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1 Background

1.1 The infinity Laplacian ∆∞

In this paper, we seek to explore how the infinity Laplacian operator ∆∞
could be defined on the fractal SG. The infinity Laplacian is defined on Rn as

∆∞ u = |∇u|−2
∑
i,j

uxiuxi,xjuxj ,

which can be understood informally as “the second derivative of u in the di-
rection of the gradient.” It has been studied in connection with absolutely
minimizing Lipschitz extensions, game theory, and probably other contexts as
well [3]. The connections to the standard Laplacian are not immediately obvious
from this definition, but we do not need to concern ourselves with it anymore,
anyway. We will focus primarily on the discrete infinity Laplacian. Given a
graph G with node set X, the graph infinity Laplacian is defined as

∆∞ u(x) =
1

2

(
sup

y∈N(x)

u(y) + inf
y∈N(x)

u(y)

)
− u(x), (1)

where N(x) is the neighbor set of x in G. Note how this compares with the
definition of the discrete Laplacian,

∆u(x) =
1

|N(x)|
∑

y∈N(x)

u(y)− u(x).

1.2 The construction of SG

The fractal SG and its analytic properties have been studied extensively over
the past 30 years, with Strichartz’s book [4] a good introduction. One method
for constructing SG, described in [4], is as a limit of graph approximations. This
series of approximating graphs can be constructed entirely without reference to
an ambient space, but it is cleaner and intuitively easier to understand if we
consider the graphs as embedded in R2. Start with a graph Γ0 with node set
V0 = {x0, x1, x2} as vertices of a nondegenerate triangle.
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The boundary of SG is defined to be these three nodes. For each of these xi,
we define a contraction mapping Fi : R2 → R2 as

Fi(x) =
1

2
(x− xi) + xi.

So, we can define vertex sets inductively, starting with V0 and then

Vn =
⋃
i

Fi(Vn−1).

Note that the contracting mappings can send distinct elements of Vk to the
same element of Vk+1. For instance, F0(x2) = F2(x0). Then starting with Γ0,
we inductively define the n th-level approximation graph Γn as

Γn =
⋃
i

Fi(Γn−1),

identifying together nodes of the graphs which map to the same node in Vn.
{Γn} approximates SG in that SG is the inverse limit of the sequence Γ1,Γ2, . . .,
ordered by graph inclusion. The traditional analytic machinery, starting with
the Laplacian, is constructed on SG making use of a relationship between the
object on the fractal and discrete objects on {Γn}. To understand the infinity
Laplacian, we will not require the Laplacian construction. However, we will still
proceed by establishing a relationship between the discrete infinity Laplacian
and any plausible definition on SG. The first thing we set out to do is defining
what could be called ∆∞-harmonic functions on SG: functions u : SG→ R that
are a limit in some sense of functions un : Γn → R which satisfy ∆∞

(n) un = 0.
In order to do so, we must better understand how ∆∞-harmonic functions on
graphs behave, and the primary tool for that is the so-called Lazarus algorithm.

1.3 The Lazarus algorithm

If u is ∆∞-harmonic (satisfies ∆∞ u = 0), then we have that

u(x) =
1

2

(
sup

y∈N(x)

u(y) + inf
y∈N(x)

u(y)

)
. (2)
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Given a certain subset B ⊆ X, let us call it the boundary set of G, a natural
question to consider is the existence of a function u which takes prescribed values
on B and satisfies ∆∞ u = f on X \B. Such a function can be shown to exist in
great generality, but for our purposes it suffices to know that such a u exists as
long as f > 0 or f = 0 everywhere and u|B is finite [3]. An iterative scheme for
computing such a function on a given graph with prescribed boundary values
was developed by Adam Oberman in [2]. This is useful for numerical work, but a
second interesting algorithm for computing u exists, due to Lazarus [1]. Despite
computing the exact values that u takes on X in finite time, for numerical
computations Oberman’s scheme is more efficient. However, for our theoretical
work, understanding the Lazarus algorithm is useful.

Let G be a finite graph with boundary set B⊆G, and for x, y ∈ G define d(x, y)
to be the number of links in the shortest path connecting x and y in G \B, and
let ρ(x, y)⊆X be this shortest path. For each pair b, c ∈ B, compute the slope
of ρ(b, c) as

S(ρ(b, c)) =
|u(b)− u(c)|

d(b, c)
. (3)

For the pair b∗, c∗ ∈ B which maximizes (3), Lazarus shows that along ρ(b∗, c∗),
u is linear [1]. So if d(b∗, c∗) = `, for each x ∈ ρ(b∗, c∗) we find that

u(x) =
d(x, b∗)

`
u(c∗) +

d(x, c∗)

`
u(b∗).

Then, since this is computed correctly, the next step of the Lazarus algorithm
is the same as the first, with an expanded boundary set B1 = B ∪ ρ(x, y).
Along the path between elements of B1 through G \ B1 with greatest slope,
u is again linear. We interpolate again to find the values of u, and repeat
this procedure until all nodes are assigned values. The resulting u satisfies the
equation ∆∞ u = 0, where ∆∞ is the graph infinity Laplacian.

Let us call the path ρi of maximum slope during the i th iteration of the Lazarus
algorithm the i th Lazarus path through G. One property of these Lazarus
paths which will be useful to us is that slopes are nonincreasing. If i > j,
S(ρi) ≤ S(ρj). The proof can be found in [1].

Actually, we will use a slight variant on the Lazarus algorithm as described
here, with a simple class of weighted graph metrics. Instead of the weight of
each edge being 1 as above, each edge will have weight c for some c > 0, but for
any particular graph, each edge will be of the same weight. The results Lazarus
proved using the link-counting metric still hold here, since these new metrics
differ from the link-counting metric by a constant multiple.

2 ∆∞-harmonic functions on {Gn}

With the Lazarus algorithm and the nonincreasing slope property in mind,
we start looking at ∆∞-harmonic functions on the {Γn} graphs. To actually
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compute these functions, it is best to use a variant of Oberman’s scheme [2]
which takes advantage of these graphs’ self-similarity to speed up convergence.
However, we can use insight from the Lazarus algorithm to understand how
these functions are built. It is instructive to work through the simple example
of determining all possible ∆∞-harmonic functions on Γ1.

2.0.1 Example: Γ1

Since a ∆∞-harmonic function on Γ1, or indeed any of the Γn, is uniquely deter-
mined by its boundary values, there is a three-dimensional space of such func-
tions on Γ1. However, taking into account two properties of infinity-harmonic
functions, we can essentially reduce this to a one-dimensional space. We can ver-
ify directly from the definition of the graph infinity Laplacian that, if u defined
on G satisfies ∆∞ u = 0 on G \B, then v defined by the affine transformation

v(x) = u(x)−K

for some constant K satisfies ∆∞ v = 0 on G \B as well. If we define w by the
scaling

w = u(x)/K,

this also satisfies ∆∞ w = 0 on G\B. So, consider an infinity-harmonic function
u on Γn with u(x0) = a, u(x1) = b, and u(x2) = c. WLOG we can assume
a ≤ b ≤ c. If a = b = c, u is trivially just a constant function and equivalent to
the 0 function by an affine transformation. Otherwise, we can construct

v(x) =
1

c− a
(u(x)− a)

to obtain an infinity-harmonic function v with boundary data v(x0) = 0, v(x1) =
e, and v(x2) = 1 for some e ∈ [0, 1]. Thus, if we can determine the behavior of
v on the interior of Γn, this entirely determines the behavior of u as well, since

u(x) = (c− a)v(x) + a.

So, we can associate each infinity-harmonic function, up to an scaled affine
transformation, with an e value, a parameter we will call eccentricity. We can
reduce this space even further: suppose e ∈ (1/2, 1]. Our boundary looks like:
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We can construct u′(x) = −u(x)+1, also infinity-harmonic, with boundary data
u′(x0) = 1, u′(x1) = 1 − e, u′(x2) = 0. We can then just reflect this function
horizontally to produce a u′′ which looks like:

Now, our eccentricity is back in the range [0, 1/2], and the behavior of u′′ de-
termines the behavior of u.

Therefore, we can restrict ourselves to determining all infinity-harmonic func-
tions on Γ1 with boundary data 0, e, 1 for e ∈ [0, 1/2]. The functions fall into
two cases.
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Case 1 : e ∈ [1/3, 1/2]

Our function u can be represented as:

The first Lazarus path in this case, and in fact in the e ∈ [0, 1/3) case as well,
is the path

ρ1 = (0, z, 1),

with slope 1/2. Note that, for brevity of notation, we are referring to nodes by
their values alone, letting z stand for both the node z ∈ V1 and u(z). So, by
the Lazarus algorithm, we conclude that z = 1/2.

The second Lazarus path is

ρ2 = (0, x, y, 1),

with slope 1/3. So, x = 1/3 and y = 2/3, giving us the complete description of
u.
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Note that the resulting function is independent of what value e actually takes,
so long as it is within [1/3, 1/2].

Case 2 : e ∈ [0, 1/3)

Γ1 starts with the same boundary values, and ρ1 in this case is the same as
before. However, when we go to calculate our second Lazarus path, we see that
the path (e, y, 1) has slope (1 − e)/2, greater than the 1/3 slope of the path
(0, x, y, 1) chosen in the previous case. So, y = (1 + e)/2. This leaves x on the
Lazarus path (0, x, (1 + e)/2) with slope (1 + e)/4, so x = (1 + e)/4:

Note that when e = 1/3, both of these paths have the same slopes, giving us
the agreement between the two possible sequences of Lazarus paths at e = 1/3
which we would hope for.

We can calculate infinity-harmonic functions on higher-level graph approxima-
tions as well. This gives us a better picture of how a limiting object ought to
behave. On Γ2, for instance, it turns out that the behavior within each of the
ranges [0, 1/3) and [1/3, 1/2] again splits based on smaller ranges. The details
of the calculation are similar to those for Γ1, only with more paths to consider.
The final results can be broken down into four cases:
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3 ∆∞-harmonic functions on SG

Note that, in the case e ∈ [0, 1/7), the node labeled z ∈ V1 has the property that
u1(z) 6= u2(z), while for every other node in V1 and possible e value, u does not
change value on V1. Moreover, numerical evidence suggests that u|Γ1

does not
change on Γn for any n > 2. We can perform the same numerical examination
for functions with boundary data in [0, 1/3). This suggests that for different
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values of e, u|Γ1 changes from Γn to Γn+1 for some range of n, until becoming
fixed and then never changing. So, we define a function u : SG → R in the
following way:
Definition 1. A function u : SG→ R is infinity-harmonic if

u := lim
n→∞

un : Γn → R | ∆∞ un = 0,

with the aim of showing that for any fixed level graph Γk, un|Γk
eventually is

unchanging, and that therefore a limit value exists for u. The number of levels
needed before the value is fixed seems to increase as e → 0. This then is what
we would like to prove. Note that this immediately would imply that un|Γk

is
fixed on Γn for all n greater than some N depending on e and k. This gives
us a stronger-than-pointwise convergence of the sequence {uk} to a limiting
object on u, though uniform convergence is not always possible, as a known
counterexample shows.

Our primary theorem for infinity-harmonic functions then is
Theorem 1. For all k ∈ N and any boundary data, un|Γk

= un+1|Γk
for all n

greater than some N ∈ N, depending on e and k.

3.1 A Useful Result

Proving this requires first understanding how the Lazarus paths behave on {Γn},
and the relationships between Lazarus paths on successive levels. A first step
towards this is the proof of the following proposition.
Proposition 1. Let {Γn}, n = 1, . . . be the standard sequence of graph approxi-
mations to SG. Then, for fixed boundary data (i.e., for a fixed infinity-harmonic
function), the kth Lazarus path is the same for all m ≥ k.

Before we get there, a few other things need to be proven, and some notation
needs to be set down. Hopefully, this will accomplish it.

Consider the successive stages of the Lazarus algorithm on the nth level graph
approximation Γn to SG. An obvious fact is that the first path accepted on the
1st level graph approximation is the first path accepted on every level graph ap-
proximation. But why is this? This is the path of steepest slope in Γ1, and the
method by which we extend Γn to Γn+1 is such that the shortest path between
any two points in our boundary set doesn’t decrease in length. In fact, these
properties are enough to guarantee that this property will hold for arbitrary
graphs, as we will now prove:

Consider graphs G1, G2 with vertex sets V1, V2 respectively such that V1 ⊂ V2,
and for every pair of nodes x, y ∈ V1 such that y ∈ N1(x), the neighbor set of
x in G1, there exists a path connecting x and y in G2 which does not contain
any other element of V1. For these graphs, let d1, d2 be metrics on G1 and G2

respectively. A path ρ2 ⊆ G2 is a refinement of ρ1 ⊆ G1 if the terminal nodes
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of ρ1 and ρ2 are the same, each x ∈ ρ1 is also in ρ2, and if for every sequential
xi, xi+1 ∈ ρ1, the shortest (wrt d2) path connecting xi and xi+1 does not pass
through V1. If each path ρi ⊂ G1 has such a refinement in G2, let us say that

G1 < G2.

Moreover, let us also assume that for each x, y ∈ V1, d1(x, y) = d2(x, y). Let us
denote two graphs related in this way as as

G1 ≺ G2.

It is easy to see that this relation forms a partial order on graphs. Note also
that if which dj is being used is clear from context, we will relegate this to an
understood distinction and just refer to d.

Now, we want to consider the relation between the values of infinity-harmonic
functions defined on these graphs, u1 on G1 and u2 on G2. In addition to
the assumptions made in the preceding paragraph, let us add another: For the
boundary sets B1 ⊂ V1 and B2 ⊂ V2, let B1 = B2 = B, and moreover for each
x ∈ B, let u1(x) = u2(x). We want to consider which path is first accepted by
the Lazarus algorithm for both G1 and G2. This depends on calculated slopes,
so let us adopt the following notation in addition to the previous: define the
slope

S(x, y) := S(ρ(x, . . . , y)

and S(x) to be S(x1, x2) for the x1, x2 forming the terminal nodes of the Lazarus
path from which u(x) is computed. Lazarus says that for x∗, y∗ ∈ B such that
S(x∗, y∗) ≥ S(x, y) for all x, y ∈ B, along the path connecting x∗ and y∗,
u changes linearly. Specifically, for the generalized Lazarus algorithm which
takes into account unequal link lengths, at each point xi on the path (x∗ =
x1, x2, . . . , xn = y∗),

u(xi) =
d(xi, xn)

d(x1, xn)
u(x1) +

d(x1, xi)

d(x1, xn)
u(xn).

So, we see that the first path accepted by Lazarus in G1 is the same as the first
path accepted by Lazarus in G2: u1 = u2 on B, and d(x, y) is the same on both
G1 and G2 for, so S(x, y) is equal for x, y ∈ B in both G1 and G2. So, for each
x ∈ V1 along this path,

u1(x) = u2(x).

The Lazarus algorithm is of course a multi-step process: We now repeat the
procedure on G1 and G2 with expanded boundary sets, but

B1 ∪ ρ1
1 6= B2 ∪ ρ2

1

, where ρij is the jth Lazarus path on Gi. So, we cannot apply the same reason-

ing as before to conclude that ρ1
2 = ρ2

2.
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We can reinterpret this iterative procedure though: For a graph G with bound-
ary set B, some path (x1, . . . , xn) is first accepted by the Lazarus algorithm We
compute u along (x1, . . . , xn). With this information, we create a new graph G1

with the same vertices as G and the same link set with the following exception:
for every link in the path (x1, . . . , xn) ⊂ G, we delete the corresponding link
in G1, and construct our boundary set B1 in G1 as B ∪ {x1, x2, . . . , xn}. The
second path accepted under Lazarus in G then is the same as the first path
accepted in G1, and so we can create a graph G2 analogously from G1 and
repeat this procedure to find the third accepted path in G, and so on. In this
interpretation, we need not talk about multiple paths generated by the Lazarus
algorithm, as at each Gi, a single path is computed, which induces a new graph
Gi+1. Therefore, let us talk about “the Lazarus path” in reference to the first
path computed by the Lazarus algorithm on some Gi.

A minor issue to resolve is the possibility of a Lazarus path ρ on Gi containing
elements of Bi besides the terminal nodes of ρ. It is easy to see that no such
path can have slope strictly greater than the slope of a path in Gi containing
no elements of Bi besides the terminal nodes: For such a pathological ρ, we can
decompose this into a union of paths ρ1, ρ2, . . . , ρn such that each ρk contains
no elements of Bi besides the terminal nodes, and each ρk has terminal nodes
in Bk. Then, we have that

S(ρ) =

n∑
k=1

d(ρk)

d(ρ)
S(ρk),

where d(ρi) is the length of ρi. Either S(ρ`) = S(ρk) = S(ρ) for all ` and k,
or there exists some ρk∗ which has a greater slope than ρ. Either way, we can
restrict our choice of Lazarus path to paths containing only terminal nodes in Bi.

Note that this highlights a slight ambiguity in this definition of the Lazarus
algorithm. Namely, if in the scenario above, on some Gi it may occur that for
two pairs x, y, x′, y′ ∈ Bi, S(x, y) = S(x′, y′) is the greatest slope. There is then
a question of which path to choose. In the case of the Sierpinski gasket con-
sidered below, each G will be some Γm approximation to SG. In the following
work, this is resolved on an ad-hoc basis: It suffices to show that, out of the
possible Lazarus paths at each Γn, there exists some path which satisfies the
conditions that we seek.
The preceding paragraphs highlighted interplays between different graphs with
respect to the Lazarus algorithm in two different ways, individually. Now, we
want to consider a scenario in which both are occurring simultaneously, and try
to examine how they relate. Let G = {Gi} be a (possibly infinite) sequence
of graphs such that Gi ≺ Gi+1 for all i. For each Gj ∈ G, let Gk

j be the kth

subgraph induced by the Lazarus algorithm, with Gj = G0
j , the entire graph

before any links have been removed by Lazarus. The standard sequence of graph
approximations {Γn} to SG is a sequence of this type. It would be nice if some
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similar relation existed among {Γi
j} for some j and i. Specifically, to prove

Proposition 1, we would like to show that if i ≤ j,

Γi
j ≺ Γi

j+1.

We can show that this does not hold, sadly, though that is omitted here. How-
ever, we can try to construct a new relation which captures the critical properties
possessed by ≺ which allowed graphs related by it to have the same Lazarus
paths. Consider some sequence of Lazarus-induced graphs {Gi}, i = 0, 1, . . .,
such that B = B0 is the boundary whose data is prescribed prior to the cal-
culation of any Lazarus paths. For SG, this would be V0, the vertex set of
Γ0. Which Lazarus path is calculated on each Gi is completely determined by
the prescribed values on B and our procedure for tiebreaking, since all other
elements of Bi are given values by linear interpolation. So, for a given (fixed)
tiebreaking procedure such as the one detailed above, let Bi ⊂ Bi be the set
of all nodes in Bi ever needed to compute a Lazarus path on Gi for all choices
of u values on B. Gi ≺ Gi+1 implies graph inclusion and that the set of all
shortest paths starting and ending in the vertex set of Gi did not shorten upon
inclusion into Gi+1. However, in proving that this implied that the Lazarus
path on Gi is the same as the Lazarus path on Gi+1, we only really need the
fact that Bi = Bi+1, and di(x, y) = di+1(x, y) for all x, y ∈ Bi. Let us say that

Gi /Gi+1

if Gi < Gi+1 and if Gi and Gi+1 are related in this way. It is then straight-
forward to modify the proof that G ≺ H implies G and H have the same
Lazarus path to show that G/H implies the same. It should also be clear that
Gi ≺ Gi+1 ⇒ Gi /Gi+1. Then, we can rephrase Proposition 1 in this language
as follows:

Proposition 2. Let {Γn}, n = 1, . . . be the standard sequence of graph approx-
imations to SG. For all j ≥ 0 and all m ≥ j, Γj

m /Γj
m+1.

In a slightly more graphical form, we are saying the following: Without much
consideration being given to the structure of this complicated doubly-indexed
set of graph approximations, we know the following relations hold true:

13



Γ0
0 ≺ Γ0

1 ≺ Γ0
2 ≺ Γ0

3 ≺ . . .
∨ ∨ ∨ ∨ ∨
Γ1

0 Γ1
1 Γ1

2 Γ1
3 . . .

∨ ∨ ∨ ∨ ∨
Γ2

0 Γ2
1 Γ2

2 Γ2
3 . . .

∨ ∨ ∨ ∨ ∨
Γ3

0 Γ3
1 Γ3

2 Γ3
3 . . .

∨ ∨ ∨ ∨
...

...
...

. . .

What we would like to prove, via Proposition 2, is that the following is also
true:

Γ0
0 ≺ Γ0

1 ≺ Γ0
2 ≺ Γ0

3 ≺ . . .
∨ ∨ ∨ ∨ ∨
Γ1

0 Γ1
1 / Γ1

2 / Γ1
3 / . . .

∨ ∨ ∨ ∨ ∨
Γ2

0 Γ2
1 Γ2

2 / Γ2
3 / . . .

∨ ∨ ∨ ∨ ∨
Γ3

0 Γ3
1 Γ3

2 Γ3
3 / . . .

∨ ∨ ∨ ∨
...

...
... /

. . .

From here on out, let Vm be the set of vertices in Γm, which is also the set
of vertices in Γj

m for all j. Let Bj
m be the set of boundary nodes in Γm along

with all nodes in the first j accepted paths on Γm under the Lazarus algorithm,
and Bjm ⊂ Bj

m as above. Moreover, for convenience, let us identify SG with its
standard embedding into R2, so that we can use the restriction of the Euclidean
metric on R2 onto SG as a metric d on this space, and likewise create a family
of metrics djm for the graph approximations in the same way. This can be
turned into an embedding-independent family of metrics on {Γn}, but the details
are unnecessary for us here. A proof of Proposition 2 depends on each graph
approximation Γj

m having the following two properties for m ≥ j:

P1. Bjm = Bj
j−1

P2. If the shortest path between x, y ∈ Bj
m in Γi

m+1 is not a refinement of the

shortest path between x, y ∈ Bj
m in Γm, then x or y is in Bj

m \B
j
m−1.

At a high level, the proof proceeds as follows: It is given that the proof that
Γ0

0 ≺ Γ0
1 ≺ . . . is trivial, that this implies Γ0

0 /Γ0
1 / . . ., and that P1 and P2 hold

for these graphs. We want to use this inductively to prove that, if all of these
properties (besides the ≺ relation) hold for all Γi

m, m ≥ i for all i less than some
j, then P1 and P2 hold for Γj

j as well. Then, with this established, we conclude

that Γj
n /Γj

n+1 for all n ≥ j.

14



Before doing so however, let us introduce a bit more terminology. Consider
a k-cell Ck ⊆ Γm, m > k. That is, a cell in Γm with at least one boundary point
in Vk \ Vk−1, with boundary set {c1, c2, c3}. It is easy to show that for such a
k-cell, in fact two elements of the boundary set are in Vk \ Vk−1. Then, for any
i, consider the subgraph of Γi

m with the same vertex set as Ck, call this Ci
k. Let

us say that Ci
k is type 0 if Ck had no links removed by the first i iterations of

the Lazarus algorithm on Γm, so that each link in Ck is contained in Ci
k. Ci

k is
type 1 if exactly one of the straight paths connecting c1− c2, c1− c3, or c2− c3
has been entirely removed under the first i iterations of the Lazarus algorithm
on Γm, and no other links have been removed. Ci

k is type 2 if two such paths
have been entirely removed, and no other links have been removed, and type 3
if all three paths have been removed.

With that in mind, we can prove the following:
Lemma 1. For all j > 0, if Γi

m /Γi
m+1 for all i < j and for all m ≥ i, and P1

and P2 hold for all such graphs, then P1 and P2 hold for all Γj
m, m ≥ j.

Proof. For j = 0, this same result is clear, so consider some j > 0. First, we
will show that P1 holds on Γj

j , and extend this result to all Γj
m, m ≥ j. Suppose

for contradiction that there were a path ρ computed on Γj
j whose terminal or

initial node lies in Bj
j \Vj−1 and whose slope is strictly greater than that of any

path with terminal and initial nodes in Bj
j−1. Since by hypothesis, the Lazarus

path on Γj−1
j is the same as the Lazarus path Γj−1

j−1, it cannot change direction

at any node in Vj \ Vj−1. So, any node x ∈ Bj
j \ Vj−1 used to compute ρ lies

in the interior of a (j − 1)-cell of type 1 or 2, since only elements of V0 can be
contained in type 0 cells. Let us knock out the type 1 case first:
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Case: Type 1
Suppose x is contained in a type 1 (j − 1)-cell, as below:

There are three paths that ρ could take from x inside this cell a priori : (x, z, a),
(x, y, b), or (x, y/z, c). Neither (x, z, a) nor (x, y, b) can be part of ρ though,
since

S(a, z, y, b) ≥ S(x, z, a) = S(x, z, b).

(x, y/z, c) cannot be a part of ρ either: Since x = a+b
2 , either the path (a, z, c)

or (b, y, z) will have a greater slope than (x, y/z, c). So, ρ cannot contain a node
x in Bj

j \ Vj−1 lying in a type 1 (j − 1)-cell. We will show that same is true for
x in a type 2 (j − 1)-cell:

Case: Type 2

For x in this situation, we must pull back one layer and consider the (j − 2)-
cell Cj

j−2 in which this (j − 1)-cell lies. There will be a few subcases here:
First we want to note that in the preceding picture, the accepted paths (b, x, a)
and (b, y, c) cannot be part of the same Lazarus path, since (a, z, c) has strictly
greater slope for nonconstant boundary data (in which case the entire function
is trivial). So, WLOG we will assume that (b, x, a) is part of a Lazarus path
ρ1 accepted prior to the path ρ2 containing (b, y, c) and then prove that no ρ
with terminal node x or y exists. To do so, we note that ρ1 was at latest the
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(j−1)st Lazarus path, and so cannot change direction on any nodes in Vj \Vj−1.
Likewise, ρ2 was then at latest the (j−2)nd Lazarus path, and so cannot change
direction on any nodes in Vj \ Vj−2. So, ρ2 does not change direction on Cj

j−2,

and there are only three possible paths ρ1 can take through Cj
j−2.

Subcase 1:

Here, note that S(x, z, a) = S(a, β, α), S(x, z, c) = S(a, β, γ), S(y, z, a) =
S(c, β, α), and S(y, z, c) = S(c, β, γ), so no strictly dominating path exists start-
ing from x or y.

Subcase 2:

This case is knocked out easily: S(a, β, γ) = S(ρ1), so no path in Cj
j−2 domi-

nates.
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Subcase 3:

If ρ2 stays in the (j − 2)-cell, then we must consider how ρ1 behaves in the
(j − 3)-cell Cj

j−3 containing Cj
j−2. Note that since 2 paths have been accepted

already, j ≥ 3, so Cj
j−3 exists. The orange lines in the picture above indicate

which paths ρ1 could take through this (j − 1) cell. ρ1 of course must continue
beyond this (j− 1)-cell, but this is the only part we’re interested in. If the path
in this cell is (α, β, δ), then S(α, γ, ε, δ) = S(ρ2), and since Lazarus produces
monotonically decreasing slopes, no path in Cj

j−1 can beat this. Similarly if the
path through this new (j − 1)-cell is (α, γ, ζ), then S(α, β, ε, ζ) = S(ρ2), so we
get the same conclusion.

This proves that P1 holds for Γj
j . Before proving that P1 holds for all Γj

m,

m ≥ j, let’s show that P2 holds for all such Γj
m. Let x, y be a pair of points

in Bj
m such that djm+1(x, y) < djm(x, y). Call the shortest path in Γj

m+1, ρ .
Suppose that both x and y are in Vm−1. We can decompose ρ into a union of
subpaths ρ1, ρ2, . . . , ρk through the k (m− 1)-cells Cj

m−1,1, C
j
m−1,2, . . . , C

j
m−1,k

containing ρ. In order for ρ to be strictly shorter than the shortest path con-
necting x and y in Γj

m, it follows that in at least one of these (m− 1)-cells, the
shortest path through the cell considered as a part of Γj

m must be longer than
ρ restricted to the cell. Let us show that this does not happen.
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So, we want to consider what sort of (m− 1) cells could contain x and y. First,
suppose that one (and therefore the other) is contained in a type 2 (m− 1)-cell
Cj

m−1 on both levels m and m + 1. Since by assumption x, y ∈ Vm−1, this

implies that they are boundary points of Cj
m−1, and we are in the situation in

this picture:

where the red paths are accepted, and the blue path is the shortest between x
and y. This is present in both Γj

m and Γj
m+1 and has the same length in both

graphs, contradicting the lengthening assumption.

We can therefore assume that x and y lie in type 1 (m− 1)-cells. They cannot
lie in the same (m − 1)-cell for the same reason that they can they could not
lie in a type 2 (m − 1)-cell: they will be on the boundary of the cell, and the
straight line path connecting them is the shortest on both levels m and m+ 1.
So, they lie in different (m− 1)-cells, and we can look at how ρ behaves in each
such cell. Let us start with the interior cells, if any exist. By interior, I mean
a (m− 1)-cell through which ρ passes, but which does not contain x or y. Any
such cell must be type 0, since any Lazarus path entering a type 1 (m− 1)-cell
must terminate in that cell, and no Lazarus path can even enter a type 2 or 3
cell. But a type 0 (m − 1)-cell in Γj

m is isomorphic as a graph to Γ0
1, and in

Γj
m+1 it is isomorphic to Γ0

2. We already know that P2 holds for these graphs,
so ρ cannot lengthen on interior cells. Therefore, this lengthening must occur
in one of the cells containing x or y. Again, however, we see that by assumption
x and y lie on the boundary of their respective (m− 1)-cells as in the following
picture, and the shortest path exiting the cell is the same on both levels.

Therefore, there is no (m−1) cell which ρ passes through, in which the shortest
path on Γj

m is longer than ρ. So, P2 holds for all Γj
m, m ≥ j.

Using this fact, we can finish off the proof, by showing that P2 holding for all
such Γj

m and P1 holding for Γj
j implies that P1 holds for all such Γj

m. We’ll

induct on m: given that P1 holds for all Γj
n with j ≤ n < m, consider a path ρ

as before with at least one boundary node in Bj
m \ Vj−1 whose slope is strictly

greater than that of any path with both boundary nodes in Vj−1. Since no
such path exists lying in Bj

n \ Vj−1 for any n < m, and by P2 no shortest
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paths shorten for elements of Bj
n with n < m − 1, we conclude that our new

pathological points must lie in Bj
m−1 \Vj−1. Our proof then proceeds exactly as

it did for the base case, using (m− 1) cells instead of (j − 1) cells, along which
previous paths have also not changed direction, and likewise for (m − 2) and
(m− 3) cells. Given this, we are done. Proposition 1 is proven.

The last step in the proof is to show that if P1 and P2 hold for Γj
m and Γj

m+1,

then Γj
m /Γj

m+1. This is pretty straightforward.

Lemma 2. Suppose P1 and P2 hold for Γj
m and Γj

m+1. Then, Γj
m /Γj

m+1.

Proof. By P1, Bjm = Bjm+1 = Bj
j−1, and by P2 djm(x, y) = djm+1(x, y) for all

x, y ∈ Bj
j−1, and so it follows immediately from the definition that

Γj
m /Γj

m+1.

The proof of Proposition 2 then follows immediately from Lemmas 1 and 2, and
therefore Proposition 1 is correct.

From Proposition 1, we can get some results immediately. If e ∈ [1/3, 1/2], the
second Lazarus path on Γ2 passes through all of the V1 vertices, so Theorem 1
is true for e in this range. However, Proposition 1 does not immediately help us
for e ∈ [0, 1/3). In fact, just calculating Lazarus paths for this e range suggests
that none of these always-accepted Lazarus paths pass through z ∈ V1 for any
Γn.

What is needed is a generalization of Proposition 2.
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3.2 A generalization of Proposition 2

The overall goal is to show that each Lazarus path, under certain conditions at
least, partitions the sequences of graphs into sequence of unions of subgraphs,
each of which is amenable to the same techniques used on the original graph. In
doing so, we are then able to calculate Lazarus paths on each subgraph at each
step, enlarging the set of points which we can show to be computed correctly
at each level of approximation to SG.

Recall Theorem 1 on page six. Proposition 1 gives us some results in proving
this. Consider as before the following level 1 graph:

Since the V0 nodes are always correct trivially we’re only concerned with the
nodes a, b, c ∈ V1 \ V0. We know the first Lazarus path is the left path from 0
to 1 for any choice of e, so a = 1/2 is given. The second Lazarus path on Γ2

does depend on e, but in a simple way. We have two choices:
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Regardless, for e ∈ [1/3, 1/2], the first and second Lazarus paths on Γ2 run
through all nodes in V1, and therefore will do so for all Γk, k ≥ 2. So, Theorem
1 is true for e ∈ [1/3, 1/2]. For e ∈ (0, 1/3) however, we do not get the same
behavior. But then, consider Γk for k ≥ 2. For each such Γk, we know that
the first two Lazarus paths are a refinement of the first two Lazarus paths on
Γ2. Moreover, we can calculate that for any e in this range, the third Lazarus
path on Γk is fixed, as drawn below. So, the problem of running the Lazarus
algorithm on Γj

k for j, k > 3 splits into running it on three separated domains,

Γk,1,Γk,2,Γk,3,

pictured on the next page in Figure 1. As an aside: the doubly-indexed sub-
scripts will come up a few times here, so a bit more notation might be handy
here. Just as SG = lim

k→∞
Γk, let

Γ·,i := lim
k→∞

Γk,i .

It would be nice if we could say that the sequence of graphs Γk,3 in the above
picture, with appropriate choice of initial boundary data, had the same proper-
ties possessed by {Γk} which allowed for Proposition 2 to hold true. Then, we
could restrict our focus to Γk,3 and apply the procedure to see what information
is gained about the nodes of Γk therein. It would be nicer to generalize this
result to a wider class of graphs than just Γk,3, say all of the “regular finite
fractafolds,” Actually, let us try to do just that.

Definition 1: A regular finite fractafold is the quotient space(
n⊔

i=1

SG

)
/ϕ,
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Figure 1: The e ∈ (0, 1/3) case

where ϕ is a quotient map such that in the ith copy of SG (SGi), ϕ identifies
each boundary point of SGi with at most one boundary point of at most one
SGj , i 6= j, and ϕ never identifies two different boundary points in SGi with
boundary points in one other SGj .

For instance, each of the Γ·,i, i ∈ [1, 3] constructed above is a regular finite
fractafold. In fact, any of the subgraphs created by partitioning SG along
Lazarus paths should be a regular finite fractafold, if the appropriate initial
boundary data is chosen. But that is irrelevant here, as long as we have the Γ·,i.

Given this definition of regular finite fractafold, let F be such an object. Then,
analogously to the way in which Γk := SG|Vk

, let

Fk := F |Vk
.

If it is not clear, Vk in this setting is just the union of the Vk sets of the copies
of SG comprising F , with appropriate identifications made. Moreover, it will
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sometimes be useful to refer to the different copies of SG making up F , as
well as their graph approximations. So, just as we index the copies of SG as
{SGi}, let the copies of the kth-level graph approximations to SG be indexed
as {Γk,i}. Moreover, we would like some boundary data on F0 from which to
run our Lazarus algorithm. Just using V0 here will not work, we would like to
use just those elements which remain unidentified, having only 2 neighbors in
F . This will be B0 (and also B0). So, with such boundary data, let us say
the following. It is easy to show that Fk ≺ Fk+1, with ≺ defined as in the
previous writeup. Also analogously to that writeup, let us define F j

k to be the

jth Lazarus subgraph of Fk. Then, is is also easy to show that F j
k < F j−1

k , too.
This gives us the following picture:

F 0
0 ≺ F 0

1 ≺ F 0
2 ≺ F 0

3 ≺ . . .
∨ ∨ ∨ ∨ ∨
F 1

0 F 1
1 F 1

2 F 1
3 . . .

∨ ∨ ∨ ∨ ∨
F 2

0 F 2
1 F 2

2 F 2
3 . . .

∨ ∨ ∨ ∨ ∨
F 3

0 F 3
1 F 3

2 F 3
3 . . .

∨ ∨ ∨ ∨ ∨
...

...
...

...
. . .

Again, we want to show that the following is also true:

F 0
0 ≺ F 0

1 ≺ F 0
2 ≺ F 0

3 ≺ . . .
∨ ∨ ∨ ∨ ∨
F 1

0 F 1
1 / F 1

2 / F 1
3 / . . .

∨ ∨ ∨ ∨ ∨
F 2

0 F 2
1 F 2

2 / F 2
3 / . . .

∨ ∨ ∨ ∨ ∨
F 3

0 F 3
1 F 3

2 F 3
3 / . . .

∨ ∨ ∨ ∨ ∨
...

...
...

...
. . .

Lemma 1: Let F be a regular finite fractafold. Then, for all j and m ≥ j,

F j
m /F j

m+1.

Proof. Again, this will depend solely on the sequences {F j
m},m ≥ j > 0 for all

j ∈ N satisfying P1 and P2. The proof is much simpler here though, since we
know the same is true for F = SG.

P1: For all m ≥ j > 0, Bjm = Bjj−1.

Proof. Suppose that for some Γj
m,i comprising F j

m, there exists some b ∈ Bj
m \

Bjj−1 necessary for computing the next Lazarus path on F j
m. Just as in the proof
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of P1 for SG, we can look at the (j − 1) and (j − 2) cells in which b lies. These
are still inside Γj

m,i, and so the proof that no such b exists follows directly from
the proof for the graph approximations to SG, since these cells are identical.

P2: If the shortest path between x, y ∈ Bj
m in F j

m+1 is not a refinement of the

shortest path between x, y ∈ Bj
m in Γj

m, then x or y is in Bj
m \B

j
m−1

Proof. Suppose this were not true. Let x, y be such elements of Bj
m and let ρm

be the path connecting them in F j
m, while ρm+1 is the path connecting them

in F j
m+1. If ρm+1 is not a refinement of ρm, then there is some copy SGi of

SG in which it first shortens. So, we can restrict ourself to looking at how the
path behaves in SGi, in which case we are back to the conditions of the original
proof, and know that no such shortening occurs.

So, the sequences {F j
m}, j ≥ m, satisfy P1 and P2. The results of Lemma 1 and

Lemma 2 from the previous writeup transfer immediately over to the regular
finite fractafold setting, and so we conclude that

F j
m /F j

m+1

for all j and all m ≥ j.

This is good news. Going back to the situation illustrated in Figure 1, Lemma
1 tells us that we can run this compute-Lazarus-path-then-refine procedure on
each subgraph individually. For now, let us focus on F = Γ3,3, as that is where
all the interesting things are happening. If we let it inherit the boundary data
from the computed values on Γ3

3, the graph of F 0
0 as depicted in Figure 2 on the

next page.

Note that, in calling this F0, we are going to introduce some confusion that
should be clarified. This is level 0 for this particular fractafold, but included
into Γ2 it is a level 2 portion of the copy of Γ2 from which it was taken. A result
about Fk will translate into a result about Γk+2. Let us leave this at the level of
tacit understanding where there is no chance for confusion, and otherwise, call
the level of refinement on the graph F the local level, and the level of refinement
if F were to be considered as included in the original copy of SG the inherited
level. This causes some problems for our slope renormalization scheme, as well.
Which level do we use when calculating path slopes? For consistency, let us
always use the inherited level, not the local level. Another subtlety arises here
that the F = SG case hides: There are nodes born on level 0 here that are not
boundary data. Yet, Lazarus paths computed on this level are not necessarily
going to be correct on future levels. Informally, the graph is too coarse at this
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Figure 2: F 0
0

level in comparison with the spacing of boundary data. That in mind, we now
know we can compute Lazarus paths on F , but will they agree with the paths
computed in Γ3 on the nodes that are not boundary data for F? Hopefully, the
answer is ”Yes for all regular finite fractafolds obtained in this way, so long as
the boundary data agrees”, but we shall see. In any case, for this particular F
we can directly verify that the first Lazarus path on F1 connects e and (1+e)/2,
and the second Lazarus path on F2 connects 1/6 and 1/3. This gives us the
following graph for F 2

3 :

So, what is the next Lazarus path on this domain? It depends on e. Again, we
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can verify that it will be one of two paths,

ρ1 = (a, x, y, c)

or
ρ2 = (c, y, z, e).

We are on local level 3, so our inherited level is 5. Therefore, our slope renor-
malization factor is 25. The shortest path connecting a and b has renormalized

slope of 1/12
12 · 2

5 = 4/9 and the shortest path b and d has slope 4−12e
9 , while

S(ρ1) =
4 + 6e

9

and

S(ρ2) =
2− 2e

3
.

For any e ∈ (0, 1/3), either slope strictly dominates the slopes of the a, . . . , b
and b, . . . , d paths (as well as the rest of the possible paths if you care to check).
However, S(ρ1) > S(ρ2) for e ∈ (1/6, 1/3), while S(ρ2) > S(ρ1) for e ∈ (0, 1/6).
Mixed news, but mostly good! This means that x is computed correctly with
value

x =
5 + 3e

18

at local level 3 (and each thereafter) if e ∈ (1/6, 1/3). This corresponds to x
being computed correctly on Γ5. But note: x ∈ V1 (here, V1 understood as
the vertex set of the original copy of Γ1), and the other elements of V1 were
computed correctly by Γ2. What does this mean?

For e ∈ (1/6, 1/3), uej(x) is computed correctly for all x ∈ V1 for all j ≥ 5.

Before this, we had that Theorem 1 was true for e ∈ [1/3, 1/2] easily. This
last bit extends that, we now have that Theorem 1 is true for e ∈ [1/6, 1/2].
Moreover, the same techniques used to extend the result here can be used to
greater advantage. Suppose e ∈ (0, 1/3). Then, on F 2

3 our Lazarus path is ρ2,
and we have this situation:
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Our node x is now contained in a different regular finite fractafold (rff), call it
G, with boundary nodes a, b, y, z. Let it inherit boundary data on these nodes
as before, so that G0 is the following:

Keeping in mind that we compute no paths on this level, we can refine one level
to see that the first Lazarus path on G1 is the one connecting 1/6 and 1/3, with
renormalized slope 2/3 again (our renormalization constant on local G level 1
is 23), and the second Lazarus path on G2 is the line connecting (1 + 5e)/6 and
(1 + 2e)/3, with slope (2− 2e)/3, putting us here at local G level 3:
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As before, the renormalized slope of the shortest path connecting a and b (call
it ρ0) is 4/9. The slope of the path γ connecting b to d is 1−5e

3 The other
contender paths are ρ1 = (a, x, y, c) and ρ2 = (d, z, y, c). Here,

S(ρ1) =
1 + 4e

3

and

S(ρ2) =
4− 4e

9
.

Note that γ is still out of the running but, S(ρ2) < S(ρ0), so our competition is
between ρ0 and ρ1. A little algebra shows us that ρ0 wins out when e ∈ (0, 1/12),
and ρ1 wins out when e ∈ (1/12, 1/6). So, for e ∈ (1/12, 1/6), once we get to
this stage (inherited level 5 again), x is still computed correctly as

x =
3 + 4e

12
,

just via a different route. For the e ∈ (0, 1/12) range, however, we find ourself
with the following picture:

Now, x is contained in yet another subgraph/rff, let us call this one H. Some-
thing interesting has happened here though: H is identical to F , scaled down
by a factor of 2. The (renormalized) slopes along the boundaries of H are 2/3 of
the corresponding slopes for F . On H, the first Lazarus path connects (1+23)/3
and (1 + 5e)/6, and the second connects 2/9 and 5/18, so that at local H level
3 we find ourselves in a familiar situation:
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Figure 3: H2
3 this time, not F 2

3

Let’s see what happens this time with the third Lazarus path. Here, our inher-
ited level is 6, so our scaling is 26. The shortest path ρ0 connecting a and b has
slope

S(ρ0) = 8/27.

The path ρ1 = (a, x, y, c) has slope

S(ρ1) =
8 + 48e

27

and the path ρ2 = (d, z, y, c) has slope

S(ρ2) =
4− 4e

9
.

Again, we can just use a little algebra to find that ρ1 dominates for e ∈
(1/15, 1/12). So, for e in this range, ue is computed correctly on the V1 vertices
by level 6, with

x =
7 + 6e

27
.

For e ∈ (0, 1/15) however, we must go deeper still. Let us call the next sub-
graph/rff J :
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Again we can go through the same calculations to show that the two competing
paths are ρ0 connecting a and b, and ρ1 connecting a and c. We have

S(ρ0) =
8

27

and

S(ρ1) =
6 + 78e

27
.

ρ1 is preferred when e > 1/39, so again by level 6, for e ∈ (1/39, 1/15) x is
computed correctly with value

x =
9 + 13e

36
.

If e ∈ (0, 1/39) we continue on.

However, by this point we notice a pattern is forming. We seem to be alternating
between scaled copies of two different graphs/rff’s, one consisting of two cells of
the same size joined together at a point, and the other consisting of two cells
of different sizes joined together at a point. If we can show that this is indeed
the case in general, and get closed-form expressions for the boundary data on
each copy of these graphs, we can hope to get the results we want. We will
want some terminology to talk about these things. Despite the confusion with
previous names and general ugliness, let us call the former graph, two same-
sized cells glued together, jG, and the latter as kH, where the j and k work as
follows: jG is the rff produced by the gluing together of two (j + 1)-cells, and
kH is the gluing together of a (k + 1)-cell and a (k + 2)-cell. So for instance,
0G0 is
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and 1H0 is

The remaining graphs are defined inductively as: j+1G is jH minus the upper
and right (j + 2)-cells contained within the (j + 1)-cell that comprises part of
jH. j+1H is formed from j+1G by removing the upper and left (j + 3)-cells
from the left (j + 2)-cell of j+1G.
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With this in mind, we want to show the following: Given that 1G is as above, we
want to show that the either the Lazarus path on jG2

3 partitions the graph into
jH and its complement or passes through the remaining V1 node for all j, and
likewise that the Lazarus path on jH2

3 partitions the graph into j+1G and its
complement or passes through the V1 node. In the process, we will also derive
an expression for the boundary data inherited from Lazarus paths on each level
j for both of these graphs, and therefore the range of e values for which this
process hits the V1 node for each j, ultimately giving an upper bound for the
level of the correct computation of the V1 set as a function of e. First, let us
name the boundary data values as a function of the level. The boundary data
for jG is
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and similarly for jH:

By looking at the numbers we have gotten for the first few j values by hand,
we can conjecture that

aj =
1− (1/3)j

4

bj =
1 + (1/3)j

4

cj =
1 + (1/3)j

4
+

3− (1/3)j

4
e

dj =
1− (1/3)j

4
+

3 + (1/3)j

4
e

Moreover, it is easy to prove this by induction, assuming that the procession of
graphs we conjectured holds true, since

aj+1 =
2

3
aj +

1

3
bj ,

and similarly for the others.

Given this, let us look at jG1. I don’t want to keep track of slope renormalization
constants here, and anyway doing so is irrelevant for the purposes of deciding
which path will be the Lazarus path on any particular graph, since everything is
renormalized equally. To make the distinction clear though, when any of these
slopes are referenced I’ll denote them as S′(ρ), for some path ρ. We compute
that the first two Lazarus paths on 0G are the left side of the left 1-cell and
the right side of the right 1-cell. For j > 0, we use the fact that the boundary
data has (by inductive hypothesis) been inherited from previous Lazarus paths
on j−1H. Since Lazarus paths are decreasing in slope, their restriction to this
graph (i.e. the left side of the left (j+1)-cell and right side of the right (j+1)-cell
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again) must again be the first two Lazarus paths here, as anything with steeper
slope through the interior would have been part of a Lazarus path previously.
So, let us jump right to jG2

3.

There are essentially four possible Lazarus paths (since the rest are just con-
tractions of these with the same slope or clearly worse), ρ0 = (aj , x, v, z, cj),
ρ1 = (bj , y, v, w, dj), ρ2 = (aj , x, y, bj), and ρ3 = (cj , z, w, dj). These slopes can
be calculated as

S′(ρ0) =
3(1/3)j + e[9/2− 1/2(1/3)j−1]

96

S′(ρ1) =
3(1/3)j + e[−9/2− 1/2(1/3)j−1]

96

S′(ρ2) =
4(1/3)j

96

S′(ρ3) =
4(1/3)j − e[4(1/3)j ]

96
.

ρ0 beats out ρ1 and ρ2 beats out ρ3, so we compare ρ0 and ρ2. The point of
equality is

e =
2

3j+2 − 3
.

Above this, ρ0 hits v and so we take care of V1, with

v =
2 + (3− (1/3)j)e

8
.

Below this, and we go onto the jH graph. This shows that at least the first of
our putative transitions happen the way we would like them to. For jH0 we
have:

Note that, since Lazarus paths have decreasing slope, the first two Lazarus paths
on jH0 must be the same as the restriction of the previous Lazarus paths on jG
to this subgraph, since any path through the interior must have smaller slope.
So, we again have
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in the general case, and essentially four paths to choose from again: ρ0 =
(aj+1, x, v, z, cj), ρ1 = (bj+1, y, v, w, dj), ρ2 = (aj+1, x, y, bj+1), and ρ3 = (cj , z, w, dj).
We can calculate these slopes as

S′(ρ0) =
(1/3)j + (1/3)j+1 − e[(1/3)j − 3]

96

S′(ρ1) =
(1/3)j + (1/3)j+1 − e[(1/3)j + 3]

96

S′(ρ2) =
4(1/3)j+1

96

S′(ρ3) =
6(1/3)j+1 − 6(1/3)j+1

96

Again we see that ρ0 beats ρ1, and now ρ3 beats ρ2 for e < 1/3, with ρ3 beating
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ρ0 for e small. Again we can calculate the point of equality as

e =
2

3j+2 + 3

with

v =
3 + (1/3)j + (3− (1/3)j)e

12
.

Finally, we notice that if we are below this e cutoff, our next subgraph containing
v is indeed j+1G, so the induction is basically complete. All that remains now is
to relate these j values back to levels on the original graph. First, v is computed
correctly by level 2 for e > 1/3, as we know. On 0G we get nothing, since our
formula would only give us a cutoff of e = 1/3 and we are already in this case.
On 0H, we get v in the third Lazarus path for e ∈ (1/6, 1/3), on local level 3,
which corresponds with an inherited level of 5, so we compute v correctly for

e ∈ (1/6, 1/3).

Then, on local level 3 of 1G we compute v correctly for e ∈ (1/12, 1/6), which
corresponds to inherited level 5 as well. Since we are always computing the
correct v (in the appropriate range) on local level 3 for all jG and jH, an easy
induction argument shows that this corresponds to inherited level j + 4 for jG,
j > 0, and inherited level j+5 for jH. Thus, on any (global) level k, we compute
v correctly from k−5H for

e ∈
(

2

3k−3 + 3
,

2

3k−3 − 3

)
and we compute v correctly from k−4G for

e ∈
(

2

3k−2 − 3
,

2

3k−3 + 3

)
.

Since the latter subsumes the former, if all we care about is computing an upper
bound for the level at which v is correctly computed as a function of e, we can
lump these results together, and say that by level k,

v is computed correctly for all e >
2

3k−2 − 3
, k > 4.

So, the lower bound for the e values for which V1 has been computed correctly
by level k is O(1/3k), giving us definite convergence to 0 as k → ∞. Since we
know how to deal with the e = 0 case already, this is everything we need to
show that Theorem 1 is true, completing our proof.
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4 Conclusion

Theorem 1 proves the existence of a function u on SG which is a limit of
functions uk on each Γk satisfying ∆∞ uk = 0. Naturally, we would like to
get a much more general result, proving the existence of a function u : SG→ R
as a limit of functions uk : Γk → R such that −ck ∆∞ uk = fk, where c is a
possible renormalization constant and fk = f |Vk

for some suitably wide class of
functions f , so that we could define

−∆∞ u = f

on SG. The proof of existence of infinity-harmonic functions depended on
the use of the Lazarus algorithm, which has no immediate analogue for non-
harmonic functions. One could try to construct some sort of similar procedure
for non-zero f on the right-hand side of the previous equation, and that is one
direction for possible future exploration.

This aside, we can take stock of what has been accomplished. We have a plau-
sible definition for infinity-harmonic functions on SG, and a proof of their exis-
tence. Perhaps equally important is the new understanding of how the discrete
infinity-harmonic functions behave on the graph approximations {Γk}. It sug-
gests that extensions of these results could be found for other, similarly defined
fractal sets.
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