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Abstract

Behavior of vortices is core to the understanding of phenomenons in

nature, such as Jupiter’s red spot. The simplification to point vortices

provides us with an easier way to model behaviors of large numbers of

vortices. Although we know from statistical mechanics that there exists

a time invariant measure, it is unclear whether the measure derived from

the Mean Field Equation (MFE) reflects the true behavior in nature. We

explore the point vortex model on the 2 dimensional disk and test for the

convergence to the Mean Field distribution using Kolmogorov-Smirinov

test (K-S test). Due to the pairwise interaction of the vortices, we use the

Fast Multipole Method (FMM) to decrease the calculations required. We

hope that the observed behavior on the disk imply a general result on all

simply connected domains via conformal mappings.

1 Motivation

We wish to study the limiting behavior of N -vortices in a bounded, simply

connected domain by considerng the behavior of N point vortices. The behavior

of regular vortices converges to that of point vortices weakly [4]. Intuitively,

this is reasonable, as this is similar to considering a small rigid body as a single

point at the center of mass. It is unclear what the limiting behavior of N

point vortices is as N approaches infinity. In this paper, we will numerically

explore the long run behavior of N point vortices in the unit disk with Dirichlet

boundary conditions.
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2 Background

2.1 Definitions and Basic Fluid Mechanics

The motion of incompressible fluids in terms of the velocity field u = u(x, t) ∈

Rn is given by the Euler Equations:

∂u

∂t
+ u · Ou+ Oρ,O · u = 0

For incompressible fluids, the density, ρ is constant, so the continuity equation

for fluid dynamics reduces to [3],

O · u = 0

We shall only consider the case when the point vortices are in the second dimen-

sion, that is n = 2. Intuitively, we define a point vortex as a central rotational

potential. If we denote the strength of a point vortex i as λi, then the point

vortex can be defined as λiδxi . We define ω = O× u as the vorticity of velocity

field. In a system of N point vortices, this is simply ω =
∑N
i=1 λiδxi . Recalling

a classical result, in a simply connected domain, there exists a stream function

ψ such that u = O⊥ψ, where O⊥ =

 ∂y

−∂x

. Then it follows that −4ψ = ω,

where ω = O× u. The fundamental solution of the negative Laplacian, −4, on

R2 is given by the Green’s function [6]

V (x, y) =
1

2π
log ‖x− y‖+ γ̃

Intuitively, the Green’s function corresponds to the potential of point y acting

on point x. In the unit disk, we solve for the boundary condition term, γ̃, via

the method of images. Overall, we have that the Green’s function on unit disk

is given by

V (x, y) = − 1

2π
log
‖‖y‖2x− y‖
‖y‖‖x− y‖

= − 1

2π
log
‖y‖‖x− y

‖y‖2 ‖
‖x− y‖
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Therefore, ψ is given by the convolution of the Green’s function with the vor-

ticity,

ψ(x) =

∫
V (x, y)ω(y)dy

Because the vorticity ω is the sum of weighted δ functions, the integral reduces

to,

ψ(x) =

n∑
i=1

λiV (x, yi)

Thus the perpendicular gradient of ψ(x) gives us the velocity of the vortices at

point x. Because the unit disk is conformally equivalent to any simply connected

domain via the Riemann Mapping Theorem, we can study the dynamics on the

unit disk and apply it to any simply connected domain via conformal mappings.

2.2 Hamiltonian and Equations of Motion

The Hamiltonian is commonly interpreted as the total energy of the system. In

our case, the Hamiltonian is given by

H =
∑
i 6=j

λiλjV (xi, xj)

Intuitively, this is just the sum of the pairwise potentials between vortices,

similar to gravitational energy of N point particles or electromagnetic potential

energy from N point charges. Notice that the Hamiltonian is given in terms of

position only. Let xi = (x1
i , x

2
i ). Deriving the Hamiltonian equations for our H,

∂H

∂x2
i

= λi
∂

∂x2
i

∑
j 6=i

λjV (xi, xj)

But the right hand side is exactly the stream function ψ at xi, so the equations

become.
∂H

∂x2
i

= λi
∂

∂x2
i

ψ(xi)
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Similarly,

− ∂H
∂x1

i

= −λi
∂

∂x1
i

ψ(xi)

But u = O⊥ψ, and u is the velocity field. So we get

λi
dx1

i

dt
=
∂H

∂x2
i

λi
dx2

i

dt
= − ∂H

∂x1
i

So our phase space is just our regular x, y plane [10].

2.3 Basic Statistical Mechanics and the Mean Field Equa-

tion

In statistical mechanics, a microstate is a microscopic thermodynamical con-

figuration that the system can be in. The configuration is determined by

properties such as entropy and internal energy. Let us denote the total en-

ergy E(0) = E′ + Er, where E′ is the energy of the heat reservoir and Er

is the energy of the system at state r. If we let Ω(E) be the number of

accessible states at energy E, then we define entropy as S = −κB ln Ω and

the thermodynamical β = 1
κB

∂S
∂E = 1

κBT
, where T is the temperature and

κB is the Boltzmann constant. The probability of being in state r is given

by Pr = C ′Ω(E(0) − Er). If Er � E(0), we expand entropy, S, and get

that ln Ω(E(0) − Er) = ln Ω(E(0)) − βEr, or Pr = Ω(E(0))e−βEr . Normal-

izing the probability, we get Pr = e−βEr∫
e−βEr

Letting P (E) =
∑
r Pr, we get

P (E) = CΩ(E)e−βE [8].

As N approaches infinity, there is a limiting result given by the Mean Field

Equation (sometimes known as the Boltzmann distribution to physicists or

Gibb’s measure or distribution to mathematicians). The MFE is given by

ρ = eβψ
(∫

Ω

eβψ
)−1

, ψ =

∫
Ω

V (x, y)ρ(y)dy
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where Ω here is the entire domain and ψ is the continuous stream function and

ρ is the continuous vorticity distribution (previously denoted ω in the discrete

case). For positive temperature state, the system is convex, thus the existence

of an unique solution to the MFE is guaranteed [1]. We do not need to restrict

ourselves to positive temperature states as we are not only concerned with the

thermodynamical behavior [10].

For negative temperature states, the solution of the MFE on the unit disk in

R2 exists if and only if −8π < −β ≤ 0, in which case the distribution of vortices

is given by

ρ(r) =
A+ 1

π

1

(1 +Ar2)2

where A = −β
8π+β [1].

2.4 Interpretation of the Negative Temperature

If we think of the number of accessible microstates in a system at a given

energy level, denoted Ω(E), as proportional to the area the system occupies

in the phase space, then positive temperature means that increasing the energy

increases the area the system occupies in the phase space because the probability,

P (E) = CΩ(E)e−βE is bounded and nonzero. Conversely, if the temperature is

negative, then increasing the energy of the system decreases the area that the

system is likely to occupy in the phase space. This may explain why vortices

tend to cluster (stronger vortices would have higher energy and cluster more).

2.5 Basic Ergodic Theory

Because we are exploring convergence to the Mean Field distribution, we may

discuss the convergence in terms of ergodicity. Formally, we work with the

measure space (D, F, µ), where D is the unit disk, µ is the Lebesgue measure,

and F is the associated σ-field. Consider a bijective µ-preserving map f : D→ D

with ft+s = ftfs for t, s ∈ R. By µ-preserving, we mean ∀A ∈ F , µ(ft(A)) =

µ(A) for all t. Hence we can consider the orbit of f given by fk, k ∈ N. Then

5



given any µ-measurable function ρ(x), ρ : D→ R, the time average of the system

is given by

ρ̄(x) = lim
n→∞

1

n

n−1∑
k=0

ρ(fk(x))

The spatial average of ρ is given by

ρ̃ =

∫
D
ρ(x)dρ

A system is ergodic if and only if

ρ̄(x) = ρ̃(x)

for a.e. x ∈ D with respect to µ.

In our case, our f is given by equations of motion of the vortices in section 2. ρ

is given by the Mean Field distribution. It is unknown whether vortex motion

is ergodic or not, which is what we are trying to explore numerically [2]. It is

also unclear which invariant measure is the true, physical one.

3 Assumptions and Initial Conditions

We only consider the most simple case where each vortex has equal strength,

λi = λ. To keep the total energy of the system finite as we increase N , we let

λ ∝ 1
N2 . From u = O⊥ψ, we deduce that the equation of motion of each point

vortex is then given by ẋi = 1
2λO

⊥γ̃(x, x) +
∑
j 6=i λO

⊥V (xi, xj), which can be

interpreted by the sum of the effect of the boundary on the vortex at xi and

the other vortices acting on the vortex at xi with regards to the boundary.

From our assumptions, our Hamiltonian of the discrete case becomes H =

λ2
∑
i>j V (xi, xj) and that of the continuous case becomes

H = λ2

∫∫
Ω

V (x, y)ρ(x)ρ(y)dxdy

.
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4 Questions

4.1 How do the dynamics of discrete N-vortices converge

to the continuous Mean Field distribution or some

other distribution, if at all?

As shown in Cassio Neri (2003), the solutions of the MFE are minimizers of the

free energy functional, which are associated with the true, physical behavior of

the vortices. However, not every solution of the MFE is physical. We hope to

make empirical observations of when and how the discrete dynamics converge

to solutions of the MFE for large N [5].

4.2 If the distribution given by the MFE is stationary, is

it stable or physical?

If the distribution given by the solution of the MFE is stationary, that is, the

spatial distribution of vortices does not change over time, what would happen if

we perturb it by a small amount? It is unclear whether vortices in the perturbed

system would converge to the stationary distribution of the unperturbed system

or diverge. It is also unclear whether these distributions can happen in real life

(as modeled by the discrete dynamics).

4.3 Which distributions are stable?

As N approaches infinity, due to the symmetrical qualities of the unit disk, given

any rotationally symmetric distribution, we see that any motion in a direction

that is purely tangential to the disk, therefore not affect the distribution. How-

ever, for finite N , even a small perturbation from the purely symmetric case

will lead to the velocity field to not be purely tangential to the boundary of the

unit disk.
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4.4 How does the strength of the vortices affect the sta-

tionary distribution?

Since we are assuming equal strengths for all vortices, the strengths of the

vortices can be factored out of the discrete dynamics as a constant. It is unclear

what the relationship is between the total energy, the thermodynamic β, and

the strength of vortices, λ. Assuming the MFE is correct, we can solve for the

value of β given λ. However, the system is non-linear and difficult to solve.

5 Numerical Model

Due to the chaotic behavior of N -vortices and the lack of an analytical solution

to the equation of motion, we use numerical approximations at discrete time

steps to model the dynamics of the system. Specifically, we use the Runge-

Kutta method of order 4, which has a local error of O(h5) and a global error

of O(h4). To account for the Dirichlet boundary conditions on the unit disk,

we use the method of images to introduce image points that we update in each

time step. Since we each vortex does not interact with itself and only with other

vortices, by the principle of superpositioning, we only need to consider pairwise

interactions of the particles.

Looking at our Green’s function again, we see that

V (x, y) = − 1

2π

(
log ‖x− y‖ − log ‖x− y

‖y‖2
‖ − log ‖y‖

)

In other words, the potential on x is caused by y and the image point of y at

y
‖y‖2 plus the logarithm of the norm of y.

5.1 Rejection Sampling

We wish to use rejection sampling to sample from a given distribution. We

sample the radial distance r from an uniform distribution and the mean field

distribution on [0, 1]. Then we sample an angular coordinate, θ, from an uniform
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distribution on [0, 2π). Combining the two, we have the distribution we desired

on the unit disk.

5.2 Fast Multipole Method

Due to the pairwise interaction, naive algorithm would be O(N2), which is

unfeasible as N approaches infinity. Therefore we use a Fast Multipole Method

(FMM), which reduces the problem to O(N logN) or O(N), depending on the

particular method used. The basic idea of the Fast Multipole Method is to lump

”far” points together into a multipole node in a way similar to calculating the

center of mass. The mulitpole node is then treated as a single particle in the

calculation. A quick simulation shows that the results of the FMM is arbitrarily

close to that of the naive computation. The FMM scheme we use is the package

by Greengard [?].

5.3 Kolmogorov-Smirnov Test

Let us denote the empirical distribution by ρexp. Then Kolmogorov-Smirinov

test statistic is defined as

D(ρ, ρexp) = sup ‖ρ(x)− ρexp(x)‖

. The test is constructed using the critical values of the Kolmogorov distribution.

We reject the null hypothesis at level α if

√
nD > Kα

, where Kα is derived from the Kolmogorov distribution.

5.4 Steps in Our method

1. Use naive rejection sampling to sample the initial locations of the N point

vortices based on desired probability distribution.
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2. At every time step, we use Runge-Kutta 4 method and perform the fol-

lowing calculations

a. Find location of image points, which is given by y
‖y‖2 .

b. Use FMM to compute the perpendicular gradient at each vortex,

which is given by sum of O⊥V over the N vortices and their corresponding

image points.

c. Analytically calculate
∑

O⊥ log ‖y‖ and add it to the velocity.

d. Record radial positions of vortices at every k time step, where k

is our sample rate.

3. Take average of spatial distribution based on the recorded data about

position.

4. Compare average spatial distribution to mean field distribution using K-S

test

6 Simulations

6.1 Tests Used to Verify Numerical Stability

6.1.1 2 Vortices in Symmetrical Positions

We know that 2 vortices symmetric on a line passing through the origin will

be purely rotational. That is, their orbit is just the circle with radius equal

to their distance to the origin. We put the vortices at v1(x, y) = (0.5, 0) and

v2(x, y) = (−0.5, 0). We let the number of time steps equal 100000 with stepsize

0.001.

The following plot shows our results
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Figure 1: 2 Vortices in symmetrical position

Our results show that the movements of the vortices are indeed purely rota-

tional, and the trajectories are the same circle like we expected. This pattern

continues for any observation time frame we’ve used.

6.1.2 3 Vortices Converging to a Point

Let our 3 vortices be located at

v1(x, y) = (l2
(3 + sqrt(3)cos(θ))

6
, l2

(sqrt(3)sin(θ))

6
)

,

v2(x, y) = (l2
(−3 + sqrt(3)cos(θ))

6
, l2

(sqrt(3)sin(θ))

6
)

,

v3(x, y) = (l2
(2sqrt(3)cos(θ))

3
, l2

(2sqrt(3)sin(θ))

3
)

with intensities (2, 2,−1). 3 vortices given as such in the R2 plane collapses

to a single vortex [2]. In our simulation, we used l2 = 0.3 and θ = 0.2. Our
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simulation was run over 100000 time steps with stepsize 0.0001.

Figure 2: Convergence of 3 vortices

Our results show that the 3 vortices do indeed converge to a single point.

However, the rate of convergence seems to be slow as can be seen by the ring

around the center point.

6.2 MFE Initial Conditions for fixed β over long time

frames for large N

For our simulation, we use β = −10 and 1000 vortices sampled from the solution

of the MFE. Our time step is 0.001 and the number of time steps is 200000.

The following plots show the vortex distribution at time step 1, 50000, 100000,

150000, and 200000.
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Figure 3: System when t=0.001

Figure 4: System when t=50
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Figure 5: System when t=100

Figure 6: System when t=150
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Figure 7: System when t=200

It seems that the vortices form a cluster, and the cluster rotates around the

circle. The intial and final distribution compared to the sampling distribution

plotted below.
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Figure 8: Initial distribution of vortices with MFE as red line.

Figure 9: Final distribution of vortices with MFE as red line

The red line indicates the mean field distribution. Clearly, our results are not

converging to the distribution given by the MFE. The concentration of vortices
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near the center is due to the center of cluster formed. The cluster formed

is not radially symmetric like the distribution given by the MFE. However,

further testing and analysis is needed to verify the numerical integrity of the

simulations. The clustering does support our interpretation of the negative

temperature states.

7 Conclusions

Although we have obtained preliminary evidence that the distribution given by

the MFE does not converge to the behavior from the discrete dynamics, we need

to verify the results further by running systematic simulations. We would to

establish an explicit time scale for the simulation and obtain further evidence

that the error is within tolerable range.

8 Future Works

• Figure out the exact relationship between β and the strength of vortices.

• Verify that the energy of the system remains constant throughout the
simulation and determine whether a symplectic integrator is needed.

• Verify numerical stability over fixed time frames using systematic condi-
tions for simulations.

• Work with different domains.

• Possibly use a symplectic integrator rather than RK4 if energy changes
are too large.
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