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Abstract

In this thesis we discuss some new results concerning the combinatorial Laplace operator of a

simplicial complex. The combinatorial Laplacian of a simplicial complex encodes information about

the relationships between adjacent simplices in the complex. This thesis is divided into two relatively

disjoint parts. In the first portion of the thesis, we derive a relationship between the Laplacian

spectrum of a simplicial complex and the Laplacian spectra of its covering complexes. A covering of

a simplicial complex is built from many copies of simplices of the original complex, maintaining the

adjacency relationships between simplices. We show that for dimension at least one, the Laplacian

spectrum of a simplicial complex is contained inside the Laplacian spectrum of any of its covering

complexes.

In the second part of the thesis, we discuss the spectral recursion formula for computing the

eigenvalues of the Laplacian. Almost all simplicial complexes do not satisfy the spectral recursion

formula. We look to find a general set of criteria for determining if a given simplicial complex satisfies

the spectral recursion. We find that all one-dimensional simplicial complexes that do not contain the

three-edge graph P4 as an induced subcomplex satisfy the spectral recursion formula, and state some

preliminary results regarding two-dimensional complexes.
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1 Introduction

The combinatorial Laplacian of a simplicial complex has been extensively studied both in geometry and
combinatorics. Combinatorial Laplacians were originally studied on graphs, beginning with Kirchho↵ and
his study of electrical networks in the mid-1800s. Simplicial complexes can be viewed as generalizations
of graphs, and the graph Laplacian was likewise generalized to the combinatorial Laplacian of simplicial
complexes, which is studied here. The study of the Laplacian of simplicial complexes is relatively recent,
beginning in the mid-1970s, when Dodziuk and Patodi [3] found that by triangulating a Riemannian
manifold, the eigenvalues of the combinatorial Laplacian of the triangulation approached the eigenvalues
of the continuous Laplacian of the manifold as the mesh size of the triangulation went to zero. In a
similar vein, Forman [8] used the combinatorial Laplacian to define combinatorial Ricci curvature, an
analogue to the classical Ricci curvature of a Riemannian manifold.

The combinatorial Laplacian has been shown to have many interesting properties. Most intriguing is
the fact that some types of simplicial complexes, namely chessboard complexes [9], matching complexes
[4], matroid complexes [13], and shifted complexes [7], all have integer Laplacian spectra. Matroid and
shifted complexes also satisfy a recursion formula for calculating the Laplacian spectrum in terms of
certain subcomplexes [6]. We will study this recursion formula in this thesis.

This thesis is divided into two relatively disjoint parts. In the first part we discuss the relationship
between the Laplacian and covering complexes. The motivation for this part of the thesis comes from
the search for relationships between the Laplacians of di↵erent simplicial complexes. It also comes out
of the study of covering complexes, the simplicial analogue of topological covering spaces, and their
properties. Covering complexes have many applications outside of combinatorial theory; for example, the
theory of covering complexes can be used to show the famous result that subgroups of free groups are
free. Covering complexes also can be used to study Galois theory. See [17] for more information about
covering complexes.

The combinatorial Laplace operator is not a topological invariant; thus even simplicial maps that
preserve the underlying topological structure of a simplicial complex might change the Laplacian. Like
topological spaces, complexes can have coverings. Our goal in this part of the thesis is to determine the
relationship between the Laplacian of a simplicial complex and the Laplacians of its coverings. Our main
theorem is the following relationship between the spectra of the two Laplacians.

Theorem. Let ( eK, p) be a covering complex of simplicial complex K, and let

e�d and �d be the dth

Laplacian operators of

eK and K, respectively. Then for all d � 1, Spec(�d) ✓ Spec(e�d).

It is not true that Spec(�0) ✓ Spec(e�0), due to the presence of the empty set ;, which is considered
a (�1)-dimensional face of all simplices of K. We can define an unreduced simplicial complex K which
does not include ;, and a corresponding unreduced Laplacian �d, which corresponds to �d for all d > 0,

but does have the advantage that Spec(�0) ✓ Spec(e�0).
In the second part of the thesis we analyze the spectrum polynomial of a simplicial complex, which

encodes information about the eigenvalues of the Laplacian, and the spectral recursion formula of Duval
[6]. This recursion formula determines the spectrum polynomial of a simplicial complex in terms of the
spectrum polynomials of smaller complexes. Duval drew on inspiration from the Tutte polynomial of
a matroid, which satisfies a similar recursion relation as the spectrum polynomial. Kook, Reiner, and
Stanton [13] conjectured a Tutte polynomial-like recursion formula for the spectrum polynomial of a
matroid, and Kook [12] found such a recursion formula. Duval generalized this formula to arbitrary
simplicial complexes and showed that both matroid complexes and shifted complexes satisfy the formula.

5



Duval admitted that the fact that both matroid complexes and shifted complexes satisfy the spectral
recursion formula is somewhat of a coincidence, as the methods of proving that they satisfy the formula
are quite di↵erent for the two types of complexes. We attempt to find a general characteristic of simplicial
complexes that will guarantee that the spectral recursion formula is satisfied.

While we have not found such a general characteristic, we have made strides in that direction. The
case of one-dimensional complexes is fairly well understood. Duval shows in [6] that the three-edge graph
P4 does not satisfy spectral recursion. We build on his statement, showing that all one-dimensional
complexes that are P4-free satisfy spectral recursion. We conjecture that the converse of this statement is
true also, and that P4-free graphs are the only one-dimensional complexes that satisfy spectral recursion.

The case for two-dimensional complexes is not nearly as well studied. Our goal when beginning our
study of two-dimensional complexes was to find two-dimensional complexes that failed to satisfy spectral
recursion for a “two-dimensional reason,” by which we mean the one-skeleton of the complex satisfied
spectral recursion, yet the complex itself did not. We have found some two-dimensional analogues of
the three-edge graph, i.e. minimal two-dimensional complexes that do not satisfy spectral recursion.
However, at this time it is unknown as to whether there are a finite number of such minimal complexes,
or if there are an infinite number.

We give an outline of how the paper is structured. All calculations of combinatorial Laplacians were
done using GAP, and all calculations of eigenvalues were done using Mathematica. In Section 2, we
give the basic definitions of simplicial complexes, including many operations for forming new simplicial
complexes from given ones. We define the boundary operator, and state a formula for computing its
adjoint. Using the boundary operator, we define the Homology groups Hd(K) and the Laplace operator
�d(K), and prove the Combinatorial Hodge Theory, which says Hd(K) ⇠= ker(�d(K)).

In Section 3 we introduce the notion of a covering complex. Covering complexes are the simplicial
complex analogue of covering spaces in topology. We prove our first main theorem, that for dimension
at least one, the Laplacian spectrum of a simplicial complex is contained in the Laplacian spectrum of
any of its covering complexes.

Section 4 is a survey of results focusing on the spectral recursion formula for calculating the eigen-
values of the combinatorial Laplacian. We begin with a discussion of simplicial pairs, a generalization of
simplicial complexes. We then define the spectrum polynomial and state the spectral recursion formula.
Duval showed that the P4 graph does not satisfy spectral recursion. We generalize his result by showing
that all cographs, i.e. graphs without P4 as an induced subgraph, satisfy the spectral recursion formula.
Our attempts to prove the converse of this statement led to the following conjecture:

Conjecture. Let K be a simplicial complex, let V ✓ K(0), and let K[V ] be the induced subcomplex on

V . If K[V ] does not satisfy spectral recursion, then K does not satisfy spectral recursion.

The Tutte polynomial has the advantageous property that the matroids produced in the recursion
relation also satisfy the Tutte polynomial. Analogous to this, we introduce the notion of strong spectral
recursion, and show that a one-dimensional complex satisfies strong spectral recursion if and only if it is
P4-free.

We conclude the thesis with some simple results concerning two-dimensional simplicial complexes.
We attempted to find two-dimensional complexes K with the property that the 1-skeleton K(1) satisfied
spectral recursion, yet K itself did not. Our reason for doing this was to find a two-dimensional property
of a complex, similar to the one-dimensional property of containing an induced P4, that would prohibit
the complex from satisfying spectral recursion.
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2 Background

2.1 Simplicial Complexes

This section is devoted to definitions and basic facts about simplicial complexes. The definitions here
will be used throughout the thesis. See [14,16] for more information about abstract simplicial complexes.

Definition. An abstract simplicial complex K is a collection of finite sets that is closed under set

inclusion, i.e. if � 2 K and ⌧ ✓ �, then ⌧ 2 K.

We will usually drop the word “abstract,” and occasionally the word “simplicial,” and just use the
term “simplicial complex” or “complex.” In addition, in this thesis we will only deal with finite abstract
simplicial complexes, i.e. only the case where |K| < 1. A set � 2 K is called a simplex of K. The
dimension of a simplex � is one less than the number of elements of �. The dimension of K is the largest
dimension of all of the simplices in K, or is infinite if there is no largest simplex. Since we will only
discuss finite complexes, all complexes in this thesis will have finite dimension. We call � a d-simplex if
it has dimension d.

The p-skeleton of K, written K(p), is the set of all simplices of K of dimension less than or equal to
p. The non-empty elements of the set K(0) are called the vertices of K. Occasionally we will refer to the
1-simplices as edges. We require that the empty set ; be in K for all K, so that ; ✓ � for all � 2 K. We
say that ; has dimension �1.

A simplicial complex K is connected if, for every pair of vertices u, v 2 K(0), there is a sequence of
vertices {v1, . . . , vn} in K such that v1 = u, vn = v, and {vi, vi+1} is an edge in K for all i = 1, . . . , n�1.

Definition. Let K and L be two abstract simplicial complexes. A map f : K(0) ! L(0)
is called a

simplicial map if whenever {v0, . . . , vd} is a simplex in K, then {f(v0), . . . , f(vd)} is a simplex in L.

While a simplicial map f maps the vertices of K to the vertices of L, we will often speak of f as
mapping K to L and write f : K ! L; thus if � 2 K is a simplex, we will write f(�). Notice that if � is
a d-simplex in K, then f(�) need not be a d-simplex in L, as f(�) might in fact be of lower dimension.

There are multiple ways of creating new simplicial complexes from given ones. If K is a simplicial
complex, then any subset K 0 ✓ K that is also a simplicial complex (i.e. if � 2 K 0, then ⌧ 2 K 0 if ⌧ ✓ �)
is called a subcomplex of K. If V ✓ K(0) is a set of vertices, then the induced subcomplex K[V ] on V is
defined by K[V ] = {� 2 K | �(0) ✓ V }, i.e. K[V ] is the collection of all simplices which have all of their
vertices in V .

Given two disjoint complexes K and L (i.e. K(0) \ L(0) = ;), define the union K [ L and the join

K ? L by

K [ L = {� | � 2 K or � 2 L}
K ? L = {� [ ⌧ | � 2 K, ⌧ 2 L}

Sometimes we will say “simplicial join” in order to distinguish K ?L from other types of joins. It is easy
to see that both K [ L and K ? L are simplicial complexes whenever both K and L are.

Given a d-simplex �, there are (d+ 1)! ways of ordering (i.e., listing) the d+ 1 vertices composing �.
We want a way to distinguish between possible orderings. Recall that a permutation is a bijection from a
set to itself. A permutation of a finite set is called even if it consists of an even number of transpositions,
i.e. interchanges of pairs of elements (see [5] for more information on permutations).

We define an equivalence relation on the set of orderings of � as follows: we say that two orderings
are equivalent if there is an even permutation sending one to the other. It is easy to check (see [16]) that
this is an equivalence relation, and for d > 0, there are exactly two equivalence classes for each simplex �.
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We call each of these equivalence classes an orientation of �, and a simplex with an orientation is called
an oriented simplex. An oriented simplicial complex K is one for which we have chosen an orientation
for each of its simplices.

Given an oriented simplicial complex K, let Cd(K) be the set of all formal R-linear combinations of
oriented d-simplices of K. The set Cd(K) is then a vector space over R with the oriented d-simplices
as a basis. Each element of Cd(K) is called a d-chain (see [16] for a more formal construction of the
d-chains). We will write Cd instead of Cd(K) when the simplicial complex K is clear. In particular, note
that C�1(K) = R for all K, as ; is the only (�1)-simplex of K.

Since the oriented d-simplices form a basis for Cd, we can define linear functions on Cd by defining
how they act on the oriented d-simplices. We now define perhaps the most important linear function on
Cd, the boundary operator.

Definition. The boundary operator @d : Cd(K) ! Cd�1(K) is the linear function defined for each

oriented d-simplex � = [v0, . . . , vd] by

@d(�) = @d[v0, . . . , vd] =
dX

i=0

(�1)i[v0, . . . , bvi, . . . , vd] (1)

where [v0, . . . , bvi, . . . , vd] is the subset of [v0, . . . , vd] obtained by removing the vertex vi.

Notice that if � = [v] 2 C0(K), then @0(�) = ; 2 C�1(K), and since there are no simplices of
dimension �2, @�1(;) = 0. If f : K ! L is a simplicial map, we define a homomorphism f# : Cd(K) !
Cd(L) by defining it on basis elements (i.e. oriented simplices) as follows:

f#(�) = f#([v0, . . . , vd])

=

⇢
[f(v0), . . . , f(vd)], if f(v0), . . . , f(vd) are distinct

0, otherwise

We then require f# to be a homomorphism by setting f# (
P

ri�i) =
P

rif#(�i). We call the family
{f#} the chain map induced by the simplicial map f.

Technically speaking, each f# acts only on one d-chain Cd. When we want to specify which dimension
we are working with, we shall write fd instead of f#. Chain maps have the special property that they
commute with the boundary operator.

Lemma 2.1. The homomorphism f# commutes with the boundary operator @, that is,

fd�1 � @d = @d � fd.

Proof. Since both f# and @ are linear, we need only look at their action on basis elements. A simple
computation gives

fd�1(@d[v0, . . . , vd]) = fd�1

 
dX

i=0

(�1)i[v0, . . . , bvi, . . . , vd]
!

=
dX

i=0

(�1)ifd�1[v0, . . . , bvi, . . . , vd]

= @d(fd[v0, . . . , vd]).
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Since we are assuming that |K| < 1, Cd(K) is a finite dimensional vector space for all d, so we can
define an inner product h id on Cd(K) as follows: Let �1, . . . ,�n be the oriented d-simplices of simplicial
complex K, and let a, b 2 Cd be arbitrary elements of Cd, which we can write as:

a =
nX

i=1

ai�i b =
nX

i=1

bi�i

where the ai, bi 2 R (this is possible since the �i form a basis for Cd). Then the inner product of a and
b is given by

ha, bid =
nX

i=1

aibi.

It is easy to check that this definition satisfies the properties of an inner product.
Since each boundary operator @d : Cd ! Cd�1 is a linear map, we can associate to it its adjoint

operator @⇤
d : Cd�1 ! Cd as the unique linear operator that satisfies

h@d(a), bid�1 = ha, @⇤
d(b)id

where h id�1 and h id are the inner products on Cd�1 and Cd, respectively, and a 2 Cd, b 2 Cd�1. Since
@d and @⇤

d are both linear, they both have associated matrices, which we call Bd and BT
d , respectively

(where here, BT
d is the transpose of Bd, as @⇤

d is the adjoint of @d).
We now give a way of calculating @⇤

d . Let Sd(K) be the set of all oriented d-simplices of the simplicial
complex K (i.e. the set of basis elements of Cd(K)), and let ⌧ 2 Sd�1(K). Then define the two sets

S+
d (K, ⌧) = {� 2 Sd(K)|the coe�cient of ⌧ in @d(�) is + 1}

S�
d (K, ⌧) = {� 2 Sd(K)|the coe�cient of ⌧ in @d(�) is � 1}.

Notice that S+
d and S�

d are only defined for d � 0, and since S�1(K) = {;} with @0(�) = ; for all
� 2 S0(K), when d = 0 we have S+

0 (K, ;) = S0(K) and S�
0 (K, ;) = ;. We now give an explicit formula

for calculating @⇤
d , which we will use later on in proving Theorem 3.4.

Theorem 2.2. Let @⇤
d be the adjoint of the boundary operator @d, and let ⌧ 2 Sd�1(K). Then

@⇤
d(⌧) =

X

�02S+
d (K,⌧)

�0 �
X

�002S�
d (K,⌧)

�00 .

Proof. Let f : Cd�1 ! Cd be defined on basis elements by

f(⌧) =
X

�02S+
d (K,⌧)

�0 �
X

�002S�
d (K,⌧)

�00 .

We show that h@d(a), bid�1 = ha, f(b)id, for a 2 Cd, b 2 Cd�1, for then the function f will satisfy the
requirements for the adjoint operator, and since the adjoint is unique, we will have f = @⇤

d . First observe
that f is linear, so (since @d is also linear) we only need to show h@d(�), ⌧id�1 = h�, f(⌧)id for �, ⌧ basis
elements, i.e. � 2 Sd(K), ⌧ 2 Sd�1(K).

Look at the term h@d(�), ⌧id�1 . As ⌧ is a single simplex, h@d(�), ⌧id�1 6= 0 if and only if ⌧ is in the
sum @d(�), that is, if and only if ⌧ ✓ �. Since the coe�cient of every term of @d is ±1, we see that
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h@d(�), ⌧id�1 =

8
<

:

1, ⌧ ✓ � and the coe�cient of ⌧ in @d(�) is + 1
�1, ⌧ ✓ � and the coe�cient of ⌧ in @d(�) is � 1
0, ⌧ 6✓ �

Now look at the term h�, f(⌧)id . Since � is a single simplex, h�, f(⌧)id 6= 0 if and only if � is in the
sum f(⌧), that is, if and only if � ◆ ⌧. Since the coe�cient of every term of f(⌧) is ±1, we see that

h�, f(⌧)id =

8
<

:

1, � ◆ ⌧ and the coe�cient of � in f(⌧) is + 1
�1, � ◆ ⌧ and the coe�cient of � in f(⌧) is � 1
0, � 6◆ ⌧

By the definition of f, however, we have that the coe�cient of ⌧ in @d(�) is +1 if and only if the
coe�cient of � in f(⌧) is +1, and the coe�cient of ⌧ in @d(�) is �1 if and only if the coe�cient of � in
f(⌧) is �1. Thus we have that h@d(�), ⌧id�1 = h�, f(⌧)id , so by definition of the adjoint, f = @⇤

d .

Example 2.3. Let K be the following simplicial complex:

v0
v1

v2

v3

So K has four vertices (0-simplices), five edges (1-simplices), and two triangles (2-simplices). Order the
0-simplices [v0], [v1], [v2], [v3], order the 1-simplices [v0, v1], [v0, v3], [v1, v2], [v1, v3], [v2, v3], and order
the 2-simplices [v0, v1, v3], [v1, v2, v3]. Writing the boundary and adjoint boundary operators in matrix
form, we get

B0 =

2

664

1
1
1
1

3

775 BT
0 =

⇥
1 1 1 1

⇤

B1 =

2

664

�1 �1 0 0 0
1 0 �1 �1 0
0 0 1 0 �1
0 1 0 1 1

3

775 BT
1 =

2

66664

�1 1 0 0
�1 0 0 1
0 �1 1 0
0 �1 0 1
0 0 �1 1

3

77775

B2 =

2

66664

1 0
�1 0
0 1
1 �1
0 1

3

77775
BT
2 =


1 �1 0 1 0
0 0 1 �1 1

�

Notice that, as claimed, BT
d is in fact the transpose of Bd.
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With all of this information at hand, we can define the Homology groups of a simplicial complex.
First we need a lemma:

Lemma 2.4. If K is a simplicial complex, the composition @d�1 � @d = 0.

Proof. We need only show that the equation holds for basis elements, as the boundary map is linear. A
simple computation gives

@d�1(@d(�)) = @d�1

 
dX

i=0

(�1)i[v0, . . . , bvi, . . . , vd]
!

=
X

j<i

(�1)i(�1)j [v0, . . . , bvj , . . . , bvi, . . . , vd]

+
X

j>i

(�1)j�1(�1)i[v0, . . . , bvi, . . . , bvj , . . . , vd]

=
X

j<i

(�1)i(�1)j [v0, . . . , bvj , . . . , bvi, . . . , vd]

+
X

i>j

(�1)i�1(�1)j [v0, . . . , bvj , . . . , bvi, . . . , vd]

= 0.

As a result, we see that im(@d+1) ✓ ker(@d). Thus if we think of ker(@d) and im(@d+1) as groups (they
are both abelian groups, since they are vector spaces), we can define the dth homology group Hd(K) as
the quotient group Hd(K) = ker(@d)/ im(@d+1). The homology groups of a complex are a topological
invariant, that is, if K and K 0 are homeomorphic as topological spaces, then Hd(K) = Hd(K 0); see [11]
for a proof. We will see how the homology groups are related the the Laplace operator in the next section.

2.2 The Combinatorial Laplacian

We now define the combinatorial Laplace operator and the Laplacian spectrum for a simplicial complex.

Definition. Let K be a finite oriented complex. The d

th
combinatorial Laplacian is the linear operator

�d : Cd(K) ! Cd(K) given by

�d = @d+1 � @⇤
d+1 + @⇤

d � @d.

The dthLaplacian matrix of K, denoted Ld, with respect to the standard bases for Cd and Cd�1, is
the matrix representation of �d, given by

Ld = Bd+1BT
d+1 + BT

d Bd.

Note that the combinatorial Laplacian is actually a set of operators, one for each dimension in the
complex. Since the product of a matrix and its transpose is symmetric, both BT

d Bd and Bd+1BT
d+1 are

symmetric, and thus so is Ld. As a result, Ld is real diagonalizable, so the Laplacian �d has a complete
set of real eigenvalues. The dthLaplacian spectrum of a finite oriented simplicial complex K, denoted
Spec(�d(K)), is the multiset of eigenvalues of the Laplacian �d(K).
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The Laplacian acts on an oriented simplicial complex. However, simplicial complexes are not naturally
oriented. Notice that when we constructed the boundary operator, and thus the Laplacian, we gave the
simplicial complex an arbitrary orientation. This might lead one to believe that the same simplicial
complex could produce di↵erent Laplacian spectra for di↵erent orientations of its simplices. However,
this is not the case, as is shown in the following theorem. See [10] for the proof.

Theorem 2.5. Let K be a finite simplicial complex. Then Spec(�d(K)) is independent of the choice of

orientation of the d-simplices of K.

As a result, we can speak of the Laplacian spectrum of a simplicial complex without regard to its
orientation.

Every simplicial complex can be embedded in Rn for some n, and thus can be considered a topological
space (see [16] for the proof). It is possible for two di↵erent simplicial complexes to embed in Rn as the
same topological space; any cycle, for example, is homeomorphic to a circle. A natural question to ask,
then, is whether the Laplacian is a topological invariant; that is, whether di↵erent simplicial complexes
that are homeomorphic as topological spaces have the same Laplacian. The answer is no, the Laplacian
is not a topological invariant. We show this with an example.

Example 2.6. Let K1 and K2 be the following one-dimensional oriented simplicial complexes:

K1=

v2

v0 v1

K2=

u1

u2u3

u0

Notice that both K1 and K2 are graphs, and the edges of the graphs are exactly the 1-simplices of
the complexes. Clearly K1 and K2 are topologically equivalent; they are both cycles, and thus both
homeomorphic to the circle. However, it is easily seen that

L1(K1) =

2

4
2 1 �1
1 2 1
�1 1 2

3

5 , L1(K2) =

2

664

2 1 �1 0
1 2 0 1
�1 0 2 �1
0 1 �1 2

3

775 .

Thus the Laplacian operators on K1 and K2 are not the same. Even the spectra of the two Laplacians
are not the same, as Spec(�1(K1)) = {0, 3, 3} and Spec(�1(K2)) = {0, 2, 2, 4}.

It should be noted, however, that the kernel of the Laplacian is a topological invariant, which we now
show. The following argument is inspired by [19].

Lemma 2.7. The kernel of the Laplacian can be characterized by

ker(�d) = {a 2 Cd | @d(a) = @⇤
d+1(a) = 0}.

Proof. First assume that @d(a) = @⇤
d+1(a) = 0. Then by definition

�d(a) = @d+1(@
⇤
d+1(a)) + @⇤

d(@d(a)) = @d+1(0) + @⇤
d(0) = 0,

12



so a 2 ker(�d). Now suppose a 2 ker(�d). Then since @d+1(@⇤
d+1(a)) + @⇤

d(@d(a)) = 0, we have

0 = h@d+1(@
⇤
d+1(a)) + @⇤

d(@d(a)), ai
= h@d+1(@

⇤
d+1(a)), ai+ h@⇤

d(@d(a)), ai , since the inner product is bilinear

= h@⇤
d+1(a), @

⇤
d+1(a)i+ h@d(a), @d(a)i , since @d, @

⇤
d are adjoint operators.

Since hb, bi > 0 for all b 6= 0, this means that @d(a) = @⇤
d+1(a) = 0, completing the proof.

Recall that if V is a vector space with inner product h i and U is a subspace of V , then the subspace
U? = {v 2 V | hv, ui = 0 for all u 2 U} is called the orthogonal complement of U . We can always
decompose V as the internal direct sum V = U � U?. Since ker(�d) ✓ Cd(K), it too has an orthogonal
complement (ker(�d))? such that Cd(K) = ker(�d)� (ker(�d))?.

Lemma 2.8. The orthogonal complement of ker(�d) ✓ Cd(K) is (ker(�d))? = im(�d).

Proof. First we show im(�d)) ✓ (ker(�d))?. To do this, we must show that if a 2 im(�d), then ha, bi = 0
for all b 2 ker(�d). Since a 2 im(�d), there is a c 2 Cd such that �d(c) = a. Thus for all b 2 ker(�d)
we have

ha, bi = h�d(c), bi = hc,�d(b)i , since �d is symmetric

= hc, 0i , since b 2 ker(�d)

= 0.

Thus im(�d) ✓ (ker(�d))?. Now we show the opposite inclusion. Since �d is a symmetric linear map on
Cd, by the Spectral Theorem (see [15], Theorem 15.7.1) there is a complete set of orthonormal eigenvectors
of �d, i.e. there exist v1, . . . , vn 2 Cd such that hvi, vji = �ij and �d(vi) = �ivi for some eigenvalue
�i 2 R. Without loss of generality we can assume �1 = · · · = �k = 0 and �i 6= 0 for i = k + 1, . . . , n, i.e.
v1, . . . , vk form a basis for ker(�d) and vk+1, . . . , vn form a basis for (ker(�d))?.

For any a 2 Cd, we can write a =
P

↵ivi with ↵i 2 R. If a 2 (ker(�d))?, then ha, bi = 0 for all
b 2 ker(�d). In particular, ha, vii = 0 for all i = 1, . . . , k. But ha, vii = ↵i, so this means ↵i = 0 for all
i = 1, . . . , k, so we can write

a =
nX

i=k+1

↵ivi.

We claim that a 2 im(�d). Define c 2 Cd by

c =
nX

i=k+1

↵i

�i
vi.

The vector c is well-defined, since �i 6= 0 for all i = k + 1, . . . , n. Then

�d(c) = �d

 
nX

i=k+1

↵i

�i
vi

!
=

nX

i=k+1

�d

✓
↵i

�i
vi

◆

=
nX

i=k+1

↵i

�i
�d(vi) =

nX

i=k+1

↵i

�i
�ivi

=
nX

i=k+1

↵ivi = a.

Thus (ker(�d))? ✓ im(�d), so they are equal.
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As a result, we can decompose Cd as the internal direct sum Cd = ker(�d)� im(�d). In fact, we can
go further, as is seen in the following lemma:

Lemma 2.9. The space of d-chains Cd(K) can be decomposed as Cd(K) = ker(�d)� im(@d+1)� im(@⇤
d).

Proof. We have just shown that we can decompose Cd as Cd = ker(�d) � im(�d). Thus it su�ces to
show that we can decompose im(�d) as im(�d) = im(@d+1)� im(@⇤

d). First we show that im(@d+1) and
im(@⇤

d) are orthogonal, so that im(@d+1)� im(@⇤
d) is well defined; i.e. we must show that if a 2 im(@d+1)

and b 2 im(@⇤
d), then ha, bi = 0. Since a 2 im(@d+1), there is an a0 2 Cd+1 such that @d+1(a0) = a.

Similarly, since b 2 im(@⇤
d), there is a b0 2 Cd�1 such that @⇤

d(b
0) = b. We then have

ha, bi = h@d+1(a
0), @⇤

d(b
0)i

= h@d(@d+1(a
0)), b0i , since @d, @

⇤
d are adjoint operators

= h0, b0i , by Lemma 2.4

= 0.

Thus the direct sum im(@d+1)� im(@⇤
d) is well-defined. Now we show im(�d) ✓ im(@d+1)� im(@⇤

d). Let
a 2 im(�d), so there is a b 2 Cd such that �d(b) = a. By definition �d(b) = @d+1(@⇤

d+1(b)) + @⇤
d(@d(b)).

Setting ↵ = @⇤
d+1(b) and � = @d(b), this becomes a = �d(b) = @d+1(↵) + @⇤

d(�), so a = u + v for
u 2 im(@d+1) and v 2 im(@⇤

d), so im(�d) ✓ im(@d+1)� im(@⇤
d).

Now we show that ker(�d) is orthogonal to both im(@d+1) and im(@⇤
d), i.e. if v 2 ker(�d), a 2

im(@d+1), and b 2 im(@⇤
d), then hv, ai = hv, bi = 0. Since a 2 im(@d+1), there is an a0 2 Cd+1 such that

@d+1(a0) = a, and since b 2 im(@⇤
d), there is a b0 2 Cd�1 such that @⇤

d(b
0) = b. Thus

hv, ai = hv, @d+1(a
0)i

= h@⇤
d+1(v), a

0i , since @d+1, @
⇤
d+1 are adjoint operators

= h0, a0i , by Lemma 2.7

= 0

hv, bi = hv, @⇤
d(b

0)i
= h@d(v), b0i , since @d, @

⇤
d are adjoint operators

= h0, b0i , by Lemma 2.7

= 0

As a result, im(@d+1) and im(@⇤
d) are both contained in the orthogonal complement of ker(�d), and thus

so is their direct sum, i.e. im(@d+1) � im(@⇤
d) ✓ (ker(�d))? = im(�d), the last equality by Lemma 2.8.

Thus im(�d) = im(@d+1)�im(@⇤
d), so we have Cd = ker(�d)�im(�d) = ker(�d)�im(@d+1)�im(@⇤

d).

Lemma 2.10. The kernel of the map @d can be decomposed as ker(@d) = ker(�d)� im(@d+1).

Proof. First observe that both ker(�d) and im(@d+1) are contained in ker(@d), the former by Lemma 2.7
and the latter by Lemma 2.4, so ker(�d) � im(@d+1) ✓ ker(@d) (note that this is a valid direct sum by
the previous lemma).

We now must show the the opposite inclusion, that ker(@d) ✓ ker(�d) � im(@d+1). We do this by
showing that ker(@d) is orthogonal to im(@⇤

d). Let v 2 ker(@d) and u 2 im(@⇤
d), so @d(v) = 0 and

there is a w 2 Cd�1 with @⇤
d(w) = u. Then hv, ui = hv, @⇤

d(w)i = h@d(v), wi = h0, wi = 0. Thus
ker(@d) ✓ (im(@⇤

d))
? = ker(�d)� im(@d+1), completing the proof.

14



We can now prove the Combinatorial Hodge Theory. With all that we have done to this point, the
proof is now trivial.

Theorem 2.11. If K is a simplicial complex, then ker(�d(K)) ⇠= Hd(K).

Proof. By definition Hd(K) = ker(@d)/ im(@d+1). Thus by Lemma 2.10, we have

Hd(K) = ker(@d)/ im(@d+1) = (ker(�d)� im(@d+1))/ im(@d+1) = ker(�d).

Since the homology groups Hd(K) are a topological invariant, as a result of Theorem 2.11 this means
that ker(�d(K)) is a topological invariant as well. In light of Example 2.6, this is most likely the only
topological invariant of the Laplacian.

Occasionally, we will want to work with a modified definition of a simplicial complex, in which ; /2 K.
Then C�1(K) = ;, so @0(�) = 0 for all � 2 C0(K). We call such complexes without the empty
set unreduced simplicial complexes and denote them by K. Everything we have done so far holds for
unreduced simplicial complexes. We denote the homology groups of an unreduced simplicial complex
by Hd, and call them unreduced homology groups. Similarly, we denote by �d the unreduced Laplacian

operator.1

Any simplicial complex can be turned into an unreduced simplicial complex by simply removing the
empty set, and vice-versa. For a given simplicial complex, it is clear that for d � 1, Hd = Hd and
�d = �d. Observe that �0 = @1 � @⇤

1 , since @0 = 0.

3 Covering Complexes

We can think of simplicial complexes as topological spaces. As we have just shown, however, the Laplacian
is not a topological invariant. Thus, while two complexes might be topologically homeomorphic, they
could have very di↵erent Laplacian spectra. Our goal in this section is to show that if two simplicial
complexes are related by a covering map, then their Laplacian spectra are also related. We begin with
the definition of a covering complex. This definition comes from [17], and is similar to the definition of a
topological covering space.

Definition. Let K be a simplicial complex. A pair ( eK, p) is a covering complex of K if:

1.

eK is a connected simplicial complex.

2. p : eK ! K is a simplicial map.

3. For every simplex � 2 K, p�1(�) is a union of pairwise disjoint simplices, p�1(�) =
S
e�i, with

p|e�i : e�i ! � a bijection for each i.

1This is very non-standard terminology. In fact, most people would call what we have defined as the homology groups the
reduced homology groups, and would call what we have defined as the unreduced homology groups simply the homology
groups; similarly for the Laplacian. However, as we work almost exclusively with simplicial complexes with ;, we have
decided to use the terminology given.
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Example 3.1. Let K and eK be the following simplicial complexes:

K=

v1

v2v3

v0

eK=

u4

u5u6

u7

u0

u1 u2

u3

We see that eK is connected. Define the map p : eK(0) ! K(0) by

p(ui) =

(
vi 0  i < 4

vi�4 4  i  7

One can easily check that p is a simplicial map and that condition (3) above is satisfied, so that ( eK, p)
is a covering complex of K.

Covering complexes are the simplicial complex equivalent of the covering space of a topological space.
The reason we require eK to be connected is to exclude the trivial case where eK is the disjoint union of
some number of copies of K.

Since a covering is a simplicial map, there is a chain map associated to it. Let ( eK, p) be a covering
of an oriented complex K. Define the chain covering map p# : Cd( eK) ! Cd(K) to be the chain map

induced by the covering map p. Notice that by definition of p, if � = {v0, . . . , vd} 2 Sd( eK), then p(�) =
{p(v0), . . . , p(vd)} 2 Sd(K) (i.e. the p(vi) are distinct), so we can define p# on basis elements by

p#(�) = p#([v0, . . . , vd]) = [p(v0), . . . , p(vd)].

Again, if we want to specify which dimension the chain covering acts on, we will write pd instead of p#.
By Lemma 2.1, we see that p# commutes with the boundary operator @. Normally, a chain map will not
commute with the adjoint boundary operator. We now show, however, that for the chain covering they
do commute. We will use the following lemma to show that the Laplacian �d commutes with the chain
covering p# when d � 1.

Lemma 3.2. If d � 1, the adjoint boundary operator @⇤
d commutes with the chain covering p#, that is,

pd � @⇤
d = @⇤

d � pd�1.

Proof. Since both @⇤ and p# are linear, we only need to look at one basis element ⌧ 2 Sd�1( eK), that is
we must show

pd � @⇤
d(⌧) = @⇤

d � pd�1(⌧).

Using the formula for @⇤ from Theorem 2.2, we see that

pd � @⇤
d(⌧) = pd

0

@
X

�02S+
d ( eK,⌧)

�0 �
X

�002S�
d ( eK,⌧)

�00

1

A

=
X

�02S+
d ( eK,⌧)

pd(�
0)�

X

�002S�
d ( eK,⌧)

pd(�
00),
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the last step because p# is linear. In addition, we see that

@⇤
d � pd�1(⌧) =

X

⌘02S+
d (K,pd�1(⌧))

⌘0 �
X

⌘002S�
d (K,pd�1(⌧))

⌘00.

First we show that for every � 2 Sd( eK) such that � ◆ ⌧, there is exactly one ⌘ 2 Sd(K) such that
⌘ ◆ p(⌧) and p(�) = ⌘, and conversely (i.e. for every ⌘ 2 Sd(K) with ⌘ ◆ p(⌧) there is exactly one
� 2 Sd( eK) with � ◆ ⌧ and p(�) = ⌘).

Pick a � 2 Sd( eK) with � ◆ ⌧. Since p|� is a bijection, p(�) is unique and is in Sd(K). But ⌧ ✓ �, so
p(⌧) ✓ p(�), so ⌘ = p(�) is the unique d-simplex satisfying the requirements.

Now pick an ⌘ 2 Sd(K) with ⌘ ◆ p(⌧). Look at p�1(⌘) =
S
�i with �i \ �j = ; if i 6= j and p|�i a

bijection. Since p(⌧) ✓ ⌘, p�1(p(⌧)) ✓ p�1(⌘). But ⌧ ✓ p�1(p(⌧)), so ⌧ ✓ p�1(⌘). Since ⌧ is a simplex
and dim(⌧) � 0 (as ⌧ 2 Sd�1( eK) and d � 1), ⌧ is connected, so it lies in exactly one of the �i in the
inverse image of ⌘. Call this unique simplex � 2 Sd( eK). Then p(�) = ⌘ and ⌧ ✓ �, with � clearly unique
by construction.

Now observe that since p# simply assigns an orientation to each simplex in addition to performing

the action of p, the above statement also holds for p#, i.e. if ⌧ 2 Cd�1( eK) a basis element, then for every

� 2 Cd( eK) a basis element such that � ◆ ⌧, there is exactly one ⌘ 2 Cd(K) a basis element such that
⌘ ◆ pd�1(⌧) and pd(�) = ⌘, and for every ⌘ 2 Cd(K) a basis element with ⌘ ◆ pd�1(⌧) there is exactly
one � 2 Cd( eK) a basis element with � ◆ ⌧ and pd(�) = ⌘. Thus we see that for every term in pd � @⇤

d(⌧),
there is exactly one term in @⇤

d � pd�1(⌧), and vice-versa; we now show that these terms are equal.

First, pick a � 2 S+
d ( eK, ⌧). We know that p(�) = ⌘ for some ⌘ 2 Cd(K). There are two cases,

corresponding to p# either preserving the orientation of � or reversing it:

1. pd(�) = ⌘ 2. pd(�) = �⌘

First we show the case for (1). By definition, � 2 S+
d ( eK, ⌧) if and only if pd(�) 2 S+

d (K, pd�1(⌧)), which
is true if and only if ⌘ 2 S+

d (K, pd�1(⌧)). Now ⌘ is a basis element of Cd(K), so pd(�) is also. Thus the
coe�cient of the basis element ⌘ in @⇤

d � pd�1(⌧) is +1, and the coe�cient of basis element pd(�) = ⌘ in
pd � @⇤

d(⌧) is +1, proving case (1).

Now we prove the case for (2). By definition, � 2 S+
d ( eK, ⌧) if and only if pd(�) 2 S+

d (K, pd�1(⌧)),
which is true if and only if �⌘ 2 S+

d (K, pd�1(⌧)), which is true if and only if ⌘ 2 S�
d (K, pd�1(⌧)) (this last

equivalence is because switching the orientation switches the sign). Now ⌘ is a basis element of Cd(K),
so �pd(�) is a basis element of Cd(K). Thus the coe�cient of basis element ⌘ in @⇤

d � pd�1(⌧) is �1, and
the coe�cient of non-basis element pd(�) in pd � @⇤

d(⌧) is +1. But we want everything in terms of basis
elements, so the coe�cient of basis element �pd(�) = ⌘ in pd � @⇤

d(⌧) is �1, proving case (2).

Now pick a � 2 S�
d ( eK, ⌧). We know that p(�) = ⌘ for some ⌘ 2 Cd(K). There are two cases,

corresponding to p# either preserving the orientation of � or reversing it:

1. pd(�) = ⌘ 2. pd(�) = �⌘

First we show the case for (1). By definition, � 2 S�
d ( eK, ⌧) if and only if pd(�) 2 S�

d (K, pd�1(⌧)), which
is true if and only if ⌘ 2 S�

d (K, pd�1(⌧)). Now ⌘ is a basis element of Cd(K), so pd(�) is also. Thus the
coe�cient of the basis element ⌘ in @⇤

d � pd�1(⌧) is �1, and the coe�cient of basis element pd(�) = ⌘ in
pd � @⇤

d(⌧) is �1, proving case (1).

Now we prove the case for (2). By definition, � 2 S�
d ( eK, ⌧) if and only if pd(�) 2 S�

d (K, pd�1(⌧)),
which is true if and only if �⌘ 2 S�

d (K, pd�1(⌧)), which is true if and only if ⌘ 2 S+
d (K, pd�1(⌧)) (this last
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equivalence is because switching the orientation switches the sign). Now ⌘ is a basis element of Cd(K),
so �pd(�) is a basis element of Cd(K). Thus the coe�cient of basis element ⌘ in @⇤

d � pd�1(⌧) is +1, and
the coe�cient of non-basis element pd(�) in pd � @⇤

d(⌧) is �1. But we want everything in terms of basis
elements, so the coe�cient of basis element �pd(�) = ⌘ in pd � @⇤

d(⌧) is +1, proving case (2).
Thus we have that pd � @⇤

d(⌧) = @⇤
d � pd�1(⌧), completing the proof.

With Lemmas 2.1 and 3.2, we can now prove that the Laplacian and the chain covering commute.

Theorem 3.3. If d � 1, the Laplacian �d commutes with the chain covering p#, that is,

�d � pd = pd ��d.

Proof. By definition, we have that �d = @d+1 � @⇤
d+1 + @⇤

d � @d. By Lemma 2.1, we know that @d � pd =
pd�1 � @d, and by Lemma 3.2, since d � 1 we know that @⇤

d � pd�1 = pd � @⇤
d . Thus we have that

(@d+1 � @⇤
d+1 + @⇤

d � @d) � pd = (@d+1 � @⇤
d+1) � pd + (@⇤

d � @d) � pd
= @d+1 � (@⇤

d+1 � pd) + @⇤
d � (@d � pd)

= @d+1 � (pd+1 � @⇤
d+1) + @⇤

d � (pd�1 � @d)
= (@d+1 � pd+1) � @⇤

d+1 + (@⇤
d � pd�1) � @d

= (pd � @d+1) � @⇤
d+1 + (pd � @⇤

d) � @d
= pd � (@d+1 � @⇤

d+1) + pd � (@⇤
d � @d)

= pd � (@d+1 � @⇤
d+1 + @⇤

d � @d).

Thus �d � pd = pd ��d, completing the proof.

We can now prove that the spectrum of a covering complex contains the spectrum of the original
complex. Recall that the dthLaplacian spectrum of a simplicial complex K, denoted Spec(�d(K)), is the
multiset of eigenvalues of the Laplacian �d(K).

Theorem 3.4. Let ( eK, p) be a covering complex of simplicial complex K, and let

e�d and �d be the

Laplacian operators of

eK and K, respectively. Then for all d � 1, Spec(�d) ✓ Spec(e�d).

Proof. By definition the map p# is surjective. Let ker(p#) be the kernel of p#. Then e�d carries ker(p#)
to itself, for if � 2 ker(p#), then p#(�) = 0, which implies �d(p#(�)) = 0, which by Theorem 3.3 (since

d � 1) implies that p#(e�d(�)) = 0, which implies that e�d(�) 2 ker(p#).

Choose a basis v1, . . . , vk for ker(p#), and choose u1, . . . , uj 2 Cd( eK) so that v1, . . . , vk, u1, . . . , uj is

a basis for Cd( eK). Then p#(u1), . . . , p#(uj) is a basis for Cd(K). (To see why, suppose not; then we can
write

P
↵ip#(ui) = 0 with the ↵i not all 0. But then since p# is linear, that means p#(

P
↵iui) = 0,

which means
P

↵iui 2 ker(p#), a contradiction, since we chose the ui so that this would not be true.)
Let M be the matrix for �d with respect to the basis p#(u1), . . . , p#(uj), and let N be the matrix for
e�d restricted to ker(p#), with respect to v1, . . . , vk. Then (by [15] Theorem 14.3.7) the matrix for e�d

with respect to the basis v1, . . . , vk, u1, . . . , uj is in the block form

� =


N ⇤
0 M

�
.

We then see that
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det(�� �I) = det


N � �I ⇤

0 M � �I

�
= det(N � �I)det(M � �I).

As a result, the characteristic polynomial of M divides the characteristic polynomial of �, so we have
Spec(�d) ✓ Spec(e�d).

Example 3.5. Let K and eK be the two complexes from Example 3.1. We want to verify Theorem
3.4 with K and eK. For dimension greater than one the result is trivial, as neither K nor eK have any
simplices of dimension greater than one, so their Laplacian spectra will both be empty. Thus the only
case we have to consider is dimension 1. One can easily compute that

Spec(�1) = {0, 2, 2, 4}

Spec(e�1) = {0, 2�
p
2, 2�

p
2, 2, 2, 2 +

p
2, 2 +

p
2, 4}

We see that, as predicted, Spec(�1) ✓ Spec(e�1). Notice that if we compute �0 and e�0, we will se that
Spec(�0) contains two 4’s, while Spec(e�0) contains only one 4, so Theorem 3.4 does not necessarily hold
for dimension 0.

It is disappointing that Theorem 3.4 does not hold for dimension 0. The reason it does not hold is
because in dimension 0 the adjoint boundary does not commute with the chain covering, i.e. p0(@⇤

0 (;)) 6=
@⇤
0 (p�1(;)). This is because ; is contained in every 0-simplex, so the key step in the proof of Lemma 3.2,

that for a given ⌘ 2 S0(K) we can find a unique � 2 S0( eK) with p(�) = ⌘ and ; ✓ �, fails.
Since the unreduced Laplacian �d does not include the empty set, �0 = @1 � @⇤

1 , we get the following
lemma:

Lemma 3.6. The unreduced Laplacian �d commutes with the chain covering p# for all d, that is,

�d � pd = pd ��d.

Proof. When d > 0, this is exactly Lemma 3.2, so we only need to look at the case d = 0. By definition,
�0 = @1 � @⇤

1 . We know @1 � p1 = p0 � @1 and @⇤
1 � p0 = p1 � @⇤

1 by Lemma 2.1, so we get

�0 � p0 = (@1 � @⇤
1 ) � p0 = @1 � (@⇤

1 � p0)
= @1 � (p1 � @⇤

1 ) = (@1 � p1) � @⇤
1

= (p0 � @1) � @⇤
1 = p0 � (@1 � @⇤

1 )

= p0 ��0.

Notice we do not need to specify what happens when d = �1, as C�1(K) = ;. We thus see that for
the unreduced Laplacian �d, Theorem 3.4 holds for all d, not just d � 1:

Theorem 3.7. Let ( eK, p) be a covering complex of simplicial complex K, and let

e�d and �d be the

unreduced Laplacian operators of

eK and K, respectively. Then for all d, Spec(�d) ✓ Spec(e�d).

Proof. The proof is exactly the same as the proof of Theorem 3.4.
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4 Spectral Recursion

We now move away from the topic of covering complexes and begin our study of spectral recursion. There
are many avenues of research in this area, and we are only able to focus on a small portion of the topic.

4.1 Simplicial Pairs and the Spectral Recursion Formula

Before we can discuss the spectral recursion formula, we must first generalize the notion of a simplicial
complex. This discussion is based on [6]. Instead of a single complex, we talk about pairs of complexes,
in the following manner. Let V be a set of points, and let K, K 0 be two simplicial complexes with
K(0),K 0(0) ✓ V . We define an equivalence relation on the set of ordered pairs of complexes (K,K 0)
with vertices contained in V as follows. We say two ordered pairs (K,K 0) and (L,L0) are equivalent if
K \K 0 = L\L0. This is clearly an equivalence relation. Then define a simplicial pair to be an equivalence
class of pairs of complexes (K,K 0). Note that under this definition, every simplicial complex K is in
one-to-one correspondence with the simplicial pair (K, ;). While (K,K 0) is technically an equivalence
class of pairs of complexes, we will often work with a single representative of the equivalence class when
doing calculations. We can define unions and joins of pairs by (K,K 0) [ (L,L0) = (K [ L,K 0 [ L0) and
(K,K 0) ? (L,L0) = (K ? L,K 0 ? L0); it is easy to check that these definitions are well-defined.

We want to extend the notion of a d-chain of a simplicial complex to one for simplicial pairs. We
have to make sure that any definition we give is well defined, i.e. if (K,K 0) = (L,L0), then we want the
d-chains of (K,K 0) to equal the d-chains of (L,L0). Define Cd(K,K 0) = Cd(K)/Cd(K 0). It is easy to
verify that (K,K 0) = (L,L0) implies Cd(K,K 0) = Cd(L,L0), and that Cd(K,K 0) is the set of all formal
R-linear combinations of d-simplices of K \K 0; see [11] for the proof.

We can also define the boundary operator @d : Cd(K,K 0) ! Cd�1(K,K 0) by

@d[v0, . . . , vd] =
dX

i=0

(�1)i[v0, . . . , v̂i, . . . , vd],

where the sum is restricted to the simplices in Cd�1(K,K 0). As is the case for a simplicial complex, we
can define an inner product on Cd(K,K 0) in which all of the basis elements are orthonormal. This gives
us an adjoint boundary operator @⇤

d : Cd�1(K,K 0) ! Cd(K,K 0), so we can define the dth combinatorial
Laplacian �d : Cd(K,K 0) ! Cd(K,K 0) by

�d = @d+1 � @⇤
d+1 + @⇤

d � @d.

Notice that all of these definitions are equivalent to the ones given for a simplicial complex when the
simplicial pair is (K, ;).

As is the case for a simplicial complex, the simplicial pair Laplacian is symmetric, and thus diagonal-
izable with a complete set of real eigenvalues. Let Spec(�d) be the multiset of eigenvalues of �d(K,K 0).
For � 2 Spec(�d), let m� be the multiplicity of � in Spec(�d). For a given simplicial pair (K,K 0), we can
define a polynomial in two variable t, q that enumerates all eigenvalues of �d(K,K 0) for all dimensions
d. The following definition comes from [6]

Definition. Let (K,K 0) be a simplicial pair and let Spec(�d) be the multiset of eigenvalues of �d(K,K 0).
The spectrum polynomial S(K,K0)(t, q) of (K,K 0) is defined to be

S(K,K0)(t, q) =
X

d�0

td
X

�2Spec(�d�1)

q�. (2)
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To see how this definition works, if m�t
dq� is a term in S(K,K0)(t, q), then � 2 Spec(�d�1(K,K 0)) and

� has multiplicity m�. Notice that we can also define the spectrum polynomial for a simplicial complex
by SK(t, q) = S(K,;)(t, q). As equation 2 is rather di�cult to grasp, we give an example.

Example 4.1. Let K be the complex from Example 2.3. If we compute �d(K) = �d(K, ;), we get the
spectrum of �d(K) is given by

Spec(��1) = {4}
Spec(�0) = {2, 4, 4, 4}
Spec(�1) = {2, 2, 4, 4, 4}
Spec(�2) = {2, 4}

Now we will construct the spectrum polynomial SK(t, q) Pick a dimension d. For every eigenvalue
� 2 Spec(�d), add a term td+1q�. We get the following polynomial:

SK(t, q) = q4 + tq2 + 3tq4 + 2t2q2 + 3t2q4 + t3q2 + t3q4.

Technically, the spectrum polynomial is only a polynomial when the eigenvalues of the Laplacian are
non-negative integers. As seen in Example 3.5, this is not always the case; however, we will continue to
use the term “spectrum polynomial” for convenience.

We want to use the spectrum polynomial to determine the eigenvalues of the Laplacian of a simplicial
complex (so we will mainly be dealing with the case SK(t, q)). While the spectrum polynomial is a
convenient way of listing the eigenvalues of the Laplacian, it cannot help us compute the eigenvalues if
we do not already know them. Thus we want a way of computing the spectrum polynomial recursively.
We define two subcomplexes of a simplicial complex K.

Definition. Let K be a simplicial complex and let v 2 K(0)
. The deletion of K with respect to v is

defined to be the simplicial complex

K \ v = {� 2 K | v /2 �}.

The contraction of K with respect to v is the simplicial complex

K/v = {� \ v | � 2 K, v 2 �}.

It is clear that both K \ v and K/v are subcomplexes of K. The contraction of K with respect to v
is sometimes called the link of v in K. We would hope that we can write SK in terms of SK\v and SK/v.
It turns out that in some special cases, we can, providing we add an error term S(K\v,K/v). We give the
following definition.

Definition. We say a simplicial complex K satisfies spectral recursion with respect to v if v 2 K(0)

and

SK(t, q) = qSK\v(t, q) + tqSK/v(t, q) + (1� q)S(K\v,K/v)(t, q). (3)

We say K satisfies spectral recursion if K satisfies spectral recursion with respect to all v 2 K(0)
.

We call equation 3 the spectral recursion formula. It is well-known that not all simplicial complexes
satisfy spectral recursion. We give two examples, one of a complex that does satisfy spectral recursion,
and one of a complex that does not satisfy spectral recursion.
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Example 4.2. Let K be the complex from Example 2.3. We will show that K satisfies spectral recursion
with respect to v0. Observe that K \ v0 and K/v0 are the following:

K \ v0=

v1

v2

v3

K/v0=

v1

v3

One can easily compute the spectrum polynomials of K \v0, K/v0, and (K \v0,K/v0); they are as follows:

SK\v0(t, q) = q3 + 3tq3 + 3t2q3 + t3q3

SK/v0
(t, q) = q2 + 2tq2 + t2q2

S(K\v0,K/v0)(t, q) = tq2 + 2t2q2 + t3q2

Thus applying equation 3, we get

qSK\v0(t, q) + tqSK/v0
(t, q) + (1� q)S(K\v0,K/v0)(t, q) = q4 + tq2 + 3tq4 + 2t2q2 + 3t2q4 + t3q2 + t3q4

which is SK(t, q), as we computed in Example 4.1. It is an easy exercise to verify that K satisfies spectral
recursion with respect to the other three vertices as well, meaning that K satisfies spectral recursion.

Example 4.3. We give perhaps the most important example of a complex that does not satisfy spectral
recursion, namely, the three-edge graph P4:

v0

v1 v2

v3

P4=

The easiest way to see that P4 does not satisfy spectral recursion is to observe that Spec(�0(P4)) and

Spec(�1(P4)) contain non-integer values, but for all v 2 P
(0)
4 , the complexes P4\v, P4/v, and (P4\v, P4/v)

all have integer Laplacian spectra, so equation 3 cannot hold. In the next section we will see why P4 is
such an important complex.

Duval [6] showed that matroid complexes and shifted complexes satisfy spectral recursion. He also
proved the following two lemmas, which we will use in the next section:

Lemma 4.4. If K and L are disjoint simplicial complexes and each satisfies spectral recursion, then so

do their union K [ L and their join K ? L.

Lemma 4.5. Let K be a simplicial complex with dimK  d. If K satisfies spectral recursion, so does

the d� 1 skeleton K(d�1)
.

For the rest of this thesis we will attempt to find general criteria for determining whether or not a
given simplicial complex satisfies the spectral recursion. For one-dimensional complexes, the situation has
been fairly well studied. Some insights have been made with two-dimensional complexes. For dimension
three and higher, we have no definite information.
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4.2 One-Dimensional Complexes: Cographs

A one-dimensional simplicial complex is called a graph. Graph theory has been studied extensively in its
own right, and we will be using some results from that field in our analysis here. We use the following
conventions when studying one-dimensional complexes. If G is a one-dimensional simplicial complex (i.e.
a graph), then we denote G(0), the set of vertices of G, by V (G), and we call 1-simplices edges and denote
the set of edges by E(G).

Technically speaking, what we have defined is a simple graph, those graphs without loops (edges
that connect a vertex to itself) and multiple edges (two or more edges that share the same vertices).
Arbitrary graphs can have both loops and multiple edges, but the graphs we will study, being one-
dimensional simplicial complexes, will not (it is clear from the definition of a simplicial complex that a
one-dimensional simplicial complex must be a simple graph).

In order to discuss graphs in relation to the spectral recursion formula, we first must establish some
graph theory vocabulary. As with simplicial complexes, we can create new graphs through the process
of graph unions and graph joins. If G1, G2 are disjoint graphs, we define the graph union G1 [ G2

by defining its vertex and edge sets as follows: V (G1 [ G2) = {v | v 2 V (G1) or v 2 V (G2)} and
E(G1 [ G2) = {e | e 2 E(G1) or e 2 E(G2)}. Notice that the graph union of G1 and G2 is exactly the
same as the union of G1 and G2 as simplicial complexes, so we drop the prefix “graph” and just say the
union G1 [G2.

The graph analogue of the simplicial join, however, is di↵erent. If G1, G2 are disjoint graphs, we
define the graph join G1 ⇤G2 by defining its vertex and edge sets as follows:

V (G1 ⇤G2) = {v | v 2 V (G1) or v 2 V (G2)}
E(G1 ⇤G2) = {e | e 2 E(G1), e 2 E(G2), or e = {v1, v2} with v1 2 V (G1) and v2 2 V (G2)}

Notice how this is di↵erent from the simplicial join G1 ? G2, as the graph join, being a graph, is of
dimension one, but in most cases the simplicial join will be of dimension greater than one, even if the
two complexes being joined are one-dimensional. The graph and simplicial joins are related, however,
through the following lemma:

Lemma 4.6. Let G1, G2 be disjoint graphs, let ⇤ be the graph join and let ? be the simplicial join. Then

G1 ⇤G2 = (G1 ?G2)(1), that is, G1 ⇤G2 is the 1-skeleton of G1 ?G2.

Proof. The vertex set of G1 ? G2 is V (G1 ? G2) = V (G1) [ V (G2) = V (G1 ⇤ G2), so we have to show
that e 2 E(G1 ⇤ G2) if and only if e is a one-dimensional simplex in G1 ? G2. By definition G1 ? G2 =
{� [ ⌧ | � 2 G1, ⌧ 2 G2}, so a one-dimensional simplex e 2 G1 ?G2 is one of the following: either e 2 G1,
e 2 G2, or e = {v, u} where v 2 G1 and u 2 G2. But these are precisely the elements of E(G1 ⇤G2), so
G1 ⇤G2 = (G1 ?G2)(1).

If G is a graph (i.e. a one-dimensional simplicial complex), any subcomplexH of G is called a subgraph.
If V ✓ V (G), the induced subcomplex G[V ] is called the induced subgraph on V .

Given a graph G, we can define the complement graph G of G by defining its vertices and edges as
follows: V

�
G
�
= V (G) and E

�
G
�
= {e | e = {v1, v2}, v1, v2 2 V (G) and e /2 E(G)}. In other words, G

is the graph with the same set of vertices as G such that e 2 E
�
G
�
if and only if e /2 E(G).

The complete graph on n vertices Kn is the graph with vertices V (Kn) = {v1, . . . , vn} and edges
E(Kn) = {{vi, vj} | 1  i < j  n}. The complete graph on n vertices has edges connecting every vertex
to every other vertex. For example, K1 is a single vertex, K2 is a line, K3 is the edges of a triangle, K4

is the edges of a tetrahedron, etc. It is clear that Kn is a simplicial complex for all n.

23



Finally, we define path on n vertices Pn to be the graph with with vertices V (Pn) = {v1, . . . , vn} and
edges E(Pn) = {{vi, vi+1} | i = 1, . . . , n�1}. Each Pn is a simplicial complex. By Example 4.3, the path
on 4 vertices, P4, does not satisfy spectral recursion. Since P4 does not satisfy the spectral recursion
formula, we want to study those graphs that do not contain P4 as an induced subgraph; we call such
graphs P4-free graphs. Instead of studying P4-free graphs as they are defined, we study what will turn
out to be an equivalent definition, namely cographs.

Definition. A cograph is defined by the following:

1. K1 is a cograph.

2. If G is a cograph, then its complement graph G is also a cograph.

3. If G1 and G2 are disjoint cographs, then so is their union G1 [G2.

It turns out that cographs and P4-free graphs are one and the same. The following comes from [1].

Lemma 4.7. A graph G is a cograph if and only if G is P4-free.

As a result of Lemma 4.7, any statement we make about cographs will also be true about P4-free
graphs, and vice-versa. We study cographs instead of P4-free graphs because we have an algorithmic way
of “building” cographs from smaller cographs. We will see how this is done in Theorem 4.10. First we
need the following two lemmas, which come from [2] and [1], respectively.

Lemma 4.8. Every induced subgraph of a cograph is also a cograph.

Lemma 4.9. The complement of every nontrivial connected induced subgraph of a cograph is disconnected.

Now we show how we can decompose any cograph into smaller cographs. This will allow us to
inductively create any cograph, starting with the smallest one K1.

Theorem 4.10. If G is a cograph on n > 1 vertices, then there exist disjoint cographs G1, G2 such that

G = G1 [G2 or G = G1 ⇤G2, where ⇤ is the graph join.

Proof. First assume G is disconnected, so we can write G = G1 [G2 with G1 \G2 = ; and both G1, G2

nontrivial. Since clearly G1 and G2 are induced subgraphs of G and G is a cograph, by Lemma 4.8 both
G1 and G2 are cographs, so the theorem is proven.

Now suppose that G is connected. By Lemma 4.9, G is disconnected, so we can write G = G0 [ G00

where G0 \ G00 = ;. Since G is a cograph, so is G, and thus by Lemma 4.8, so are G0 and G00. Let
G0 = G1 and G00 = G2. Since G0 and G00 are cographs, so are G1 and G2. Also G1 \G2 = ;, since they
are complement graphs of disjoint graphs G0 and G00.

We claim that G = G1 ⇤ G2. Clearly V (G1 ⇤ G2) = V (G), since V (G1 ⇤ G2) = V (G1) [ V (G2) =
V (G0) [ V (G00) = V (G) = V (G). By definition E(G1 ⇤ G2) consists of all edges in G1, all edges in
G2, and all edges between vertices v 2 G1 and u 2 G2. Thus since an edge e 2 E(G1 ⇤G2) if and
only if e /2 E(G1 ⇤ G2), we see that no edges between vertices v 2 G1 and u 2 G2 are in G1 ⇤G2, so
E(G1 ⇤G2) = E(G1) [ E(G2) = E(G0) [ E(G00) = E(G). Thus G = G1 ⇤G2, so G = G1 ⇤G2.

We will be able to use Theorem 4.10 to prove that any cograph satisfies the spectral recursion formula.

Lemma 4.11. Let K be a simplicial complex and suppose dimK = d. Then if K satisfies the spectral

recursion, so does K(p)
for all p < d.

24



Proof. The proof is by induction on d. The base case is d = 0, i.e. K is a collection of points. Then the
only p < d is p = �1 = d � 1, so by Lemma 4.5 if K satisfies the spectral recursion so does K(p) for all
p < d.

Now we prove the inductive step. Let dimK = d and let K satisfy the spectral recursion. By Lemma
4.5, K(d�1) also satisfies the spectral recursion. Since K(d�1) is itself a simplicial complex satisfying the
spectral recursion and dimK(d�1) = d� 1, by our inductive hypothesis (K(d�1))(p) satisfies the spectral
recursion for all p < d � 1. But clearly if p < d � 1, then (K(d�1))(p) = K(p), so this means that K(p)

satisfies the spectral recursion for all p < d.

Now we prove our main theorem in this section.

Theorem 4.12. If G is a cograph, then G satisfies spectral recursion.

Proof. We prove by induction on |V (G)|. The base case is |V (G)| = 1, i.e. G is a single point, which
clearly satisfies spectral recursion.

Now suppose |V (G)| = n. By Theorem 4.10, we can either write G = G1 [G2 or G = G1 ⇤G2 where
G1 and G2 are themselves cographs. Since G1 and G2 are cographs, we know |V (G1)|, |V (G2)| � 1.
Thus since |V (G)| = |V (G1)|+ |V (G2)|, it must be that both |V (G1)|, |V (G2)| < n, so by our inductive
hypothesis, both G1 and G2 satisfy spectral recursion. If G = G1 [G2, then by Lemma 4.4, G satisfies
spectral recursion. Now suppose G = G1 ⇤G2. By Lemma 4.6, G = (G1 ?G2)(1). By Lemma 4.4, since
G1 and G2 satisfy spectral recursion, so does G1 ? G2, and so by Lemma 4.11, since dimG1 ? G2 � 1,
(G1 ?G2)(1) = G satisfies spectral recursion.

Corollary 4.13. Every induced subgraph of a cograph satisfies the spectral recursion.

Proof. Apply Lemma 4.8 and Theorem 4.12.

Lemma 4.7 tells us that a graph G is a cograph if and only if G is P4-free, i.e. G does not contain P4 as
an induced subgraph. Thus by Theorem 4.12 we know that all P4-free graphs satisfy the spectral recursion
formula. We would like the converse to be true as well, i.e. if a graph G satisfies the spectral recursion
formula, then G is P4-free. In other words, we hope that if G contains P4 as an induced subgraph, then
G does not satisfy the spectral recursion. We have the following, more generalized conjecture.

Conjecture 4.14. Let K be a simplicial complex, let V ✓ K(0)
, and let K[V ] be the induced subcomplex

of V . If K[V ] does not satisfy the spectral recursion, then K does not satisfy the spectral recursion.

If Conjecture 4.14 is true (we have yet to find a counterexample), then we have that a one-dimensional
complex G satisfies the spectral recursion if and only if G is P4-free.

4.3 Strong Spectral Recursion

In this section we draw inspiration from the Tutte polynomial of a matroid [18]. The Tutte polynomial
T (M) for any matroid M satisfies the recursion relation T (M) = T (M \e)+T (M/e), as long as e is not a
loop or an isthmus. Since this recursion relation holds for all matroids, it in particular holds for M \e and
M/e, so T (M \ e) = T ((M \ e) \ e0)+T ((M \ e)/e0), and T (M/e) = T ((M/e) \ e00)+T ((M/e)/e00), where
e0 2 M \ e and e00 2 M/e are not loops or isthmuses. We can continue this process, producing smaller
and smaller matroids, and the recursion relation for the Tutte polynomial will hold at every step. In
other words, every matroid that can be produced from M through a series of deletions and contractions
will satisfy the recursion relation for the Tutte polynomial.

Since spectral recursion is a similar recursion relation as that which the Tutte polynomial satisfies, the
question arises as to whether or not we can, like the Tutte polynomial, continue spectral recursion on K\v
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and K/v, and so on. To make this precise, we introduce some terminology. Define a deletion-contraction

sequence to be a finite set of complexes {K0,K1,K2, . . . ,Kn} such that for all i > 0, Ki = Ki�1 \ v
or Ki = Ki�1/v for some v 2 Ki�1. A subcomplex L ✓ K is called a deletion-contraction subcomplex

if there exists a deletion-contraction sequence {K0, . . . ,Kn} such that K0 = K and Kn = L. In other
words, L ✓ K is a deletion-contraction subcomplex when it can be produced from K through a finite
sequence of deletions and contractions. We say that a complex K satisfies strong spectral recursion when
all deletion-contraction subcomplexes of K satisfy spectral recursion.

The question of whether or not we can apply spectral recursion to K \ v, K/v, and all complexes we
get as a result, can be rephrased as asking whether or not K satisfies strong spectral recursion. Satisfying
strong spectral recursion is most likely a much stronger condition that just satisfying spectral recursion,
for saying that a complex K satisfies strong spectral recursion means that many subcomplexes of K
satisfy spectral recursion along with K. We should point out, however, that we have yet to find any
simplicial complexes that satisfy spectral recursion but do not satisfy strong spectral recursion.

Proposition 4.15. If K is a finite simplicial complex and K satisfies strong spectral recursion, then all

induced subcomplexes of K satisfy strong spectral recursion.

Proof. Let K 0 be an induced subcomplex of K, so there is a set V = {v1, . . . , vs} ✓ K(0) such that
K 0 = K[V ]. Let U = {u1, . . . , ur} = K(0) \ V (U is finite since we are assuming that K is finite), and let
{K0, . . . ,Kr} be a sequence of complexes with K0 = K and Ki = Ki�1 \ui. Since each Ki is the deletion
of Ki�1, the sequence {K0, . . . ,Kr} is a deletion-contraction sequence. Notice that � 2 Kr if and only
if ui /2 � for all ui, i.e. Kr = {� 2 K | �(0) ✓ V } = K[V ]. Thus K 0 = K[V ] is a deletion-contraction
subcomplex of K.

Now let L be a deletion-contraction subcomplex of K 0, so there is a deletion-contraction sequence
{L0, . . . , Lm} with L0 = K 0 and Lm = L. To prove the proposition, we have to show that L satisfies spec-
tral recursion. Consider the sequence of complexes {K0, . . . ,Kr, L1, . . . , Lm}. We know that {K0, . . . ,Kr}
is a deletion-contraction sequence, and (since Kr = K 0 = L0), {Kr, L1, . . . , Lm} is a deletion-contraction
sequence, so {K0, . . . ,Kr, L1, . . . , Lm} is a deletion-contraction sequence with K0 = K and Lm = L, so
L is a deletion-contraction subcomplex of K. Since K satisfies strong spectral recursion, we then have
that L satisfies spectral recursion, completing the proof.

Strong spectral recursion says more, in fact. If K satisfies strong spectral recursion, then a large
number of subcomplexes of K which are not induced subcomplexes satisfy spectral recursion, namely, all
deletion-contraction subcomplexes that contain a contraction in their formation. Note that, if v 2 K(0)

and V is the set of vertices that share an edge with v, then K/v = K[V ] if and only if � [ {v} 2 K for
all � 2 K[V ]. Since this is usually not the case, most contractions are not induced subcomplexes, yet for
a complex satisfying strong spectral recursion, all of these subcomplexes produced by contractions will
still satisfy spectral recursion.

In the proof of Proposition 4.15 we proved the following.

Corollary 4.16. If K is a simplicial complex and L ✓ K is an induced subcomplex, then L is a deletion-

contraction subcomplex.

With Corollary 4.16 we now know a large class of complexes that do not satisfy strong spectral
recursion.

Proposition 4.17. If K is a simplicial complex and P4 is an induced subcomplex of K, then K does not

satisfy strong spectral recursion.
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Proof. We know that P4 does not satisfy spectral recursion. Since P4 is an induced subcomplex of K,
by Corollary 4.16, P4 is a deletion-contraction subcomplex. Thus K contains a deletion-contraction
subcomplex that does not satisfy spectral recursion, so K does not satisfy strong spectral recursion.

In general we do not have a set of criteria which guarantees when a complex satisfies strong spectral
recursion. For the one-dimensional case, however, we do.

Theorem 4.18. Let G be a one-dimensional simplicial complex. Then G satisfies strong spectral recur-

sion if and only if G is a cograph.

Proof. We know that if G satisfies strong spectral recursion, then all deletion-contraction subcomplexes
of G satisfy spectral recursion. In particular, by Corollary 4.16, we know that all induced subcomplexes
of G (being deletion-contraction subcomplexes) satisfy spectral recursion. Thus G must be P4-free (for if
G contained a P4, then G would contain an induced subcomplex that does not satisfy spectral recursion,
a contradiction), so G is a cograph.

Now let G be a cograph. We have to show that every deletion-contraction subcomplex of G satisfies
spectral recursion. We claim that every deletion-contraction subcomplex of G is a cograph. To see this,
let G0 be a deletion-contraction subcomplex of G, so there is a deletion-contraction sequence {G0, . . . , Gn}
with G0 = G and Gn = G0. If Gi = Gi�1 \ v for all i, then G0 is an induced subcomplex of G, so by
Corollary 4.13, G0 satisfies spectral recursion.

Assume then that there is a Gi with Gi = Gi�1/v. Since Gi�1 is a graph (as it is a subcomplex of G),
Gi�1 contains no two-simplices, so the resulting graph after contracting v can contain no one-simplices.
Thus Gi is the disjoint union of a collection of points. Since G0 is a subcomplex of Gi, this means that
G0 is also the disjoint union of a collection of points. Since K1 is a cograph by definition and disjoint
unions of cographs are cographs, we have that G0 is a cograph, so by Theorem 4.12, G0 satisfies spectral
recursion, completing the proof.

4.4 Two-Dimensional Complexes

We do not have many results on two-dimensional complexes. We began our study of two-dimensional
complexes by looking for a two-dimensional analogue of the path on four vertices P4. In other words, we
were hoping to find a two-dimensional complex K such that a two-dimensional complex satisfied spectral
recursion if and only if it did not contain K as an induced subcomplex. We were unsuccessful in this
endeavor. This section is organized around a series of examples, illustrating our attempts to discover a
“minimal” two-dimensional complex which failed to satisfy spectral recursion.

We begin with a seemingly trivial result.

Proposition 4.19. Let K be a d-dimensional complex. If the p-skeleton K(p)
does not satisfy spectral

recursion for some p  d, then K does not satisfy spectral recursion.

Proof. This is just the contrapositive of Lemma 4.11.

The reason we state Proposition 4.19 is because, along with Conjecture 4.14, this would imply that if
a two-dimensional complex K contained P4 as an induced subcomplex of its 1-skeleton, then we would
immediately know that K does not satisfy spectral recursion. This fact generalizes to higher dimensions.
Assuming Conjecture 4.14 is true, the d-dimensional complexes K that do not satisfy spectral recursion
can be separated into two categories:

1. The p-skeleton K(p) contains an induced subcomplex that does not satisfy spectral recursion, for
some p < d.
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2. The p-skeleton K(p) satisfies spectral recursion for all p < d.

Case 1 is mostly uninteresting, as we learn nothing new about the complex, simply that it was built
from a complex that did not satisfy spectral recursion. Thus we are mainly looking for complexes that
fall in Case 2, where the reason the d-dimensional complex K fails to satisfy spectral recursion is truly
“d-dimensional.”

First, we prove a partial converse to Lemma 4.4

Proposition 4.20. Let K and L be two disjoint complexes, let v 2 K(0)
, and let K ? L denote the join

of K and L. If K ? L satisfies spectral recursion with respect to v, then so does K.

Proof. By Duval [6], we know that if K and L are disjoint simplicial complexes and v 2 K(0), then

(K ? L) \ v = (K \ v) ? L
(K ? L)/v = (K/v) ? L

((K ? L) \ v, (K ? L)/v) = (K \ v,K/v) ? L

SK?L(t, q) = SK(t, q)SL(t, q)

Since K ? L satisfies spectral recursion with respect to v, we have by equation 3,

SK?L = qS(K?L)\v + tqS(K?L)/v + (1� q)S((K?L)\v,(K?L)/v)

= qS(K\v)?L + tqS(K/v)?L + (1� q)S(K\v,K/v)?L

= qSK\vSL + tqSK/vSL + (1� q)S(K\v,K/v)SL

= SL(qSK\v + tqSK/v + (1� q)S(K\v,K/v))

But we know SK?L = SKSL, meaning that SK = qSK\v + tqSK/v + (1 � q)S(K\v,K/v), so K satisfies
spectral recursion with respect to v.

Proposition 4.20, together with Lemma 4.4, implies that K satisfies spectral recursion with respect
to v if and only if K ? L does as well. In fact, we have a formula for calculating the eigenvalues of K ? L
in terms of the eigenvalues of K and L; the following comes from [6]:

Specd�1((K,K 0) ? (L,L0)) =
[

i+j=d
�2Speci�1((K,K0))

µ2Specj�1((L,L0))

�+ µ (4)

Thus if K satisfies spectral recursion in dimension i � 1 and L does not satisfy spectral recursion in
dimension j � 1, then K ? L will not satisfy spectral recursion in dimension d� 1 where d = i+ j.

Example 4.21. Let K be the following two-dimensional simplicial complex:

v0

v1 v2

v3

v4
K=

A brute-force calculation shows that K satisfies spectral recursion with respect to v4, but does not satisfy
spectral recursion with respect to any of the other vertices; see Appendix A for more details. It is clear
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that K contains no induced P4 in its 1-skeleton. From the standpoint above, K would then fall into Case
2 above, those complexes such that K(p) satisfy spectral recursion for all p < dim(K). However, we can
easily explain why K does not satisfy spectral recursion using what we have just described.

Consider K 0, the subcomplex of K created by removing edge {v0, v3}:

v0

v1 v2

v3

v4
K 0=

Observe that K 0 = P4 ? {v4}. Thus, by Proposition 4.20, K 0 satisfies spectral recursion with respect to
v4 and does not satisfy spectral recursion with respect to the other four vertices. In fact, since P4 fails to
satisfy spectral recursion in dimension 1, while v4 satisfies spectral recursion in dimension 0, by equation
4, K 0 will fail to satisfy spectral recursion in dimension 2.

Now look back at our original complex K. The only di↵erence between K and K 0 is that K has
an additional 1-simplex. However, since {v0, v3} is not contained in any 2-simplex, its presence will not
a↵ect the calculation of �2. Thus, since K 0 fails to satisfy spectral recursion in dimension 2, so does K.
While K technically fails to satisfy spectral recursion for a “new” reason (in the sense that K(p) satisfies
spectral recursion for all p < dim(K)) we gained no new information about the types of complexes that
fail to satisfy spectral recursion.

Our goal now is to attempt to find “minimal” two-dimensional complexes that do not satisfy spectral
recursion. A complex K that fails to satisfy spectral recursion is minimal if all proper induced sub-
complexes of K satisfy spectral recursion. Notice that any complex K that contains P4 as an induced
subcomplex of K(1) is not minimal.

We start by looking at complexes with 4 vertices. Notice that any two-dimensional complex on 4
vertices will not contain P4 as an induced subcomplex, since it must contain a 3-cycle in order to contain
a 2-simplex. See Appendix B for all two-dimensional complexes on 4 vertices, along with justification as
to why each one satisfies spectral recursion.

We now look at complexes with 5 vertices. We focus on those complexes K such that K(1) = K5,
the complete graph on five vertices. The reason we do this is to guarantee that P4 is not an induced
subcomplex of K, so that any complex we find that fails spectral recursion will do so for a purely “two-
dimensional” reason. Thus the 1-skeleton of all complexes will be as follows:

v0 v1

v2

v3

v4

With these requirements, there are
�5
3

�
= 10 di↵erent 2-simplices we have to choose from. If any

complex has more than one 2-simplex, then every pair of 2-simplices must intersect in at least one vertex,
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as there are only five vertices. There are
�10
k

�
di↵erent complexes with k 2-simplices. From this we see

that there is a one-to-one correspondence between the complexes with k 2-simplices and the complexes
with 10� k 2-simplices, as

�10
k

�
=
� 10
10�k

�
. It should be noted, however, many of these

�10
k

�
complexes will

be combinatorially identical. For example, there is only one complex with one 2-simplex, and there are
only two distinct complexes with two 2-simplices: the 2-simplices intersect in a vertex or they intersect
in an edge. All three of these complexes satisfy spectral recursion. See Appendix C for all complexes
on five vertices with one or two 2-simplices, along with justification as to why each one satisfies spectral
recursion.

Things become more interesting when we look at complexes with three 2-simplices. It turns out that
there are four distinct complexes of this form. We give an example of each of them by listing their
2-simplices:

1. {v0, v1, v3}, {v0, v1, v4}, {v0, v3, v4}

2. {v0, v1, v2}, {v0, v3, v4}, {v1, v2, v3}

3. {v0, v1, v3}, {v0, v2, v3}, {v0, v3, v4}

4. {v0, v3, v4}, {v1, v2, v3}, {v2, v3, v4}

We can check to see that the first three satisfy spectral recursion, but the last one does not; see Appendix
C for the calculations. It turns out that the last complex is in fact the complex K from Example 4.21,
except with edges {v0, v2} and {v1, v3} also present, and so fails to satisfy spectral recursion for the same
reason the first example did.

Here is where our true analysis ends. At the time of writing, we were unable to calculate the combi-
natorially distinct complexes with four and five 2-simplices (once we know the combinatorially distinct
complexes with zero through five 2-simplices, by symmetry we know the combinatorially distinct com-
plexes with six through ten 2-simplices). At first glance, there are

�10
4

�
= 210 possible complexes with

four 2-simplices and
�10
5

�
= 252 possible complexes with five 2-simplices. By looking at the symmetries

of K5 we were able to reduce those numbers to at most 36 combinatorially distinct complexes with four
2-simplices and at most 45 combinatorially distinct complexes with five 2-simplices. However, both of
these numbers can probably be lowered significantly.

So far, the only two-dimensional complexes we have found that do not satisfy spectral recursion have
failed to do so because of their 1-skeleton (it contains an induced P4) or because of the way the 1-skeleton
interacts with the 2-simplices (like Example 4.21). None of the complexes looked at so far have failed
to satisfy spectral recursion for a truly “two-dimensional” reason. We end this discussion with one such
example.

Example 4.22. Let K be the following two-dimensional complex:

v0 v2 v3 v1

v1 v4 v0

The 1-skeleton of K is K5; we have represented K with two copies of v0 and v1 so as to draw K in the
plane. The complex K is in fact a triangulation of the Möbius strip. The complex K does not satisfy
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spectral recursion with respect to any of its vertices, as the following discussion shows. First notice that
K is vertex transitive, i.e. given any two vertices vi and vj , there is an automorphism f of K with
f(vi) = vj . Thus if we show that K does not satisfy spectral recursion with respect to one vertex vi, we
will know that K does not satisfy spectral recursion with respect to all vertices. We have the following
spectrum polynomials for K, K \ v0, K/v0, and (K \ v0,K/v0):

SK(t, q) = q5 + 5tq5 + t2 + 2t2q
1
2 (5�

p
5) + 2t2q

1
2 (5+

p
5) + 5t2q5 + 2t3q

1
2 (5�

p
5) + 2t3q

1
2 (5+

p
5) + t3q5

SK\v0(t, q) = q4 + 4tq4 + t2 + t2q2 + 4t2q4 + t3q2 + t3q4

SK/v0
(t, q) = q4 + tq2�

p
2 + tq2 + tq2+

p
2 + tq4 + t2q2�

p
2 + t2q2 + t2q2+

p
2

S(K\v0,K/v0)(t, q) = t2 + t2q + t2q3 + t3q + t3q3

It is clear from these calculations that equation 3 does not hold, and so K does not satisfy spectral
recursion. We cannot explain this failure with anything we have previously encountered. The complex
K is not the join of any one-dimensional complexes, and it is not, like Example 4.21, the join of one-
dimensional complexes with some number of edges added on. Thus K fails to satisfy spectral recursion
not because of its 1-simplices, but because of its 2-simplices. It is the first and so far only such two-
dimensional complex known.

In conclusion, the study of the spectral recursion formula is just beginning. While the class of simplicial
complexes that satisfy spectral recursion is known to be closed under join and disjoint union, there is no
general characterization of all complexes that satisfy spectral recursion. Our approach to this question
was to instead attempt to characterize all complexes that do not satisfy spectral recursion; it was then
hoped that, by using Conjecture 4.14, we could classify all complexes that do satisfy spectral recursion.

We were unsuccessful in this endeavor even in the lowest dimensions, one and two. We made significant
strides in dimension one, directly calculating all one-dimensional complexes that satisfy strong spectral
recursion. In dimension two, we were less fortunate. While we were only able to find one minimal two-
dimensional complex that failed to satisfy spectral recursion for a purely two-dimensional reason (Example
4.22), we do not believe that this is the only such complex. It seems unlikely that our method of analysis
concerning this problem will lead to any significant results. Perhaps those complexes that satisfy spectral
recursion form a new class of simplicial complexes, independent of usual classes of complexes already
studied.
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Appendix

In this Appendix we provide calculations and explanations as to why certain simplicial complexes dis-
cussed in the body of the thesis do or do not satisfy the spectral recursion formula,

SK(t, q) = qSK\v(t, q) + tqSK/v(t, q) + (1� q)S(K\v,K/v)(t, q). (5)

When possible we quote a theorem of some sort (i.e. a given complex is a matroid complex, is the join
of two complexes that satisfy spectral recursion, etc.). If we cannot do this then we will provide the
spectrum polynomials of the complex K and the associated complexes K \ v, K/v, and (K \ v,K/v) for
all combinatorially distinct vertices. After listing the spectrum polynomials, we leave it to the reader to
verify that equation 5 is or is not satisfied.

A Example 4.21

v0

v1 v2

v3

v4
K=

The complex K is the one from Example 4.21. We show computationally that K satisfies spectral
recursion with respect to vertex v4 but not with respect to any of the other vertices. The spectrum
polynomial of K is

Sk(t, q) = q5 + 2tq3 + 3tq5 + t2 + t2q3�
p
2 + 3t2q3 + t2q3+

p
2 + 2t2q5 + t3q3�

p
2 + t3q3 + t3q3+

p
2

Observe that v0 and v3 are combinatorially identical, as are v1 and v2. We have

v1 v2

v3

v4
K \ v0=

v1

· v3

v4
K/v0=

SK\v0(t, q) = q4 + tq2 + 3tq4 + 2t2q2 + 3t2q4 + t3q2 + t3q4

SK/v0
(t, q) = q3 + t+ tq2 + tq3 + t2q2

S(K\v0,K/v0)(t, q) = tq3 + t2 + t2q
1
2 (5�

p
5) + t2q3 + t2q

1
2 (5+

p
5) + t3q

1
2 (5�

p
5) + t3q

1
2 (5+

p
5)
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v0

v2

v3

v4
K \ v1=

v0
v4

v2

K/v1 =

SK\v1(t, q) = q4 + tq2 + 3tq4 + t2 + t2q2 + t2q3 + 2t2q4 + t3q3

SK/v1
(t, q) = q3 + tq + 2tq3 + t2q + t2q3

S(K\v1,K/v1)(t, q) = tq3 + t2 + t2q2 + t2q3 + t3q2

v0

v1 v2

v3

K \ v4=

v0

v1 v2

v3

K/v4=

SK\v4(t, q) = q4 + 2tq2 + 2tq4 + t2 + 2t2q2 + t2q4

SK/v4
(t, q) = q4 + tq2�

p
2 + tq2 + tq2+

p
2 + tq4 + t2q2�

p
2 + t2q2 + t2q2+

p
2

S(K\v4,K/v4)(t, q) = t2
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B Two-Dimensional Complexes on Four Vertices

In this Appendix we look at all two-dimensional complexes on four vertices, and show that they all satisfy
spectral recursion.

B.1 One 2-Simplex (I)

K= · v3

v2

v0 v1

The complex K is the disjoint union of two matroid complexes (which satisfy spectral recursion by [6]),
so by Lemma 4.4, K satisfies spectral recursion.
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B.2 One 2-Simplex (II)

K=

v3

v2

v0 v1

SK(t, q) = q4 + tq + tq3 + 2tq4 + t2q + 2t2q3 + t2q4 + t3q3

Vertices v0 and v1 are combinatorially identical, so we show through direct computation that K satisfies
spectral recursion with respect to v0, v2 and v3.

K \ v0=
v3

v2

v1

K/v0=

v2

v1

SK\v0(t, q) = q3 + tq + 2tq3 + t2q + t2q3

SK/v0
(t, q) = q2 + 2tq2 + t2q2

S(K\v0,K/v0)(t, q) = tq + t2q

K \ v2=
· v3

v0

v1

K/v2=
· v3

v0

v1

SK\v2(t, q) = q3 + t+ tq2 + tq3 + t2q2

SK/v2
(t, q) = q3 + t+ tq2 + tq3 + t2q2

S(K\v2,K/v2)(t, q) = 0

K \ v3=

v2

v0 v1

K/v3= · v2

SK\v3(t, q) = q3 + 3tq3 + 3t2q3 + t3q3

SK/v3(t, q) = q + tq

S(K\v3,K/v3)(t, q) = tq + tq3 + t2q + 2t2q3 + t3q3
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B.3 One 2-Simplex (III)

K =

v0
v1

v2

v3

SK(t, q) = q4 + tq2 + 3tq4 + t2 + t2q2 + t2q3 + 2t2q4 + t3q3

Vertices v1 and v3 are combinatorially identical, so we have to show that K satisfies spectral recursion
with respect to vertices v0, v1, and v2.

K \ v0 =

v1

v2

v3

K/v0 =

v1

v3

SK\v0(t, q) = q3 + 3tq3 + t2 + 2t2q3

SK/v0
(t, q) = q2 + 2tq2 + t2q2

S(K\v0,K/v0)(t, q) = tq2 + t2 + t2q2

K \ v1 =

v0

v2

v3

K/v1 =

v0

· v2

v3

SK\v1(t, q) = q3 + tq + 2tq3 + t2q + t2q3

SK/v1
(t, q) = q3 + t+ tq2 + tq3 + t2q2

S(K\v1,K/v1)(t, q) = t2

K \ v2 =

v0
v1

v3

K \ v2 =
· v1

· v3

SK\v2(t, q) = q3 + 3tq3 + 3t2q3 + t3q3

SK/v2
(t, q) = q2 + t+ tq2

S(K\v2,K/v2)(t, q) = tq2 + t2 + t2q2 + t2q3 + t3q3
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B.4 One 2-Simplex (IV)

K=

v2

v0 v3

v1

SK(t, q) = q4 + 4tq4 + 2t2 + t2q3 + 3t2q4 + t3q3

Vertices v0, v1, and v2 are combinatorially identical, so we need to show that spectral recursion holds
with respect to vertices v0 and v3.

K \ v0=

v2

v3

v1
K/v0=

v2

· v3

v1

SK\v0(t, q) = q3 + 3tq3 + t2 + 2t2q3

SK/v0
(t, q) = q3 + t+ tq2 + tq3 + t2q2

S(K\v0,K/v0)(t, q) = 2t2

K \ v3=

v2

v0

v1 K/v3=

· v2

· v0

· v1

SK\v3(t, q) = q3 + 3tq3 + 3t2q3 + t3q3

SK/v3
(t, q) = q3 + 2t+ tq3

S(K\v3,K/v3)(t, q) = 2t2 + t2q3 + t3q3
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B.5 Two 2-Simplices (I)

K =

v0
v1

v2

v3

Notice that K is the join of the two complexes L1 and L2 below:

L1 = v0
v1

v2

L2 = · v3

Both L1 and L2 satisfy spectral recursion as they are both P4-free. Thus by Lemma 4.4, K satisfies
spectral recursion.
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B.6 Two 2-Simplices (II)

K=

v2

v0 v3

v1

SK(t, q) = q4 + 4tq4 + t2 + t2q2 + 4t2q4 + t3q2 + t3q4

Notice that vertices v0 and v3 are combinatorially identical, as are vertices v1 and v2. Thus we need to
show that K satisfies spectral recursion with respect to vertices v0 and v1.

K \ v0=

v2

v3

v1
K/v0=

v2

· v3

v1

SK\v0(t, q) = q3 + 3tq3 + 3t2q3 + t3q3

SK/v0
(t, q) = q3 + t+ tq2 + tq3 + t2q2

S(K\v0,K/v0)(t, q) = t2 + t2q2 + t3q2

K \ v1=

v2

v0 v3

K/v1=

v2

v0 v3

SK\v1(t, q) = q3 + 3tq3 + t2 + 2t2q3

SK/v1
(t, q) = q3 + tq + 2tq3 + t2q + t2q3

S(K\v1,K/v1)(t, q) = t2
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B.7 Three 2-Simplices

v0
v1

v2

v3

K=

This complex K has as its 1-skeleton K4, the complete graph on four vertices, and contains 2-simplices
{v0, v1, v2}, {v0, v1, v3}, and {v0, v2, v3} (so the only possible 2-simplex not in K is {v1, v2, v3}). It is
clear that K is a matroid complex, so by [6], K satisfies spectral recursion.
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B.8 Four 2-Simplices

v0
v1

v2

v3

K=

The complex K is simply the boundary of the 3-simplex, i.e. it contains all possible 1-simplices and
2-simplices that can be formed from the four vertices shown. It is clear that K is a matroid complex, so
by [6], K satisfies spectral recursion.
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C Two-Dimensional Complexes on Five Vertices

C.1 One 2-Simplex

v0 v1

v2

v3

v4
K=

SK(t, q) = q5 + 5tq5 + 5t2 + t2q3 + 4t2q5 + t3q3

Vertices v0, v3, and v4 are combinatorially identical, as are vertices v1 and v2. Thus we must show that
K satisfies spectral recursion with respect to vertices v0 and v1.

v1

v2

v3

v4
K \ v0=

· v1

· v2

v3

v4
K/v0=

SK\v0(t, q) = q4 + 4tq4 + 3t2 + 3t2q4

SK/v0
(t, q) = q4 + 2t+ tq2 + tq4 + t2q2

S(K\v0,K/v0)(t, q) = 5t2

v0

v2

v3

v4
K \ v1=

· v0

· v2

· v3

· v4
K/v1=

SK\v1(t, q) = q4 + 4tq4 + 2t2 + t2q3 + 3t2q4 + t3q3

SK/v1
(t, q) = q4 + 3t+ tq4

S(K\v1,K/v1)(t, q) = 5t2 + t2q3 + t3q3
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C.2 Two 2-Simplices (I)

v0 v1

v2

v3

v4
K=

SK(t, q) = q5 + 5tq5 + 4t2 + t2q2 + t2q4 + 4t2q5 + t3q2 + t3q4

Complex K contains two 2-simplices {v0, v1, v3} and {v0, v3, v4}. Vertices v0 and v3 are combinatorially
identical, as are vertices v1 and v4. Thus we need to show that K satisfies spectral recursion with respect
to vertices v0, v1, and v2.

v1

v2

v3

v4
K \ v0=

v1

· v2

v3

v4
K/v0=

SK\v0(t, q) = q4 + 4tq4 + 3t2 + 3t2q4

SK/v0
(t, q) = q4 + t+ tq + tq3 + tq4 + t2q + t2q3

S(K\v0,K/v0)(t, q) = 4t2

v0

v2

v3

v4
K \ v1=

v0

· v2

v3

· v4
K/v1=

SK\v1(t, q) = q4 + 4tq4 + 2t2 + t2q3 + 3t2q4 + t3q3

SK/v1
(t, q) = q4 + 2t+ tq2 + tq4 + t2q2

S(K\v1,K/v1)(t, q) = 4t2 + t2q2 + t3q2
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v0 v1

v3

v4
K \ v2=

· v0

· v1

· v3

· v4
K/v2=

SK\v2(t, q) = q4 + 4tq4 + t2 + t2q2 + 4t2q4 + t3q2 + t3q4

SK/v2
(t, q) = q4 + 3t+ tq4

S(K\v2,K/v2)(t, q) = 4t2 + t2q2 + t2q3 + t3q2 + t3q4
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C.3 Two 2-Simplices (II)

v0 v1

v2

v3

v4
K=

SK(t, q) = q5 + 5tq5 + 4t2 + 2t2q3 + 5t2q5 + 2t3q3

Vertices v0, v1, v2, and v4 are combinatorially identical. Thus we must show that K satisfies spectral
recursion with respect to v0 and v3.

v1

v2

v3

v4
K \ v0=

· v1

· v2

v3

v4
K/v0=

SK\v0(t, q) = q4 + 4tq4 + 2t2 + t2q3 + 3t2q4 + t3q3

SK/v0
(t, q) = q4 + 2t+ tq2 + tq4 + t2q2

S(K\v0,K/v0)(t, q) = 4t2 + t2q3 + t3q3

v0 v1

v2v4

K \ v3=

v0 v1

v2v4

K/v3=

SK\v3(t, q) = q4 + 4tq4 + 3t2 + 3t2q4

SK/v3
(t, q) = q4 + t+ 2tq2 + tq4 + 2t2q2

S(K\v3,K/v3)(t, q) = 4t2
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C.4 Three 2-Simplices (I)

v0 v1

v2

v3

v4
K=

SK(t, q) = q5 + 5tq5 + 3t2 + t2q + 2t2q4 + 4t2q5 + t3q + 2t3q4

The complex K contains three 2-simplices, {v0, v1, v3}, {v0, v1, v4}, and {v0, v3, v4}. Vertices v1, v3, and
v4 are combinatorially identical, so we need to show that K satisfies spectral recursion with respect to
v0, v1, and v2.

v1

v2

v3

v4
K \ v0=

v1

· v2

v3

v4
K/v0=

SK\v0(t, q) = q4 + 4tq4 + 3t2 + 3t2q4

SK/v0
(t, q) = q4 + t+ 2tq3 + tq4 + t2 + 2t2q3

S(K\v0,K/v0)(t, q) = 3t2

v0

v2

v3

v4
K \ v1=

v0

· v2

v3

v4
K/v1=

SK\v1(t, q) = q4 + 4tq4 + 2t2 + t2q3 + 3t2q4 + t3q3

SK/v1
(t, q) = q4 + t+ tq + tq3 + tq4 + t2q + t2q3

S(K\v1,K/v1)(t, q) = 3t2 + t2q + t3q
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v0 v1

v3

v4
K \ v2=

· v0

· v1

· v3

· v4
K/v2=

SK\v2(t, q) = q4 + 4tq4 + t2q + 5t2q4 + t3q + 2t3q4

SK/v2
(t, q) = q4 + 3t+ tq4

S(K\v2,K/v2)(t, q) = 3t2 + t2q + 2t2q4 + t3q + 2t3q4
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C.5 Three 2-Simplices (II)

v0 v1

v2

v3

v4
K=

SK(t, q) = q5 + 5tq5 + 3t2 + t2q2 + t2q3 + t2q4 + 4t2q5 + t3q2 + t3q3 + t3q4

The complex K contains the 2-simplices {v0, v1, v2}, {v0, v3, v4}, and {v1, v2, v3}. Vertices v0 and v3 are
combinatorially identical, as are vertices v1 and v2. Thus we must show that K satisfies spectral recursion
with respect to v0, v1, and v4.

v1

v2

v3

v4
K \ v0=

v1

v2

v3

v4
K/v0=

SK\v0(t, q) = q4 + 4tq4 + 2t2 + t2q3 + 3t2q4 + t3q3

SK/v0
(t, q) = q4 + t+ 2tq2 + tq4 + 2t2q2

S(K\v0,K/v0)(t, q) = 3t2 + t2q2 + t3q2

v0

v2

v3

v4
K \ v1=

v0

v2

v3

· v4
K/v1=

SK\v1(t, q) = q4 + 4tq4 + 2t2 + t2q3 + 3t2q4 + t3q3

SK/v1
(t, q) = q4 + t+ tq + tq3 + tq4 + t2q + t2q3

S(K\v1,K/v1)(t, q) = 3t2 + t2q3 + t3q3
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v0 v1

v2

v3

K \ v4=

v0 · v1

· v2

v3

K/v4=

SK\v4(t, q) = q4 + 4tq4 + t2 + t2q2 + 4t2q4 + t3q2 + t3q4

SK/v4
(t, q) = q4 + 2t+ tq2 + tq4 + t2q2

S(K\v4,K/v4)(t, q) = 3t2 + t2q2 + t2q4 + t3q2 + t3q4
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C.6 Three 2-Simplices (III)

v0 v1

v2

v3

v4
K=

SK(t, q) = q5 + 5tq5 + 3t2 + 2t2q2 + 5t2q5 + 2t3q2 + t3q5

The complex K contains the 2-simplices {v0, v1, v3}, {v0, v2, v3}, and {v0, v3, v4}. Vertices v0 and v3 are
combinatorially identical, as are vertices v1, v2, and v4. Thus we must show that K satisfies spectral
recursion with respect to vertices v0 and v1.

v1

v2

v3

v4
K \ v0=

v1

v2

v3

v4
K/v0=

SK\v0(t, q) = q4 + 4tq4 + 3t2 + 3t2q4

SK/v0
(t, q) = q4 + 2tq + 2tq4 + 2t2q + t2q4

S(K\v0,K/v0)(t, q) = 3t2

v0

v2

v3

v4
K \ v1=

v0

· v2

v3

· v4
K/v1=

SK\v1(t, q) = q4 + 4tq4 + t2 + t2q2 + 4t2q4 + t3q2 + t3q4

SK/v1
(t, q) = q4 + 2t+ tq2 + tq4 + t2q2

S(K\v1,K/v1)(t, q) = 3t2 + 2t2q2 + 2t3q2
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C.7 Three 2-Simplices (IV)

v0 v1

v2

v3

v4
K=

SK(t, q) = q5 + 5tq5 + 3t2 + t2q3�
p
2 + t2q3 + t2q3+

p
2 + 4t2q5 + t3q3�

p
2 + t3q3 + t3q3+

p
2

The complex K has 2-simplices {v0, v3, v4}, {v1, v2, v3}, and {v2, v3, v4}. Vertices v0 and v1 are combi-
natorially identical, as are vertices v2 and v4. This complex is similar to the one in Example 4.21. We
show that K does not satisfy spectral recursion with respect to v0 and v2, yet satisfies spectral recursion
with respect to v3.

v1

v2

v3

v4
K \ v0=

· v1

· v2

v3

v4
K/v0=

SK\v0(t, q) = q4 + 4tq4 + t2 + t2q2 + 4t2q4 + t3q2 + t3q4

SK/v0(t, q) = q4 + 2t+ tq4 + tq4 + t2q2

S(K\v0,K/v0)(t, q) = 3t2 + t2q
1
2 (5�

p
5) + t2q

1
2 (5+

p
5) + t3q

1
2 (5�

p
5) + t3q

1
2 (5+

p
5)

v0 v1

v3

v4
K \ v2=

· v0

v1

v3

v4
K/v2=

SK\v2(t, q) = q4 + 4tq4 + 2t2 + t2q3 + 3t2q4 + t3q3

SK/v2
(t, q) = q4 + t+ tq + tq3 + tq4 + t2q + t2q3

S(K\v2,K/v2)(t, q) = 3t2 + t2q2 + t3q2
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v0 v1

v2v4

K \ v3=

v0 v1

v2v4

K/v3=

SK\v3(t, q) = q4 + 4tq4 + 3t2 + 3t2q4

SK/v4
(t, q) = q4 + tq2�

p
2 + tq2 + tq2+

p
2 + tq4 + t2q2�

p
2 + t2q2 + t2q2+

p
2

S(K\v4,K/v4)(t, q) = 3t2
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