,r metric from a well-known AdSn
solution of the vacuum Einstein equations with negative cosmological constant. The method of construction can
be summarized as follows:

1. Start with the five-dimensional Kerr-de Sitter Black Hole Metrics (in local coordinates) found in [30]. These
metrics represent solutions to Einstein’s Field Equations that admit charged, rotating black holes

2. Consider the "Euclideanization" of these metrics, which amounts to a formal analytic continuous of a real
n-manifold to an almost complex n-manifold (i.e. with real dimension 2n)

3. Implement a supersymmetry constraint known as the BPS Scaling Limit

4. Compute the Killing Vectors and Killing Spinors21 associated to the given metric

The five-dimensional Kerr-de Sitter metric for a rotating, charged black hole (as per Hawking, et. Al, [30]) in
local coordinates (t, φ,ψ, r, θ) on an open set Uα ⊂ AdS5 is:

g(∂t, ∂φ, ∂ψ, ∂r, ∂θ) = −
∆

ρ2

(
dt−

a sin θ
Ξa

dφ−
b cos2 θ
Ξb

)2

+
∆θ sin2 θ

ρ2

(
adt−

(r2 + a2)

Ξa
dφ

)2

+
∆θ cos2 θ
ρ2

(
bdt−

r2 + b2

Ξb
dψ

)2

+
ρ2

∆
dr2 +

ρ2

∆θ
dθ2 +

(1+ r2`−2)

r2ρ2

(
abdt−

b(r2 + a2) sin2 θ

Ξa
dφ−

a(r2 + b2) cos2 θ
Ξb

dψ

)2

(22)

where we have:

• a,b are the conserved quantities of the SO(4) ∼= SU(2) × SU(2) symmetry in this metric. Effectively, they
scale the Killing Vectors that are the infinitesmal generators of these symmetries

• ` is another conserved quantity from the Killing Vector that corresponds to the conserved Energy of the
system

• ∆ = 1
r2
(r2 + a2)(r2 + b2)(1+ r2l−2) − 2M

• ∆θ = (1− a2l−2 cos2 θ− b2l−2 sin2 θ

• ρ2 = (r2 + a2 cos2 θ+ b2 sin2 θ)

• Ξa = (1− a2l−2)

• Ξb = (1− b2l−2)

Now we can (somewhat) informally extend this metric (at least locally) to the complexification Uα⊗C ≈ Rn⊗C.
To see why this is feasible, consider the metric localized in local coordinates over a coframe {dxi(y)}ni=1 for y ∈ Uα
to be defined as as g(y) = gij(y)dxidxj. The idea is that since we are complexifying the chart (Uα, ψα), we can
also complexify the local trivialization of Sym(2,M) over Uα. Explicitly, the authors of [14] do this as follows.
Consider the following coordinate transformations:

τ :=

√
λt

i
, λ := −l2, a ′ := −ia, b := −ib (23)

Now the next simplification step requires taking a limit that relates a, b, r to λ. Effectively, this ties all of
the three open parameters a, b, l as well as one coordinate to a single length scale λ. This will immensely
simply the metric allowing us to compute the new simplified Killing Vectors. These transformations come from
supersymmetry considerations as well as conservation of mass and energy. These transformations represent the
Bogomol’nyi — Prasad — Sommerfield Limit (BPS Limit) which is a way to bound the conserved quantity
derived from the t or τ coordinates (Energy). Effectively, we are scaling our free parameters as well as our r

21The introduction of spinors and particular spin bundles will be explained as spinors are encountered in this
derivations. Keep reading!
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coordinate in such a way that the energy E goes to the BPS Limit as one takes a limit ε ↓ 0, for a perturbation
ε. Explicitly, these transformations are:

a = λ−1/2
(
1− 1

2
αε

)
, b = λ−1/2

(
1− 1

2
βε

)
, r2 = λ−1(1− xε),M =

1
2
λ−1µε2 α,β, µ ∈ R (24)

Under a combination of the coordinate transformations (23) and (24), where the limit ε ↓ 0 is taken, our new
metric g̃ is defined as:

λg̃(∂τ, ∂x, ∂θ, ∂φ, ∂ψ) = (dτ+ σ)2 + h(∂x, ∂θ, ∂φ, ∂ψ) (25)
where h is defined as:

h(∂x, ∂θ, ∂φ, ∂ψ) =
ρ2dx2

4∆x
+
ρ2dθ2

∆θ
+
ρ2dθ2

∆θ

(
sin2 θ

α
dφ+

cos2 θ
β

dψ

)2

+
∆θ sin2 θ cos2 θ

ρ2

(
α− x

α
dφ−

β− x

β
dψ

)2

where we have:

σ =
(α− x) sin2 θ

α
dφ+

(β− x) cos2 θ
β

dψ

∆x = x(α− x)(β− x) − µ

ρ2 = ∆θ − x

∆θ = α cos2 θ+ β sin2 θ (26)

One quick note about why such a transformation requires using an analytic continuation. In physics, one
tends to ignore when one is dealing with a spin bundle and when one is dealing with the tangent or cotangent
bundles in order to simplify computation. However, in General Relativity, one tends to deal with the standard,
real tangent and cotangent bundles of a spacetime manifold M to solve the classical equations of motion.
However, when one deals with relativistic quantum mechanics, a spin bundle S is introduced (either implicitly or
explicitly) so that solutions to the Dirac equation, which involve spinors s ∈ Γ(S), can be developed. As such, this
ad-hoc complexification illustrated above serves as a way to explicitly construct a local trivialization of S � M
over some trivializable chart domain Uα ⊂M.

Using Mathematica, one can quickly establish that the Ricci Tensor for the above metric is related to the g̃
by Ric = 4λg̃ so this metric is Einstein. A further computation shows that R = 0, so that this metric is Ricci-flat.
Moreover, one can use an Rn diffeomorphism to set the free parameter µ = 1 so that the only free parameters
are α,β. Now there are a few angle forms in the above metric (the exact ranges aren’t established in [14]) and
in particular the ψ,φ, θ coordinates are periodic (i.e. their chart domains are [0, kπ], where the choice of k isn’t
explicit). This generates a U(1)×U(1)×U(1) isometry that will help us elucidate the Killing Vectors associated
to g̃. Now note that if we regard g̃ as representing a local fibration U(1) ↪→ Uα ⊂ M � Uα/U(1), where the
last quotient is over any of the angle forms ψ,φ, θ, we can show that the induced metric on the quotient space
represents a Kähler-Einstein manifold with Kähler 2-form ωg̃|Uα = 1

2dσ. Let us sketch out the argument in
[22]. Let the metric on N := M/U(1)θ be denoted ĝ. Firstly, one considers the quotient over the U(1) fiber
corresponding to θ and then uses a computation of the first Chern number to show that there exists a coordinate
transformation which reduces to the round metric on S2 × S2 with trivial clutching function.22 Moreover, using
the other circle coordinates, we can construct a complete open cover of (M, g̃) (i.e. so that the North Pole, South
Pole in the θ coordinate have a non-singular coordinate representation). One can then construct a basis for
H2(N;Z) ∼= Z⊕ Z by looking at the intersection number of chains based in the three different M/U(1) quotients.
Finally, we can dualize these chains and get an explicit basis for H2(S2×S2;Z) in the coordinates we are looking
at. This basis is [22, 41]:

ω1 =
1
4π

cos ζdζ∧ (dψ− cos θdφ) + 1
4π

sin θdθ∧ dφ

ω2 =
1
4π

sin θdθ∧ dφ (27)

22Recall that a clutching function for Sn is a map Sn−1 → Sn that serves at the attaching map for the two
n-cells D1, D2 that one glues along ∂Di ∼= Sn−1 to construct Sn. Given a clutching function, one can represent
Sn as a CW complex
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Finally, by taking a linear combination of the above basis vectors for H2(N;Z) and enforcing hermiticity, one
arrives at the Kähler form on the quotient: ωĝ = 1

2dσ.
We have sketched an argument that shows that (M, g̃) is the total space of three U(1) fibrations over a

Kähler-Einstein space that is homeomorphic to S2 × S2. As it turns out, (25) is in a "standard form" for the
local expression of a Sasaki-Einstein metrics so that it is almost automatic that g̃ is Sasaki-Einstein [22]. In
the future, this section will include the full derivation of the Killing Vectors associated to g̃ and how the
relationship between the Killing Vectors and the constraints on p, q, r ∈ Z is established. However, for now, the
Killing Vectors and the relationship between the moduli of the Killing Vectors and p, q, r will simply be stated.
Firstly note that we have four Killing Vectors for this space:

• Killing Vectors that are compatible with the unsuitability of these coordinates at θ = 0, π2 :

∂φ, ∂ψ (28)

This intuitively makes sense, since these vectors vanish when θ = 0, π2 as all the dφ, dψ terms in h have
sin θ in front of them.

• Killing Vectors that are compatible with the unsuitability of these coordinates at the roots of the cubic ∆x,
denoted x1, x2, x3:

`i = ci∂τ + ai∂φ + bi∂ψ (29)
where i ∈ {1, 2} and,

ai =
αci

xi − α

bi =
βci

xi − β
(30)

ci =
(α− xi)(β− xi)

2(α+ β)xi − αβ− 3x2i
(31)

suppose that u, v ∈ Q are such that 0 < v < 1,−v < u < v. Then we define p, q, r, s ∈ Z by [35]:
q− p

p+ q
:=

2(v− u)(1+ uv)
4− (1+ u2)(1+ v2)

,
r− s

p+ q
:=

2(v+ u)(1− uv)
4− (1+ u2)(1+ v2)

, p+ q− r = s (32)

These conditions ensure that α,β, µ, x1, x2 and x3 are all rational. This is an important consequence of the Chern
number restrictions on M. As it turns out, the authors of [22] show that l

−1

2π σ (as per the definition in (25)) is
a connection on M if we treat M ↪→ M/U(1) as a U(1) bundle. Since this is independent of the choice of U(1)
quotient (the quotient is completely described by the metric h of (25)) and since line bundles over S2 × S2 are
classified by Chern Classes in H2(S2 × S2;Z) ([29], §3.1), we have implicit restrictions on the two parameters α,β.
Moreover, if we assume that we don’t know the diffeomorphism R5 → R5 that sends µ to unity.23 Given this
disclaimer, here is the relationship between u, v and α,β, µ, x1, x2, x3, x3:

α = 1− 1
4
(1+ u)(1+ v), β = 1− 1

4
(1− u)(1− v), µ =

1
16

(1− u2)(1− v2)

x1 =
1
4
(1+ u)(1− v), x2 =

1
4
(1− u)(1+ v), x3 = 1 (33)

Finally, we can relate the moduli ai, bi, ci of the Killing Vectors to u, v [35]:

a1 =
(1+ v)(3− u− v− uv)

(v− u)[4− (1+ u)(1− v)]
a2 = −

(1+ u)(3− u− v− uv)

(v− u)[4− (1− u)(1+ v)]

b1 =
(1− u)(3+ u+ v− uv)

(v− u)[4− (1+ u)(1− v)]
b2 = −

(1− v)(3+ u+ v− uv)

(v− u)[4− (1− u)(1+ v)]
(34)

c1 = −
2(1− u)(1+ v)

(v− u)[4− (1+ u)(1− v)]
c2 =

2(1+ u)(1− v)
(v− u)[4− (1− u)(1+ v)]

23This is a good assumption, at least based on the scant efforts at numerical computation related to these
manifolds. For instance in the Master’s Thesis [35], the author notes that he could not find a closed form
diffeomorphism (or even an approximation) using Mathematica.
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Recall that the goal of this thesis is to study the one-form spectrum of a slightly simpler object, the Sasaki-
Einstein metrics Yp,q. Given these quite complicated expressions, it will be wise to restrict our initial scope to
a specific choice of p, q. The first choice of p, q, p = q = 1 is simply the homogeneous metric on S2 × S3; this
space is known as T 1,1 and it’s spectrum is well-established [47, 26]. The first non-trivial manifold is Y2,1 which
is an irregular Sasaki-Einstein manifold — that is, the orbits of one of the allowable U(1) actions is dense in
Y2,1. In general, note that the metric in the form (25) is invariant has U(1)×U(1)×U(1) isometries. However, if
placed in the original form from [22], one can show that there is actually an graded isometry group isomorphic
to SU(2)×Z2 ×U(1)×U(1). For completeness, we present this metric:

gSparks(∂θ, ∂φ, ∂y, ∂ψ, ∂α) =
(1− cy)

6
(dθ2 + sin2 θdφ2) +

1
w(y)q(y)

dy2 +
q(y)

9
[dψ− cos θdθ]2

+w(y)

[
dα+

ac− 2y+ y2c

6(a− y2)
[dψ− cos θdφ]2

]
(35)

where we have,

w(y) =
2(a− y2)

1− cy

q(y) =
a− 3y2 + 2cy3

a− y2

0 ≤ θ ≤ π, 0 ≤ φ,ψ ≤ 2π, y1 ≤ y ≤ y2, y < 1, 0 ≤ α ≤ 2π`

where y1, y2 are roots of the cubic q(y) and due to symmetry considerations ` = q

3q2−2p2+p
√

4p2−3q2
. For reasons

explained on page 3 of [22], we are forced to restrict a ∈ (0, 1). From this definition, it is apparent that ψ,α have
U(1) isometries. However, note that one can rewrite the expressions for θ,φ in terms of the round metric on S3,
so that θ has an SU(2) isometry. When one rewrites (35) in terms of the Maurer-Cartan forms of SU(2), it is
apparent that there is a U(1) right action (from the Killing Vector ∂φ) and an SU(2) left action (derived from the
Killing Vector ∂θ).

7.3 The Scalar Laplacian
The Scalar Laplacian (i.e. the Laplacian-Beltrami Operator on Functions C∞(M)) of the Yp,q manifolds has been
studied in [35, 36, 45]. Unfortunately, we have two metrics to deal with, (25), (35). The solutions of (35) are
a bit harder to elucidate, but they will be discussed in this section. From §4.3.1 onwards, we will solely use (25)
simply because it is easier to work with. Using separation of variables, the authors were able to deduce that
harmonic functions associated to this operator (up to a scalar multiple) for (35) are of the form [36],

ΨSparks(y, θ,φ,ψ, α) = exp
(
i

[
Nφφ+Nψψ+

Nα

`
α

])
R(y)Θ(θ) (36)

The expressions for R(y), Θ(θ) are a bit complicated and require a more delicate analysis than the angular solu-
tions. The authors make many analogies to the solutions of the non-relativistic, time-independent, Schrödinger
Equation and consider R(y) to be the "radial" function for Yp,q and Θ(θ) to be the "angular" function for Yp,q.
These analogies are quite valid since we are dealing with a manifold that is diffeomorphic to S2 × S3 and we
can rewrite our metric in terms of the Maurer-Cartan forms on S3. In fact, the Θ equation, while not explicitly
known, is an eigenfunction of the Casimir operator K̂ of SU(2), which has the coordinate expression:

K̂ =
1

sin θ
∂

∂θ

(
sin θ ∂

∂θ

)
+

1
sin2 θ

(
∂

∂φ
+ cos θ ∂

∂ψ

)2

+

(
∂

∂ψ

)2

(37)

and as per the physics convention we have K̂Θ(θ) = −L(L+1)Θ(θ), L ∈ Z. It turns out that the ordinary differential
equation for R(y) obtained via separation of variables is in fact Heun’s equation, an equation of Fuchsian-type
with four regular singularities at y = y1, y2, y3,∞. The explicit solution will be discussed in the next section after
we write the Ordinary Differential Equations for each variable.
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The Scalar Laplacian in Coordinates

Without further ado, the Scalar Laplacian ∆(5) in coordinates (with regard to the metric (25)) is [35]:

∆(5) → 4
ρ2
∂

∂x

(
∆x

∂

∂x

)
+

4
ρ2
∂

∂y

(
∆y

∂

∂y

)
+
∂2

∂τ2

+
α2β2

ρ2∆x

(
(β− x)

β

∂

∂φ
+

(α− x)

α

∂

∂ψ
−

(α− x)(β− x)

αβ

∂

∂τ

)2

+
α2β2

ρ2∆y

(
(1+ y)
β

∂

∂φ
−

(1− y)
α

∂

∂ψ
−

(α− β)(1− y2)
2αβ

∂

∂τ

)2

(38)

where ∆y := (1− y2)∆θ.
While these coordinates are slightly different that those in , the only change in the resulting eigenfunction

will arise in different normalization constants (i.e. the process of defining Ψ so that ‖Ψ‖L2(M) = 1) with the
eigenfunctions of (38) having normalization constants that depend on α,β, ρ as opposed to a and c. Note that
we can simplify (38) significantly if we express ∆y, ∆x in terms of their roots. That is, if x1, x2, x3 are the roots
of ∆x and y1, y2, y3 are the roots of ∆y (see (26)), the metric becomes [35]:

∆(5) → ∂2

∂τ2
+

4
ρ2
∂

∂x

(
∆x

∂

∂x

)
+
∆x

ρ2

(
1

(x− x1)
v1 +

1
(x− x2)

v3 +
1

(x− x3)
v5

)2

+
4
ρ2
∂

∂y

(
∆y

∂

∂y

)
+
∆y

ρ2

(
1

(y− y1)
v2 +

1
(y− y2)

v4 +
1

(y− y3)
v6

)2

(39)

The separable solutions in these coordinates are quite similar to those in (8.3) except that we now have lost the
angular function Θ and we have replaced it with another solution to a Heun’s Differential Equation. Explicitly,
we have the eigenfunction,

Ψ(τ,φ,ψ, x, y) = exp (i [Nττ+Nφφ+Nψψ]) F(x)G(y) (40)

where F,G are defined by the Heun’s Differential Equations,

d2F

dx2
+

(
1

(x− x1)
+

1
(x− x2)

+
1

(x− x3)

)
dF

dx
+QxF = 0 (41)

d2G

dy2
+

(
1

(y− y1)
+

1
(y− y2)

+
1

(y− y3)

)
dF

dy
+QyF = 0 (42)

where we have,

Qx =
1
∆x

(
µx −

1
4
Ex−

3∑
i=1

α2
i

x− xi

d∆x

dx
(xi)

)
, Qy =

1
Hy

(
µy −

1
4
Ey−

3∑
i=1

β2
i

y− yi

dG

dy
(yi)

)
(43)

αi = −
1
2
(aiNφ + biNψ + ciNτ), β1 =

1
2
Nφ, β2 =

1
2
Nψ, β3 =

1
2
(Nτ −Nφ −Nψ) (44)

Hy = (y− y1)(y− y2)(y− y3), µx =
1
4
C−

1
2
Nτ(αNφ + βNψ) +

1
4
(α+ β)N2

τ (45)

µy =
1

2(β− α)

(
−C+

(
α+ β

2

)
E+ 2(αNφ + βNψ)Nτ − (α+ β)N2

τ

)
(46)

28



Part III

Generalized Complex Geometry
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8 History and Motivation

8.1 Motivation
• We want to unite Complex and Symplectic Geometry by finding a natural integrability condition for both

structures.

• The main idea is that instead of treating these structures as group actions on TM, consider their action on
the sum TM⊕ T∗M for a manifold M

• There are quite a few nice features of this bundle. It has a natural Lie Algebroid structure under the
Courant Bracket. There is a canonical metric on TM⊕T∗M and as such we can define isotropic subbundles
without a specified symplectic form

• There is a natural homological classification of whether certain structures can be put on a manifold when
one considers TM⊕ T∗M. This comes from the natural gerbe on TM⊕ T∗M

• This generalized structure on a manifold which subsumes complex and symplectic geometry will make some
of the subtleties of mirror symmetries a lot clear, conceptually

8.2 History

9 Linear Algebra on V ⊕ V∗

One of the things that Koerber tends to brush through quickly are some of the subtleties and changes in definitions
that occur when one considers TM ⊕ TM∗. To rectify this, I will summarize Chapter 2 of M. Gualtieri’s Thesis
in this section. One quick notational note: If V is an m-dimensional vector space with dual V∗, then Roman
letters will indicate elements of V , Greek letters will indicated elements of V∗ and an element of V ⊕ V∗ will be
denoted X+ ξ (Roman + Greek).

Before moving to the vector bundle TM ⊕ TM∗, let’s consider some analytic facts about the vector spaces
in each fiber. Let V be an n-dimensional vector space with dual V∗. We can define a natural symmetric and
skew-symmetric bilinear forms 〈·, ·〉+, 〈·, ·〉− on V ⊕ V∗ by,

〈X+ ξ, Y + η〉+ :=
1
2
(ξ(Y) + η(X))

〈X+ ξ, Y + η〉− :=
1
2
(ξ(Y) − η(X))

We will only need the first form. Now for completeness, let’s show that it is a non-degenerate form. Suppose
the form is degenerate: ∃X + ξ such that 〈X + ξ, Y + η〉 = 0, ∀Y + η. Without the loss of generality, assume
that X = êi, ξ = f̃j, 1 ≤ i, j ≤ n, where {êi} is a basis for V , {f̃i} is the basis of V∗ dual to {êi}. But note that
〈êi + f̃j, êj + f̃i〉+ = 1, which contradicts the degeneracy hypothesis. As such, we will now refer to 〈·, ·〉+ as 〈·, ·〉,
an inner product on V . It is clear that O(V ⊕ V∗) ∼= O(n,n), so that this inner product defined the orthogonal
group for this space. Moreover we have ∧2n(V ⊕ V∗) ∼= ∧mV ⊗ ∧nV∗ and by applying the det functor, one can
show that there is a natural pairing between ∧kV∗,∧kV . Hence there is a canonical orientation on V ⊕ V∗ and
we can define the special orthogonal group SO(V ⊕ V∗) ∼= SO(m,m).

9.1 Symmetries of V ⊕ V∗

Since the symmetries of each fiber affect the set of allowable G-structures on a fiber bundle over a manifold, it
is pretty important to know the symmetries of V ⊕ V∗. Let us first define the so(V ⊕ V∗) ∼= Lie (SO(V ⊕ V∗)):

so(V ⊕ V∗) := {T ∈ End(V ⊕ V∗) : 〈Tx, y〉+ 〈x, Ty〉 = 0, ∀x, y ∈ V ⊕ V∗} (47)

Now let’s trying to figure out how a linear operator T looks. Let p1 : V ⊕ V∗ → V, p2 : V ⊕ V∗ → V∗ be
projections onto the first and second coordinates, respectively. Now note that we need a pair of operators
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A ∈ End(V ⊕V∗), C : V∗ → V so that p1T(X+ ξ) = AX+Cξ ∈ V . Such a decomposition is always possible since T
is linear. Similarly, we need a pair of operators B : V → V∗, D ∈ End(V∗) such that p2T(X+ ξ) = BX+Dξ ∈ V∗.
What restrictions does the so(V ⊕ V∗) symmetry place on A,B,C,D? As it turns out, we require C,B to be
antisymmetric, i.e. C = −C†, B = −B† and that D = −A∗, the transpose of A. According to convention C is
denoted by β and we (formally) represent T as,

T :=

[
A β
B −A∗

]
(48)

Note that the antisymmetry conditions let us regard β ∈ ∧2V∗, B ∈ ∧2V with B(X) = ιX(B). Using the formal
matrix representation of (48), we can break up the group actions:

• B-transform: Note that exp(B) =
[
1
B 1

]
, so that exp(B)(X+ ξ) = X+ ξ+ ιXB

• β-transform: On the other hand, exp(β) =
[
1 β

1

]
so that exp(β)(X+ ξ) = X+ ξ+ ιξβ

• GL(V)Action Let A ∈ so(V⊕V∗). Then exp(A) =
[
expA

(expA∗)−1

]
. This is an embedding of GL+(V) into

the component containing e ∈ SO(V⊕V∗). This extends to a orientation preserving map GL(V)→ SO(V⊕V∗)

9.2 Maximal Isotropic Subspaces
The notion of isotropic subspaces is important in symplectic geometry; however, the set of Maximal Isotropic
Subspaces of V ⊕ V∗ plays an important role in the theory of generalized complex structures. As we will show
in §6.3, the Maximal Isotropic Subspaces are in bijective correspondence with an important class of spinors on
V ⊕ V∗. Let us recall the main definition from Symplectic Geometry, adapted to the case of V ⊕ V∗:

Definition 9.1. A subspace L < V ⊕ V∗ is isotropic when 〈X, Y〉 = 0, ∀X, Y ∈ L. Since we have a metric signature
(m,m), the maximal dimension of such a subspace is m, so if dimL = m, L is called maximal isotropic or a
linear Dirac structure

It turns out that there is a cogent way to construct all of the maximal isotropic subspaces. Let E ≤ V be any
subspace and let ε ∈ ∧2E∗ so that we can treat ε : E→ E∗, ε(X) = ιXε. Define the subspace L(E, ε) as,

L(E, ε) := {X+ ξ ∈ E⊕ V∗ : ξ|E = ε(X)} (49)

Using this L(E, ε) we can get any maximal isotropic subspace:

Proposition 9.1. Every maximal isotropic subspace in V ⊕ V∗ is of the form L(E, ε)

Proof. Let L be a maximal isotropic subspace. Now let E := p1L ≤ V . Since L is maximal isotropic, dimL = m,
so that W := L ∩ V∗ ≤ V∗ is a subspace of dimension m− dimE. Now if X, Y ∈ E, ξ, η ∈W, then 〈X+ ξ, Y + η〉 =
1
2 (η(X) + ξ(Y)) which vanishes for all X, Y ∈ E iff η, ξ ∈ Ann(E) and L = E⊕Ann(E). Hence, E∗ ∼= V∗/Ann(E) so
that we can define ε : E→ E∗ via e 7→ p2(p

−1
1 (e) ∩ L) ∈ V∗/Ann(E).

Given this proposition, we are now in a position to categorize the Maximal Isotropic subspaces. From this
construction, one of the easiest characterizations of a maximal isotropic subspace is that of type:

Definition 9.2. Let (L, ε) be a maximal isotropic subspace. The type of a maximal isotropic subspace is defined to
be the codimension k of the projection L� V . In other words,

k := dimAnn(E) = m− dimE (50)
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We can now use the various actions of End(V ⊕ V∗), namely the B,β-transforms, to further classify the
maximal isotropic subspaces. From the action of a B-transform, X + ξ → X + (ξ + ιXB), we see that a B-
transform doesn’t affect the dimension of the subspace E since p1(e−B(X+ξ)) = X. More concretely, suppose that
X+ ξ ∈ L(E, ε) so that eB(X+ ξ) = X+ (ιXB+ ξ). We want to find ε̃ : E→ E∗ such that X+ (ιXB+ ξ) ∈ L(E, ε̃).
This means that ε̃(X) = (ιXB + ξ)|E = ιXB|E + ε(X), so ε̃ = ε + i∗B where i : E ↪→ V is the natural inclusion. As
such, B transforms do not affect type and one can obtain any maximal isotropic subspace using a B-transform of
V = L(E, {0}).

However the action of the β-transform, X+ ξ→ (X+ ιξβ) + ξ can affect dimE and hence the type k. It turns
out that β transforms increase the dimension of E (if possible) by an even number (i.e. dimE β→ dimE+ 2n) and
as such, they are also type preserving. Let us prove this statement:

Proposition 9.2. Let L(E, ε) be a maximal isotropic subspace of V ⊕ V∗. β-transforms change dimE and the type
of L(E, ε) by an even number

Proof. Recall that we can consider β as a map V∗ → V . Since β-transforms can change the X in a vector X+ ξ,
our goal to try to construct something analogous to L(E, ε) for V∗ so that we can make dimensionality arguments
as in Proposition 6.1. As such, define F ⊂ V∗ by F := p2 (L(E, ε)) and γ ∈ ∧2F∗ by γ(f) = p1

(
p−1
2 (f) ∩ L

)
. Note

that we are treating γ as a map V∗ → V , just as ε is a map E→ E∗. Treating (F, γ) like the pair (E, ε), we define,

L(F, γ) := {X+ ξ ∈ V ⊕ F : X|F = γ(ξ)} (51)

Now let X+ ξ ∈ L(F, γ). Then eβ(X|F+ ξ) = (X|F+ ιξ|Fβ)+ ξ = (γ(ξ)+ ιξ|Fβ)+ ξ so that eβ(X+ ξ) ∈ L(F, γ+ j∗β),
where j : F ↪→ V∗ is the natural inclusion. Hence, a β transform of L(F, γ) leaves dim F invariant. This will be
useful, since we can quotient out the annihilator of F.

Note that from (51) we have E = p1 (L(F, γ)) which contains L ∩ V = Ann(F) ⊂ E. Hence we have F∗ defined
by:

F∗ :=
E

L ∩ V
=

E

Ann(F)
= Im(γ) (52)

so that dimE = dimL∩V + rank(γ). Since γ is a skew 2-form it has even rank and if β ∈ SO(V ⊕V∗)+, then we
can change the dimension of E and subsequently the type of L(E, ε) by an even number.

Hence, one is generally interested in whether the type of a maximal isotropic subspace L(E, ε) is odd or even.
With a little more effort, the above proposition gives a classification of maximal isotropics and the relationship
between E, E ′ = L(E, ε)/E:

Proposition 9.3. [11] III.1.0 Let E be a maximally isotropic subspace of V and let E ′ = L(E, ε)/E. If dimE = r
and if dimL ∩ V = h, then E, E ′ are of the same type (both odd or both even) if and only if,

h ≡ r (mod 2)

Lastly, note that if L, L ′ are maximal isotropic subspaces of V ⊕ V∗ with L ∩ L ′ = {0} then V ⊕ V∗ = L ⊕ L ′
and the inner product defines an isomorphism L ′ ∼= L∗. This follows from the Witt Decomposition associated to
〈·, ·〉 [11], I.3.2.

9.3 Spinors
Before moving onto the natural spin representation afforded to V ⊕ V∗, let us review some of the basis mathe-
matical principles about spinors. The proofs will be omitted since they are standard in most textbooks about spin
geometry, e.g. [11, 19].

Clifford Algebras and Spin Representations

Recall that for a vector space V with quadratic form Q, we have the fundamental theorem of Clifford Algebras
over (V,Q):
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Theorem 9.1. For every quadratic form (V,Q), there exists a Clifford Algebra24 (C(Q), j) and if (C(Q), j), (D(Q), k)
are both Clifford Algebras for the same quadratic form (V,Q), then there exists an isomorphism f : C(Q) → D(Q)
such that the following diagram commutes:

C(Q)
f // D(Q)

V

j ′
<<

j

aa

Note that the easiest definition of C(Q) is C(Q) := τ(V)/I, where τ(V) is the tensor algebra of V , τ(V) =
⊕∞
i=0T

iV, T iV = V ⊗ V ⊗ · · ·V︸ ︷︷ ︸
i

and I is the ideal generated by v⊗ v−q(v) · 1l. Now in all cases dealt with in these

notes, V (or V ⊕ V∗) will be a complex vector space with such that C(V,Q) ∼= C(Cn, z21 + · · · z2n). A standard fact
about the Clifford Algebra Cn := C(Cn, z21 + · · · z2n) that will be useful is the following:

Fact 9.1.

Cn =


k︷ ︸︸ ︷

M2(C)⊗ · · · ⊗M2(C) = End(

k︷ ︸︸ ︷
C2 ⊗ · · · ⊗ C2) = End(C2k) if n = 2k ∈ 2Z

{

k︷ ︸︸ ︷
M2(C)⊗ · · · ⊗M2(C)}⊕ {

k︷ ︸︸ ︷
M2(C)⊗ · · · ⊗M2(C)} = End(C2k)⊕ End(C2k) if n = 2k+ 1 ∈ Z \ 2Z

Now we are in a position to define what a spinor is:

Definition 9.4. A (Dirac) Spinor is simply an element of ∆n := C2k that Cn, n ∈ {2k, 2k+ 1}. The spin represen-
tation of the Clifford Algebra Cn is a map κn : Ccn

∼=→ End(∆n) for n even and κn : Ccn ∼= End(∆n) ⊕ End(∆n) →
End(∆n), which is simply the composition of the isomorphism and a projection.

Recall that Pin(n) is defined to be group of vectors multiplicatively (and formally) generated by all x ∈ Sn−1.
The spin group Spin(n) is Pin(n) ∩ C0n, where C0n is the connected component containing the identity. We know
recall the following facts about Spin(n) being the double cover of SO(n):

Fact 9.2. Let Pin(n),O(n), SO(n), Spin(n) be as discussed. Then:
a) λ : Pin(n)→ O(n) is a continuous surjective homomorphism
b) λ−1(SO(n)) = Spin(n)
c) ker(λ) = {1,−1} ∼= Z2
d) For n ≥ 2, Spin(n) is connected
e) For n ≥ 3, Spin(n) is simply-connected and λ : Spin(n) → SO(n) is the universal (2-sheeted) covering of the
group SO(n) f) The linear subspace m2 ⊂ Cn,m2 := Span{eiej : 1 ≤ i ≤ j ≤ n} is a Lie algebra that coincides with
the Lie algebra of Spin(n) under the standard matrix commutator. Hence Spin(n) ⊂ Cn.

24Recall:

Definition 9.3. A pair (C(Q), j) is called a Clifford Algebra for (V,Q) if:
1) [Associative Algebra] C(Q) is an associative algebra over a characteristic zero field with identity 1l.
2) [Clifford Multiplication] j : V → C(Q) is a linear map and j(v)2 = Q(v) · 1l, ∀v ∈ V .
3) [Uniqueness] If A is another associative algebra over a characteristic zero field with identity and u : V → A

satisfies 2), then ∃ a unique algebra homomorphism Ũ : C(Q)→ A such that the following diagram commutes:

C(Q)

Ũ

!!
V

u //

j
==

A

33



Finally we have arrive at the main result about Clifford Algebras that we need. Recall that a representation
of a group G on a vector space V is said to be faithful if the map ρ : G → GL(V) is faithful. In the case of the
spin representation, this simply means that the map κn is injective. Our main result is the following:

Theorem 9.2. The Restricted Spin Representation κn|Spin(n) of a Clifford Algebra Cn is a faithful representation
of Spin(n)

Spinors on V ⊕ V∗

We will use the inner product from §1 to define the quadratic form Q:

v2 := Q(v) = 〈v, v〉, ∀v ∈ V ⊕ V∗ (53)

Let CV be the Clifford Algebra C(V⊕V∗, Q). Note that CV has a natural representation on S = ∧•V∗, (X+ξ) ·ϕ =
ιXϕ+ ξ∧ϕ. Let’s verify that this is a representation, i.e. (X+ ξ)2 ·ϕ = 〈X+ ξ, X+ ξ〉ϕ:

(X+ ξ)2 ·ϕ = (X+ ξ) · (ιXϕ+ ξ∧ϕ)

= ιX(ιXϕ) + ξ∧ ιXϕ+ ιX(ξ∧ϕ)

= ιX(ιXϕ) + ξ∧ ιXϕ+ ιXξ∧ϕ− ξ∧ ιXϕ

= ιXξ∧ϕ = ξ(X)ϕ

= 〈X+ ξ, X+ ξ〉ϕ

This is in fact the spin representation for CV . If {êi ⊕ f̂j} is an adapted basis for V ⊕ V∗, then the n-vector
ω := ê1ê2 · · · ên has ω2 = 1 so that the spin representation splits into the ±1 eigenspaces of ω, i.e. S = S+ ⊕ S−
or ∧•V∗ = ∧evenV∗ ⊕ ∧oddV∗. In analogy to helicity in quantum mechanics, this decomposition is called the
helical decomposition. Now it is claimed that even though CV · (S+ ⊕ S−) 6= CV · S+ ⊕ CV · S−, the spin group
Spin(V ⊕ V∗) ⊂ CV preserves this splitting. Analogously to the case of §2.3.1, we have,

Spin(V ⊕ V∗) = {v1 · · · vr : vi ∈ V ⊕ V∗, 〈vi, vi〉 = ±1, r even ⊂ CV }

Note that we have r even so that the map v1 · · · vr 7→∏i〈vi, vi〉 is always 1. This is equivalent to the intersection
with the connected component containing the identity, since v1 · · · vr 7→ ∏i〈vi, vi〉 is continuous. As V ⊕ V∗
is a vector space of dimension 2k, the results for even n hold and in particular, ρ : Spin(V ⊕ V∗) → SO(V ⊕
V∗), ρ(x)(v) = xvx−1, x ∈ Spin(V ⊕ V∗) is again a two-sheeted universal cover of SO(V ⊕ V∗).

Now that we know that there is a natural Clifford Algebra structure on V ⊕ V∗, how does this relate to
the symmetries of the past few sections? The symmetries, such as the {B,β}-transformations, were defined
as action by the exponentiating a bivector or 2-form. Moreover, B,β were skew-symmetric so that B,β ∈
so(V ⊕ V∗) ∼= ∧2(V ⊕ V∗) ⊂ CV . As such, we can relate the nature spinors to the symmetries by considering the
action of so(V ⊕ V∗) on V ⊕ V∗ via the pushforward of ρ, dρx : TxSpin(V ⊕ V∗) ∼= so(V ⊕ V∗)→ TxSO(V ⊕ V∗) ∼=
so(V⊕V∗), dρx(v) = [x, v], x ∈ so(V⊕V∗), v ∈ V⊕V∗. Let’s consider three cases: the B-transform, the β-transform
and the GL(V ⊕ V∗) action:

B-Transformation

Without the loss of generality, we can write B = 1
2Bije

i ∧ ej, Bij = −Bij. Under the quotient CV = τ(V)/I, the
image of B, B̃ is25 B̃ = 1

2Bije
jei and we have:

dρejei(ei) = [ejei, ej] = (ejei)ei − ei(e
jei) = ej(eiei) + (eie

i)ej = {ei, ei}e
j = ej

Finally, let’s consider the action of B on a form ϕ ∈ ∧•V∗. Note that B ·ϕ = 1
2Bije

j∧ (ei)∧ϕ) = −B∧ϕ so that
e−Bϕ = (1− B+ 1

2B∧ B+ · · · )∧ϕ.

25Remember, êi ∧ êj can be considered a map V → V∗ and note that êi ∧ êj(êi) = ιêi ê
i ∧ êj = êj so that

ei 7→ ej, ej 7→ ei.
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β-transform

Now if β = 1
2β
ijei ∧ ej, β

ij = −βji, then its quotient β̃ ∈ CV is, β̃ = 1
2β
ijeiej. As before, this leads to

e−βϕ = (1− ιβ + 1
2 ι

2
β + · · · )ϕ

GL(V ⊕ V∗) Action

If A ∈ End(V) < so(V ⊕ V∗) we can write it as A = Ajie
i ⊗ ej. Recall that the lower diagonal term of a

transformation T ((48)) has a minus sign, so that we have a transformation of,

T =

[
A

−A∗

]
so that the action of A is X+ξ 7→ A(X)−A∗(ξ). Hence the image of A in the Clifford Algebra is 1

2A
j
i(eje

i− eiej)
and it’s spinorial action on ϕ ∈ ∧•V∗ is,

A ·ϕ =
1
2
Aji(eje

i − eiej) ·ϕ =
1
2
Aji
(
ej(e

i ∧ϕ) − ei(ιejϕ)
)

=
1
2
Aji
(
ιej(e

i ∧ϕ) − ei ∧ ιejϕ)
)
=

1
2

(
Ajiδ

i
jϕ−Ajie

i ∧ ιejϕ
)

=
1
2
((TrA)ϕ−A∗ϕ)

Hence the exponential action of GL(V) on V ⊕ V∗ is eA =
√

det(A)(A∗)−1ϕ which induces a splitting of
S = ∧•V∗⊗ (detV)1/2. This can be extended to a full acton of GL(V)⊕GL(V) < SO(V⊕V∗) in a relatively natural
way.

These actions will serve an important role in determining the diffeomorphism pseudogroup of a Generalized
Complex Manifold. Moreover, it turns out that the deformation classes of Generalized Complex Manifolds will be
related to the allowable B,β transforms. Finally, note that this natural spin structure coupled with the invariances
of B,β has a direct meaning in String Theory where B plays the role of the Neveu-Schwarz 2-form potential.

9.4 The Mukai Pairing and Pure Spinors
We will see later that generalized complex geometry involves the specification of maximal isotropic subbundle L
and that these bundles correspond to certain spinors called pure spinors. In order to establish this correspondence,
we will need a bilinear form on the set of spinors so that the 2-form ε needed to define L(E, ε) can be constructed.
The bilinear form Gualtieri and Hitchin used for this purpose is called the Mukai Pairing:

Definition 9.5. The Mukai Pairing is defined to be (·, ·)M : S ⊗ S → detV∗, (s, t)M 7→ (α(s) ∧ t)top, where α is
the antiautomorphism CV → CV defined by the quotient of v1 ⊗ · · · ⊗ vk 7→ vk ⊗ · · · ⊗ v1 and the top indicates that
we take the top degree component of the polyform.

The Mukai Pairing is a different, but still natural (relative to the Clifford Algebra structure) bilinear form that
is compatible with the natural spin action. It was first described by Chevalley [11], Page 143, where he termed it
"the bilinear form on spinors." Later, Mukai [43] discovered that it was useful in classifying which symplectic
manifolds admit spin structures. The main theorem about the Mukai Pairing is the following:

Proposition 9.4. ([11] Page 143, III2.1, III 2.2) The Mukai Pairing is invariant under the identity component of
Spin(V ⊕ V∗):

(x · s, x · t)M = (s, t)M ,∀x ∈ Spin0(V ⊕ V∗)

In order to prove this, we first need to establish a bit of algebra. Since V,V∗ are maximal isotropic subspaces,
∧•V,∧•V∗ are subalgebras of C(V ⊕ V∗) since any element of ∧•V or ∧•V∗ will still have norm 0 under the
Clifford Norm, 〈·, ·〉. In particular, this means that detV is a 1-dimensional subspace of C(V ⊕ V∗). It is claimed
that detV generates a special ideal:

Claim 9.1. detV generates a left ideal I such that if f ∈ detV is a generator, then every element of the ideal has a
unique representation as sf, s ∈ ∧•V∗
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The proof of this claim is almost immediate. Since v ∧ f = 0,∀v ∈ ∧•V and as C(V ⊕ V∗) ∼= ∧•(V ⊕ V∗), we
immediately get the desired result. As a result, this induces an action of C(V ⊕ V) on ∧•V∗,

(ρ(x)s) f = xsf, ∀x ∈ C(V ⊕ V∗), ρ : Spin(V ⊕ V∗)→ SO(V ⊕ V∗) (54)

Now we can express the Mukai pairing in terms the generator f of I,

10 The Vinogradov and Courant Brackets

Notation:

• Γ (·) means "sections of"

• Ω•(M) = ⊕i≥0Ωi(M) = Γ
(
⊕i≥0 ∧i (T∗M)

)
is the exterior algebra of T∗M

• V•(M) = ⊕j≥0Vp(M) = Γ
(
⊕j≥0 ∧j TM

)
is the exterior algebra of TM

• Note that V•(M)⊗Ω•(M) ⊂ End(Ω•(M))

The goal of this section is to introduce two types of Brackets on V ⊕V∗ that when carried over to TM⊕ TM∗
will allow us to define a Generalized Complex Structure J . In order to do this we need to define the concept of
a derived bracket. We will have many brackets in this section and in order to avoid the confusion of some of
the references, we will explicitly label all brackets as follows:

[·, ·] — Loday Bracket
[·, ·]D — Derived Bracket
[·, ·]L — Lie Bracket on C∞(TM)

[·, ·]G — Graded Commutator on End(Ω•(M))

[·, ·]V — Vinogardov Bracket
[·, ·]S — Schouten Bracket
[·, ·]C — Courant Bracket

Before starting, let’s give a few definitions to establish notation and to help with readability. Firstly, note
that any graded vector space or graded algebra in this thesis will be Z or Z2-graded and the set I will be used
to denote the index set of the grading.26 Furthermore if V = ⊕i∈IVi is a graded vector space then we define the
degree map | · | : V → I to be the index of the homogeneous space of the input. That is, if v ∈ Vi ⊂ V , then
|v| = i. In order to speak of brackets, one (generally) needs to speak of Lie Algebras in some shape or form. Since
differential complexes are in general sequences of graded vector spaces (or injective resolutions), we will require
the notion of a Graded Lie Algebra:

Definition 10.1. ([24], Page 415) A Graded Lie Algebra L is a graded vector space L = ⊕i∈ILi together with a
linear map of degree zero,27 L⊗ L→ L, x⊗ y 7→ [x, y] satisfying the following:
i) [x, y] = −(−1)|x|·|y|[x, y]
ii) [x, [y, z]] = [[x, y], z] + (−1)|x||y| [y[x, z]]

Finally, we want to introduce the concept of a graded, differential Lie Algebra for a graded vector space V
that has the familiar differential structure of the Exterior Algebra as well as a bracket:

Definition 10.2. ([24], Page 415) A Graded Differential Lie Algebra is a Graded Lie Algebra L equipped with
an operator D : L→ L of degree 1 that is a derivation, i.e. D satisfies:

D[x, y] = [Dx, y] + (−1)|x|[x, dy]
for all x, y ∈ L

26While one can generalize the index set to be an arbitrary monoid, we will only consider index sets I that are
groups

27Recall that a linear map f from a graded vector space V = ⊕i∈IVi to a graded vector space W = ⊕j∈IWj is
of degree k if f(Vi) ⊂ f(Wi+k),∀i ∈ I. This degree is related to but different from the degree map | · |
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A few last considerations to state: End(Ω•(M)) is a graded algebra, where the grading is given by endomor-
phisms of degree k for k ∈ Z, k ≤ dimM. Also note that we will be moving between the vector space formulation
and the vector bundle formulation of the brackets developed in this section interchangeably; if one has qualms
with this, consult [38, 13] for full justification.

10.1 Derived Brackets
This section will summarize the results in [38]. First, let’s consider a familiar example from the category of smooth
manifolds. Let M be n-manifold and let C∞(TM) = {X ∈ End(C∞(M))|X(fg) = X(f)g + fX(g)}. Recall that TM
naturally has the structure of an infinite-dimensional Lie Algebra under the Lie Bracket [·, ·]L : C∞(TM) →
C∞(TM) and that there is a natural extension of the differential on functions, exterior derivative d which is
defined on forms as,

d : Ωk(T∗M)→ Ωk+1(T∗M)

ω(X1, . . . , XK) 7→ Ω(X1, . . . , XK+1) =
∑
i

(−1)iXiω(X1, . . . , X̂i, . . . , XK+1)

+
∑
i<j

(−1)i+jp([Xi, Xj], X0, . . . , X̂i, . . . , X̂j, . . . , XK+1)

where Ωk(T∗M) is the sheaf of sections of ∧kT∗M. Since the differential complex Ω•(M) is a graded algebra,
we can define the degree of a map Ω• → Ω•+l to simply be l. In the case of the exterior derivative, d has degree
1. Finally recall that if ιX : Ωk(M)→ Ωk+1(M) is the inner product, a derivation of degree −1, we have Cartan’s
Formulas:

[d, d]G = 0 [ιX, d]G = LX [ιX, ιY ]G = 0 [LX, ιY ]G = ι[X,Y]L (55)

Now note that that if we combine the second and fourth of the Cartan Formulae, we have:

ι[X,Y]L = [LX, ιY ]G =
[
[ιX, d]G , ιY

]
G (56)

This is one of the inspirations for the derived bracket — the idea being that one can compute the Lie Bracket
of some exotic differential algebra in terms of a "standard" Lie Bracket and a differential operator. In this case,
we see that one can use the standard Lie Bracket to define the (graded) bracket for graded endomorphisms of
Ω•(M). In order to define a derived bracket, we first need to define a Loday Algebra of degree n:

Definition 10.3. [38], (1.1) A Loday Algebra of degree n is a graded vector space V over a field K, char(K) 6= 2
and a K-bilinear map [·, ·] : V ⊗ V → V satisfying the following identity:

[a, [b, c]] = [[a, b], c] + (−1)(n+|a|)(n+|b|)[b, [a, c]] (57)

where |a| is the degree of a ∈ V .

Note that this looks very similar to the Jacobi Identity and if [·, ·] is antisymmetric, then a Loday algebra is
simply a graded Lie Algebra. In this paper, one can assume that all fields K are either R or C. Now we are in a
position to define the Derived Bracket associated to a Loday Algebra of degree n.

Definition 10.4. [38], (1.2) If (V, [·, ·], D) is a graded, differential Lie Algebra over a field K with Loday bracket of
degree n, we define the Derived Bracket, [·, ·]D : V ⊗ V → V, by

[a, b]D = (−1)n+|a|+1[Da, b] (58)

In the case with ιX, d, we have V = End(Ω•(M)), [, ] = [·, ·]G , D = LX and [·, ·]D = [·, ·]L. All of the brackets
dealt with in this paper are Loday Brackets. Once we describe the Vinogradov Bracket and the Courant Bracket,
we will see our main examples of derived brackets. Notice that since we don’t force the Jacobi Identity to hold,
replacing it with (28), we will find structures that are not necessarily Lie Algebras. For reference, the main
algebraic statements about the derived bracket relative to the initial Loday Bracket can be summarized in the
following theorem [38], Theorem 1.1:
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Theorem 10.1. The following hold:
i) The derived bracket of a Lie bracket28 of degree n is a Loday bracket of degree n+ 1
ii) The map D is a morphism of Loday algebras from (V, [·, ·]D) to (V, [·, ·])
iii) The map D is a derivation of the Loday bracket [·, ·]D
iv) The bracket [·, ·]D induces a Lie Bracket of degree n+ 1 on V/D(V)

The first three statements are a matter of definition chasing, while the last statement is a bit more subtle to
prove. We can generalize the case of (58) by instead considering the nested commutator definition. Recall that
for a graded differential Lie Algebra (V, [, ], D), the derivative operator D is said to be act via interior derivation
if ∀a ∈ V,Da = [d, a] where d is a square-zero element of V , i.e. [d, d] = 0. Using this definition we have,

Theorem 10.2. Let (V, [, ], D) be a graded differential Lie Algebra with bracket of degree n. If D acts via interior
derivation by an element d ∈ V such that |d|+ n is odd and [d, d] = 0, then for all a, b ∈ V the derived bracket is:

[a, b]D = [[a, d], b] (59)

Proof. This is a straight-forward computation:

[a, b]D = (−1)n+|a|+1[Da, b] = (−1)n+|a|+1 [[d, a], b]

= −(−1)n+|a|+1(−1)|d||a| [[a, d], b] = (−1)n+|a|+2+|a||d| [[a, d], b]

= (−1)n+|d|+(|a|−1)|d|+(|a|+|2|) [[a, d], b] = −(−1)(|a|−1)|d|+(|a|+|2|) [[a, d], b]

= [[a, d], b]

where the second to last equality comes from the fact that n + |d| is odd and the last equality is due to the fact
that |a|− 1 will be odd (resp. even) iff |a|+ 2 is even (resp. odd).

This paper will only focus on derivative operators that act via interior derivation, since many such operators
in Complex Geometry behave this way. Note that the generalization in theorem 3.2 will be useful, for it allows us
to cast the Vinogradov bracket and eventually the Courant bracket in terms of derived brackets. Before getting
to these brackets, there is one more definition to state.

If one traces through the definitions, it is clear that the graded, differential Lie Algebra (V, [, ], D) of degree n
need not have a skew-symmetric derived bracket, for if X, Y ∈ V, |X| · |Y| is odd, then [X, Y] = [Y, X]. In order to
rectify this we define the skew-symmetrization of the derived bracket as,

Definition 10.5. Let (V, [, ], D) be a graded, differential Lie Algebra and [·, ·]D its derived bracket. The skew-
symmetrization [·, ·]−D of [·, ·]D is,

[·, ·]−D =
1
2

(
[a,Db] − (−1)n+|a|[Da, b]

)
10.2 The Vinogradov and Courant Brackets
One of the motivations for introducting the Vinogradov bracket is that rapidly leads to the Courant bracket.
Most of the treatments of Generalized Complex Geometry tend to ignore the motivation for the Courant Bracket,
as Hitchin [32] started with the form of the Courant Bracket in [13] and expanded it to arbitrarily p-forms. The
Vinogradov Bracket [·, ·]V : End(Ω•(M))⊗ End(Ω•(M))→ End(Ω•(M)) is defined, for a, b ∈ End(Ω•(M)) to be

[a, b]V :=
1
2

(
[[a, d], b] − (−1)|b| [a, [b, d]]

)
(60)

Note that this bracket does not satisfy the Jacobi identity and that it is almost the skew-symmetrization of [·, ·]G
except for the factor of (−1)|b|. This factor plays an important role into the subspaces of End(Ω•(M)) for which
the Jacobi identity holds and it turns out that specification of such subspaces is related to Maximally Isotropic

28A Lie Bracket of Degree n is an antisymmetric bracket that satisfies . Note that by taking the derived bracket
of this Lie Bracket, we are increasing changing the premultiplying factor as in (60)
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Bundles. It turns out that the Vinogradov Bracket is actually the skew-symmetrization of the derived graded
bracket, [a, b]D =

[
[a, d, , ]G b

]
G where d is the de Rham Differential. Since V•(M) ⊗ Ω•(M) ⊂ End(Ω•(M),

we can restrict to be the Vinogradov Bracket to a subbundle of interest, namely TM ⊕ T∗M. In particular the
Courant Bracket is defined to be the restriction of the Vinogradov Bracket to TM⊕ T∗M. This is summarized in
the following theorem, [38], Theorem 3.3:

Theorem 10.3. We have the following results:
i) The Vinogradov Bracket is a Loday Bracket of odd degree ii) The skew-symmetrization of the derived bracket is
the Vinogradov bracket iii) The skew-symmetrized derived bracket of a vector field X and a 1-form ξ is

[X, ξ]
−
D = LXξ−

1
2
dιXξ (61)

iv) The restriction of the skew-symmetrized derived bracket to TM⊕ T∗M is given by,

[X+ ξ, Y + η]
−
D = [X, Y]L + LXη− LYξ−

1
2
d(ιXη− ιYξ) (62)

This is the Courant Bracket

Now that we have something similar to the Lie Bracket defined on the space TM⊕T∗M, the Courant Bracket,
we have two main questions to answer:

• Will we get a Lie Algebra from the Courant Bracket?

• Will we get an analogue of the Frobenius or Newlander-Nirenberg Theorems? Can integrability and/or
involutivity of a Tangent distribution be determined in terms of this bracket

It turns out that the answer to the first question is no, but if we expand the definition of a Lie Algebra to
that of a Lie Algebroid we can answer the second question positively.

10.3 Lie Algebroids
Let’s try to motivate the Lie Algebroid construction a bit before giving the algebraic definition. The most
"geometrically-natural" Lie Algebra is the infinite-dimensional Lie Algebra of vector fields on an n-manifold
with the standard Lie Bracket [·, ·]L. Let f, g ∈ C∞(M) and recall that since vector fields v,w ∈ Γ(TM) are linear
derivations of C∞(M), we have,

[v,w]L (fg) = [v,w]L (f)g+ f [v,w]L g (63)

so that the Lie Bracket is also a derivation of C∞(M). On the other hand, standard Differentiable Manifolds
texts will show that following the Leibniz rule holds,

f ∈ C∞(M), [v, fw]L = f [v,w]L + v(f)w (64)

However, what happens if we have a vector bundle p : E → M such that Γ(E) admits a Lie Algebra but with a
bracket that is not a derivation? We can reduce this situation to the case of the tangent bundle and preserve
(66) by associating the bracket on E to a map a : E → TM that takes the role of v(f) in (66). This is precisely
what the anchor of a Lie Algebroid does; more formally we have,

Definition 10.6. Let p : E→M be a vector bundle over a manifoldM such that there exists a Lie Algebra structure
(E, [·, ·]) on Γ(E). A Lie Algebroid structure on E is the specification of a map ρ : E→ TM called the anchor such
that for all u, v ∈ Γ(E), f ∈ C∞(M) we have,

[u, fv] = f[u, v] + (ρ(u)f)v (65)

Recall that one extends the Lie Bracket of TM to a Lie Bracket on the exterior algebra ∧nTM by using the
Schouten Bracket, [·, ·]S . One can do the same for a Lie Algebroid:
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Proposition 10.1. Let L→M be a Lie Algebroid with bracket [, ]. The Schouten bracket acting on X1 ∧ · · ·∧Xp ∈
C∞(∧pL), Y1 ∧ · · ·∧ Yq ∈ C∞(∧qL) is defined as,

[X1 ∧ · · ·∧ Xp, Y1 ∧ · · ·∧ Yq]S =
∑
i,j

(−1)i+j[Xi, Yj]∧ X1 ∧ · · · X̂i · · ·∧ Xp ∧ Y1 ∧ · · · Ŷj · · ·∧ Yq (66)

[X, f]S = − [f, X]S ∀X ∈ C∞(L), f ∈ C∞(M) (67)

This bracket turns C∞(M) into a graded Lie Algebra with

[A,B]S = −(−1)|a|−1(−1)|b|−1 [B,A]S

[A, [B,C]S ]S = [[A,B]S , C]S + (−1)|a|−1(−1)|b|−1 [B, [A,C]S ]S

Given this and the results of the last section, if we define a differential operator and an inner product, one
may guess that it will be possible to speak of derived brackets. The main goal of this section from this point on
is to define these structures in order to get a better grasp of the underlying geometry of a manifold that admits
a Lie Algebroid structure. As expected, we define the derivative and inner product operators as:

Definition 10.7. The Lie Algebroid derivative dL : C∞(∧kL∗) → C∞(∧k+1L∗) is a degree 1 linear operator
defined by

dLσ(X0, . . . , Xk) =
∑
i

(−1)ia(Xi)σ(X0, . . . , X̂i, . . . , Xk)

+
∑
i<j

(−1)i+jσ
(
[Xi, Xj]S , X0, . . . , X̂i, . . . , X̂j, . . . , Xk

)
(68)

Definition 10.8. Let X ∈ C∞(L). We define the interior product ιX to be the degree −1 derivation on C∞(∧•L∗)
defined by

ιXσ = σ(X, · · · ) (69)

Using Cartan’s formula we define the Lie Derivative by,

LLX = dLιX + ιXdL (70)

Now that we have used the Lie Algebroid bracket and anchor to extend the notion of the exterior derivative
to other bundles, we can answer the second question of the last section with an affirmative answer by providing
a theorem analogous to the Frobenius theorem. This is quite an involved theorem that requires much of the
derived bracket formalism presented above. Sussmann [50] actually proves a very broad theorem that extends the
Frobenius Theorem using a notion of tangent distributions of finite type.

Definition 10.9. A tangent distribution D ⊂ TM is said to be locally of finite type if ∀m ∈M there exist vector
fields {X1, . . . , Xk} ∈ Dm such that:
1) X1(m), . . . , Xk(m) span

Finally before continuing onto the Courant Algebroids, let’s look at some examples.

Examples

Let’s start with the tautological examples:

• The Tangent Bundle — The anchor is simply the identity map, a ∈ End(TM), a = 1lTM. Any integrable
sub-bundle S ⊂M also qualifies, with a = ι : S→M

• Complex Structures — Since TM+ < TM⊗C is bundle isomorphic to that uncomplexified tangent bundle on
a Complex Manifold, it has a natural Lie Algebra structure and the inclusion map is anchor.

• CR Structures — Recall from §2 that a CR structure on a real, 2n − 1 dimensional manifold is a complex
n − 1 dimensional sub-bundle L < TM ⊗ C such that L ∩ L = {0} and is closed under the Lie Bracket. The
inclusion map again serves as an anchor
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As a more complicated example, we consider the Atiyah Sequence. This example will give a Lie Algebroid
structure on a rather large class of fiber bundles and is quite useful, because it will allow for the introduction
of a few more elementary structures in Differential Geometry. The main point to grasp here is that the set of
G-invariant vector fields on a Principal G-bundle is a Lie Algebroid, analogous to the fact that the vector fields
on a manifold form a Lie Algebra. This will serve as an example where the anchor will allow the definition of
connections on Lie Algebroids, which allows for geometry to be deciphered.

Let π : P → M be a fiber bundle over a manifold M and G a Lie Group with Lie Algebra g. An important
type of bundle P →M is one that admits a free group action of G:

Definition 10.10. A G-bundle is a fiber bundle π : P → M that admits a left action by G such that M is
homeomorphic to the orbit space P/G and π : P →M is bundle isomorphic to the bundle πP/G : P → P/G. If G acts
freely on P then π : P →M is known as a principal G-bundle.

Note that from this definition, we see that a fiber of P is isomorphic to G. Conversely, if we have a manifold
P ′ such that P ′ admits a free left action ρ : G × P ′ → P ′ such that π : P ′ → P ′/G is a submersion, then the
Ehresmann Fibration Theorem guarantees that P ′ → P ′/G is a fiber bundle. Any such manifold P ′ is also known
as a principal G-bundle.

Given a principal G-bundle, one can define an Ehresmann Connection that generalizes the affine connection
and covariant derivative. The Ehresmann Connection separates each fiber into a horizontal space HpP ⊂ TpP, p ∈
P, which is related to the Ehresmann connection analogously to the relationship between the tangent space of
a manifold and the Levi-Civita connection. More precisely, the horizontal space is defined as the image of the
map π∗ on tangent spaces induced by the projection π : P →M, i.e. π∗ : TpP → Tπ(p)M. As such, the Horizontal
Subspace gives a splitting of TpP into two subspaces. In particular, one receives the split exact sequence,

0 −→ Vp ↪→ TpP
π∗−→ Tπ(p)M −→ 0

where Vp is known as the vertical space at p. Finally recall that the adjoint bundle Ad(P) is an extension
of P as a fiber bundle, Ad(P) = P ×Ad g ∼= (P × g)/G such that we have a fiber-wise bracket [p · g, x] =
[p, g−1xg][p,Adg−1(x)], ∀p ∈ P, g ∈ G, x ∈ g. Under this construction, each fiber is naturally a Lie algebra,
isomorphic to g.

Now we can define the Atiyah Sequence:

Definition 10.11. Suppose that π : P →M is a principal G-bundle. The Atiyah Sequence is the exact sequence
of fiber bundles,

0 −→ Ad(P)→ TP/G
π∗−→ TM −→ 0 (71)

where the first map is sends (P × g)/G to P × e/G ↪→ TP/G.
Note that TP/G is the set of G-invariant vector fields on P. The bundle is TP/G is a Lie Algebroid with anchor

π∗.
By analogy with the construction connections on TM, any splitting of TP by the anchor π∗ will allow one

to define a g-valued connection on the image of π∗, i.e. the Horizontal Space. As such, we see that the anchor
allows for the construction of connections on Lie Algebroids.

10.4 The Courant Algebroid
Given that the construction of the Courant Bracket as a derived bracket is complete from a categorical point-
of-view, we will now present results that will aid in computation. The majority of the proofs are technical and
tedious in that they require many nested commutator computations. As such, for clarity we will only present the
results; more information can be found in [25, 13, 11].

Recall that the Courant Bracket was defined in (64) and in this section the bracket will be denoted [A,B]C . It
turns out that this bracket fails to satisfy the Jacobi Identity. However, there is a very close relationship between
the the Jacobiator of the Courant Bracket and the Nijenhuis Operator associated to this bracket. As one might
expect, we define the Jacobiator and Nijenhuis Operator as,

Jac(A,B,C) = [[A,B]C , C]C + [[B,C]C , A]C [[C,A]C , B]C (72)

Nij(A,B,C) =
1
3
(〈[A,B]C , C〉+ 〈[B,C]C , A〉+ 〈[C,A]C , B〉) (73)

41



The relationship between these two is stated in the following proposition, [25], Proposition 3.16:

Proposition 10.2. Jac(A,B,C) = d(Nij(A,B,C))

Given that the Newlander-Nirenberg theorem states that an almost complex structure J is integrable iff
Nij(J, A, B) = 0, ∀A,B ∈ TMC, one might expect that the Courant Bracket will be useful for defining integra-
bility. We will explore this more in the next section. We can now define more generally Courant Algebroid,
which satisfies the important properties associated to the Courant Bracket ([13], Definition 2.1) :

Definition 10.12. A Courant Algebroid is a vector bundle p : E→M equipped with a nondegenerate symmetric
bilinear form 〈·, ·〉 as well as a skew-symmetric bracket [·, ·] on C∞(E) and with a smooth bundle map πE→ TM (the
anchor). This induces a natural differential operator D : C∞(M)→ C∞(E) via the definition 〈Df,A〉 = 1

2π(A)f,∀f ∈
C∞(M), A ∈ C∞(E). The following compatibility conditions are required29:
1) π([A,B]) = [π(A), π(B)], ∀A,B ∈ C∞(E)
2) Jac(A,B,C) = D(Nij(A,B,C)), ∀A,B,C ∈ C∞(E)
3) [A, fB] = f[A,B] + (π(A)f)B− 〈A,B〉Df,∀A,B ∈ C∞(E), f ∈ C∞(M)
4) π ◦ D = 0
5) π(A)〈B,C〉 = 〈[A,B] +D〈A,B〉, C〉+ 〈B, [A,C] +D〈A,C〉〉, ∀A,B,C ∈ C∞(E)

Note that from the preceding sections, TM⊕ T∗M is naturally a Courant Algebroid, provided that an anchor
is chosen and the Courant Bracket is used.

One of the properties of the standard Lie Bracket is that it commutes with diffeomorphisms, i.e. f∗([A,B]) =
[f∗A, f∗B]. One might ask whether this diffeomorphism invariance holds in the case of the Courant Bracket for
the generalized diffeomorphisms (i.e. standard diffeomorphisms as well as B,β-transforms). It turns out that this
is true:

Theorem 10.4. That map eB is an automorphism of the Courant bracket iff the 2-form B is closed. Subsequently,
the set of automorphisms of the Courant bracket Ωdiff is,

Ωdiff ∼= Diff(M)oΩ2
closed(M) (74)

where Ω2
closed(M) is the set of closed 2-forms on M

Now that we have a bracket, a cogent question to ask is "What does involutivity with regard to the bracket
mean, geometrically?" In the case of real manifolds, involutivity with regard to the standard Lie Bracket is
equivalent to integrability via the Frobenius theorem. It is natural to thus ask, "Is it possible to relate Courant
involutive subspaces of TM ⊕ T∗M to some sort of integrable structure?" This is answer in terms of Dirac
structures on a manifold:

Definition 10.13. A real, maximal isotropic sub-bundle L < TM⊕ T∗M is called an Almost Dirac Structure. If
L is involutive, then the almost Dirac structure is said to be integrable and termed a Dirac Structure. If the same
conditions are met for the complexified generalized tangent bundle, (TM⊕ T∗M)⊗ C then the bundle L is called a
complex Dirac structure

The main reason for the real, maximal and isotropic hypotheses is because of the following proposition ([25],
Propositions 3.26-3.27):

Proposition 10.3. If L < TM ⊕ T∗M is involutive, then L must either be an isotropic subbundle or a bundle of
type ∆ ⊕ T∗ for ∆ a nontrivial involutive sub-bundle of T . Subsequently, if L is a maximal isotropic sub-bundle of
TM⊕ T∗M then the following are equivalent:

• L is involutive

• Nij|L = 0

• Jac|L = 0

Let’s show that a Dirac Structure subsumes Symplectic and Complex structures as we desire.
29For the Courant Bracket as previously defined, these properties are naturally satisfied
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Example: Symplectic Geometry

The tangent bundle TM is maximal isotropic and involutive so we have a Dirac structure. Now suppose that we
have a closed 2-form ω ∈ Ω2

Closed(M). Then the subspace {X + ιXω : X ∈ TM is involutive iff dω = 0 due to the
proposition about automorphisms of the Courant bracket.

Example: Complex Geometry

Suppose that J ∈ End(TM) is almost complex structure and let T0,1 < TM ⊗ C be the −i-eigenbundle and T1,0 <
TM ⊗ C be the i-eigenbundle. Then L = T0,1 ⊕ Ann(T0,1) is a maximal isotropic from Proposition 11.1. Now if L
is Courant integrable, by projecting to the component in TM, we get the standard Lie Bracket which means that
T0,1 is involutive and J is integrable. If J is integrable, then if X+ ξ, Y + η ∈ C∞(L) then we have

[X+ ξ, Y + η]C = [X, Y]C + ιX∂η− ιY∂ξ ∈ L

so that L is Courant involutive. Hence:

L is Courant involutive ⇐⇒J is integrable

Finally, we will briefly discuss the twisted Courant bracket. Consider the bracket

[X+ ξ, Y + η]H = [X+ ξ, Y + η]C + ιYιXH

for a closed 3-form H. This bracket will be important in classifying line bundles and hence curvature forms
associated to Generalized Complex Geometries; the complete description will be given in the section on Gerbes.
We end this section with the major result about [·, ·]H:

Proposition 10.4. Let A,B,C ∈ TM ⊕ T∗M with A = X + ξ, B = Y + η,C = Z + ζ. We then have the following
properties for the twisted Courant Bracket:

• NijH(A,B,C) = Nij(A,B,C) +H(X, Y, Z), JacH(A,B,C) = d(NijH(A,B,C)) + ιZιYιXdH. Hence we only have a
Courant Algebroid if dH = 0.

• If b is a 2-form then,
[ebX, ebY]H = eb[X, Y]H+db

11 Explicit Generalized Sasakian Metric

This section depicts a novel result from both a mathematical and physical perspective. Using a solution from [31],
we nearly find a metric for an explicit example of a Generalized Sasakian Metric. The majority of this section
will be written in coordinates and theorems from [31, 21] will be cited as needed. Using the coordinate definitions
of a Generalized Complex Structure as in [37] one can show that a SU(2)-structure is specified by three forms, a
1-form Θ, a 2-form J2 and a 2-form Ω2. From these components, one can construct a pair of bispinors30 Ψ+, Ψ−

that serve a similar purpose as the pure spinors in determining a pair of almost Generalized Kähler structures
J . These forms are polyforms in the ring ∧•TM ⊕ T∗M. The authors of [31] found an example of a dynamic
SU(2)-structure, which means that the rank of the lowest order forms of Ω± change with some parameter. These
solutions are constructed as fiber bundles over CP2 and just as in the Sasaki-Einstein case [22], any solution
that admits both contact and CR structures will be subject to the classification theorems of Tian and Yau (for
Kähler-Einstein 4-manifolds) [51].

We will start with the ansatz for Θ, J2,Ω2, Ψ± described in [31] and arrive at rather different warp factors.
Before describing the metric ansatz, recall that in Generalized Sasakian Geometry one need to define cone
coordinates that satisfy the proposition from the previous section. The dynamic SU(2)-structure solution provides

30These are very closely related to the pure spinor line bundles that determine the generalized almost complex
structure and in fact only differ from a spinor line representative by a B-transformation. Bispinors are constructed
by first applying the Fierz identity to the coordinate representation of a pure spinor and subsequently applying
the Clifford map, which is an explicit linear isomorphism C`(V) ∼= ∧•V
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cone coordinates for a cone over the Kähler-Einstein base CP2 that are almost exactly the same as the coordinates
used in [21]. In particular, one complex coordinate z = reiψ in [31] whereas in [21] the same coordinate is denoted
z = re3he3iψ. Since [31] applies a Z3-orbifold action to simplify the form of the metric, this slight different makes
sense. In order to avoid any potential difficulties regarding compatibility with the orbifold action, we will assume
that h ≡ 0 and that the domain of ψ specificed in [31] holds so that we can simply rescale the ψ from [21] via
a diffeomorphism. If we let u1, u2, u1, u2 denote our holomorphic and antiholomorphic, respectively, homogenous
coordinates in some chart Uα ⊂ CP4, the metric ansatz is of the form:

gαβ(x)dx
αdxβ = e−4B(r) (dr2 + r2dψ2)+ e2C(r)

∑
a

duadua (75)

The main ansatz made for the bispinors is provided in [37] and is written in a convenient form to apply
supersymmetry conditions (which are usually presented in the form of a Killing Spinor equation). We have:

Φ+ = e
1
2Θ∧Θ

[
cosϕ

(
1− 1

2
J22

)
+ sinϕImΩ2 − iJ2

]
(76)

Φ− = Θ∧

[
sinϕ

(
1− 1

2
J22

)
− cosϕImΩ2 + ireΩ2

]
(77)

Before stating what Θ, J2,Ω2 are, let’s briefly describe how they were found. The physical goal behind
Generalized Complex Geometries is to find geometries that serve as extrema of the low-energy effective field
theory action for type-IIB string theory, which is of the form (written in the Einstein Frame):

SLE =
1

2κ210

∫
d10x

√
−g(10)

[
R−

1
2

(
(∇φ)2 + e−φ|H3|

2 + e2φ|F1|
2 + eφ|F̃3|

2 +
1
2
|F̃5|

2
)]

−
1

4κ210

∫
C4 ∧H3 ∧ F3

where:

•
√
−g(10) is the determinant of a local representation of the 10-dimensional metric on a potential spacetime

manifold M

• R is the Ricci Scalar of the manifold M

• φ :M→ C is a scalar field

• F1 is the 1-form field strength, derived from a scalar potential. Physically, is analogous to the electric field.

• F3 is the 3-form Neveu-Schwarz field strength. This is an exact 3-form analogous to the Faraday 2-form
field strength of electromagnetism

• F5 is the exact 5-form Ramond-Ramond field strength. Note that F5 is self-dual, F5 = ?10F5, where ?10 is the
10-dimensional Hodge star operator.

• H3 is the 3-form associated to a choice of gerbe patching in H3(M;Z) B2, H3 = dB2

• C4 is the potential of F5, dC4 = F5

Note that minimizing this functional is similar in spirit to minimizing the Einstein-Hilbert Functional
∫√

gR, in
that an extrema represents manifold (up to diffeomorphism). This action is invariant under an SL(2,R) action and
by enforcing invariance under the superconformal algebra, one can determine a series of differential constraints
on the terms in the action. These constraints are in [31], equations (4.34) − (4.40). By making an ansatz
that allows for the field strengths to be expressed in terms of J2,Ω2, Θ, one can convert these into differential
constraints on an underlying Generalized Complex Geometry.

The authors of [31] found that the following forms of J2, Θ,Ω2 satisfy these differential constraints:

J2 =
i

2
e2C(r)

(
du1 ∧ du1 + du2 ∧ du2) (78)

Θ = 1− ire−4B(r)dt∧ dψ (79)

Ω2 = e
2C(r) z

r
du1 ∧ du2 (80)
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Note that in order to simplify the Generalized Sasakian Solution, some of the phase factors in the above solutions
of [31] were truncated. Give these forms, we can compute the bispinors (defined up to B-transform):

Φ+ = (1l− ire−4B(r)dr∧ dψ)

[
cosϕ

(
1l+ 1

4
e4C(du1 ∧ du1 + du2 ∧ du2)

)
− sinϕ sinψe2C(r)du1 ∧ du2

]
(81)

Φ− = e−2B(r)(dr+ irdψ)∧

[
sinϕ

(
1l+ 1

4
e4C(r)(du1 ∧ du1 + du2 ∧ du2)

)
− cosϕ sinψe2C(r)du1 ∧ du2

+ i cosψe2C(r)du1 ∧ du2
]

(82)

Given this ansatz, let’s see what the bispinors associated to a Generalized Sasakian Geometry. In [21], the
authors construct a Generalized Sasakian Geometry by considering bispinors Φ̃± of the form:

Φ̃+ =
(
r3e−3iψd(log r) − iη

)
· e−b2eb2+iω0 (83)

Φ̃− = r3
(
1l+ ie2∆d(log r)∧ η

)
·
(
−i
f5

32
e−∆eie

2∆ωT

)
(84)

where

• η = J−(d log r) is the (generalized) contact 1-form

• ω0 is the first form of the symplectic triple

• ωT is the transverse of the symplectic triple

• f5 is the charge of the 5-form Ramond-Ramond flux. That is, F5 = f5volg|base
• ∆ is the warp factor

• · is the Clifford Action

Our goal is to relate Φ̃± to Φ± so that the forms ω0,ωT , b2 associated to Φ± can be found and checked again
the symplectic triple theorem of the previous section. Now to find the contact form η, we need to use that fact
that in a Sasakian manifold, one has,

ω =
1
2
d(r2η)

where ω is the Kähler form on the metric cone of a Sasakian manifold. In the case of a Generalized Sasakian
Manifold, this is only true up to B-transform. That is, for some σ = ebη, we have

ω =
1
2
d(r2σ) (85)

The author decided to make the ansatz,
σ = η− re−2B(r) sinψdψ (86)

as it yields a solution and is possible to describe via a B-transform. In [31], a natural Kähler form ω = J1 + J2 is
constructed, where J1 satisfies the supersymmetry conditions and is defined by

J1 =
i

2
e−4B(r)dz∧ dz (87)

From this and (87) one can deduce a possible form of σ up to a choice of function depending on u1, u2. The form
of σ chosen was:

σ =
i

r2

(
e2C(r)(u1du1 + u2du2) − e−4B(r)reiψdr

)
(88)

Moreover, recall that ωT = 1
2dσ so that we have:

ωT =
1
2

[
−
2e2C(r)

r3
(u1dr∧ du1 + u2dr∧ du2) +

e2C(r)

r2
(du1 ∧ du1 + du2 ∧ du2)

]
(89)
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which is trivially closed. If we substitute (88) into the expressions for Φ̃+, Φ̃− we have,

Φ̃+ =

((
r2e−3iψ −

e−4B(r)eiψ

r

)
dr+

1
r2

(
e2C(r)(u1du1 + u2du2) − ire−2B(r) sinψdψ

))
· e−b2eb2+iω0 (90)

Φ̃− = r3
(
1l− e2∆

r
dr∧

1
r2

(
e2C(r)(u1du1 + u2du2) − e−4B(r)reiψdr− ire−2B(r) sinψdψ

))
·
(
−i
f5

32
e−∆eie

2∆ωT

)
(91)
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