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Abstract

In this thesis we investigate a variant of the Inverse Galois Problem. Namely,
given a finite group G, the goal is to find a totally real extension K/Q, neces-
sarily finite, such that Gal(K/Q) is isomorphic to G. Questions regarding the
factoring of primes in these extensions also arise, and we address these where
possible.

The first portion of this thesis is dedicated to proving and developing the requisite
algebraic number theory. We then prove the existence of totally real extensions
in the cases where G is abelian and where G = Sn for some n ≥ 2. In both
cases, some explicit polynomials with Galois group G are provided. We obtain
the existence of totally real G-extensions of Q for all groups of odd order using a
theorem of Shafarevich, and also outline a method to obtain totally real number
fields with Galois group D2p, where p is an odd prime.

In the abelian setting, we consider the factorization of primes of Z in the con-
structed totally real extensions. We prove that the primes 2 and 5 each split in
infinitely many totally real Z/3Z-extensions, and, more generally, that for primes
p and q, p will split in infinitely many Z/qZ-extensions of Q.
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Chapter 1

Introduction

This thesis investigates a variant of the Inverse Galois Problem, which is an open
problem in number theory. Given a polynomial or a field extension, one could
calculate its Galois group, and though this can be difficult, especially for poly-
nomials of large degree, it is “doable.” Different methods for calculating Galois
groups are used continuously throughout this thesis, so those not familiar with
these methods (or terms) should consult Appendices A-C.

The Inverse Galois Problem is Galois theory “in reverse.” Namely, given a fi-
nite group G, the question is whether G occurs as a Galois group of some (finite)
extension of Q. If Q is not required to be the base field, then it is a theorem that
every finite group occurs as the Galois group of some finite extension of fields.
However, over Q, the problem is not yet solved. And even for groups for which
the problem is solved, another difficulty is actually producing a polynomial in
Q[x] with the prescribed Galois group.

This is not to say that no progress has been made. For example, the follow-
ing theorem of Shafarevich solves the problem for a whole class of groups, from
[10].

Theorem 1.0.1. If G is a finite solvable group, then G occurs as a Galois group
over Q.

However, the proof Shafarevich provided did not include explicit polynomials.

In this thesis, the problem is amended slightly by adding another restriction
to the possible fields. Not only do we want our fields to be finite extensions of
Q, we require that they be totally real, which we will define in the next chapter.
As expected, this makes the problem slightly more challenging for some classes
of groups.

Chapter 2 serves as an introduction to most of the algebraic number theory
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needed for this thesis, including the ring of integers, factorizations of ideals in
extensions, decomposition and inertia groups, and the Frobenius automorphism.
Chapter 3 addresses the abelian case. We prove that all finite abelian groups
occur as Galois groups of totally real fields, and also study how primes of Z factor
in these extensions. For example, we calculate the Dirichlet density of the primes
which split completely in these totally real extensions. These terms are defined in
chapters 2 and 3. We begin chapter 4 by providing a brief introduction to p-adic
numbers, which we then use to prove that Sn can be realized as a Galois group
of a totally real number field. Lastly, we outline a method to obtain D2p as a
Galois group over Q, again of a totally real field, in chapter 5. Appendices A-C
cover most of the definitions and theorems from Field Theory and Galois Theory
which are required to understand the material in the main portion of the thesis.
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Chapter 2

Algebraic Number Theory

In this chapter, we introduce most of the algebraic number theory needed for
this thesis. The primary motivation for writing this chapter is to provide as self-
contained a thesis as possible, but almost all of these theorems can be found in
other books, and we cite them along the way. Of course, there will be some results
which we will not have the time to prove, but we state them and refer to them as
needed.

2.1 Introduction to Number Fields

2.1.1 Definition and Embeddings

This thesis is concerned with totally real number fields. In this section, the goal
is to explain what these are, as well as introduce the norm and the trace. We will
be following the beginning of [6].

Definition 2.1.1. A number field K is a finite extension of Q. The dimension
dimQK of K as a vector space over Q is called the degree of the number field,
and is denoted [K : Q].

For example, K = Q(
√

2) is a number field of degree two and L = Q(21/3) is
a number field of degree three. It is important to note that a number field is not
necessarily a Galois extension of Q, as the second example shows, but many of
the results we will prove become considerably nicer (or easier) when dealing with
Galois extensions.

All number fields are simple extensions of Q. That is, a number field L has
the form L = Q(α) for some element α ∈ L. This follows from the following
theorem, which is only stated. A proof can be found in [5], page 595.

Theorem 2.1.2 (Primitive Element Theorem). If K/F is a finite, separable field
extension, then K/F is a simple extension.
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Since Q has characteristic zero, all finite extensions are separable (Theorem
A.3.5), and the theorem applies to all number fields. There do exist extensions
which are not simple, but by the above reasoning they necessarily have charac-
teristic p for some prime p. This theorem gives us a useful way of working with
number fields since they can be generated by one element.

Now suppose L = Q(α) is a number field of degree n. Since C/Q is algebraically
closed, L can be regarded as a subfield of C. But there could be several ways of
embedding L into C. For example, if L = Q(

√
2), then an embedding (i.e. an in-

jective homomorphism) σ : L ↪→ C can map
√

2 to either
√

2 or −
√

2. For readers
who like to view Q(

√
2) as Q[x]/(x2 − 2), this amounts to saying an embedding

σ : Q[x]/(x2 − 2) ↪→ C

sends x to either
√

2 or −
√

2 since these are the roots of x2 − 2 ∈ Q[x]. This is
the spirit of the following theorem.

Theorem 2.1.3. Suppose L = Q(α) is a number field of degree n. Then there
are exactly n distinct embeddings σi : L ↪→ C, i = 1, 2, . . . , n.

Proof. Write L = Q[x]/(mα(x)), where mα(x) ∈ Q[x] is the minimal polynomial
of α over Q. Any embedding

σ : Q[x]/(mα(x)) ↪→ C

must send x to one of the roots of mα(x) in C. Since mα(x) is irreducible over
Q and Q is of characteristic zero, all roots of mα(x) are distinct. More specifi-
cally, let M denote the splitting field of mα(x). Then as M is finite and Q is of
characteristic zero, by Theorem A.3.5, M is separable over Q, and since mα(x)
is irreducible it has distinct roots in M by definition of a separable extension.
Hence there are at most n embeddings, one for each root of mα(x) in C.

Conversely, let α = α1, α2, . . . , αn denote the n roots of mα(x) in C. Let

σi : Q[x] ↪→ C

send x to αi. Therefore σ(f(x)) = f(αi). It is left to the reader show that this
substitution map is a homomorphism, and that kernel of σi is (mα(x)) (easily ver-
ified). By the first isomorphism theorem, σi induces an injective homomorphism

σi : Q[x]/(mα(x)) ↪→ C.

This shows there are at least n embeddings, meaning there are precisely n em-
beddings.
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If L is a number field of degree n, then an embedding σ : L ↪→ C is called a
real embedding if σ(L) ⊆ R, i.e. if the image of L under σ sits inside the reals.
Otherwise, σ is referred to as a complex embedding. A totally real number field
is a number field for which all the embeddings are real. For example, Q(

√
2) is a

totally real number field of degree two, because its two embeddings (seen above)
are both real embeddings. However, Q( 3

√
2) (the subfield of C) is not a totally real

number field since there are two complex embeddings, one sending 3
√

2 to ω 3
√

2
and another sending 3

√
2 to ω2 3

√
2, where ω is a cube root of unity (since 3

√
2, ω 3
√

2,
and ω2 3

√
2 are the three roots of the irreducible polynomial x3 − 2 ∈ Q[x]).

However, what this second example does illustrate is that if σ is a complex embed-
ding, then its complex conjugate σ is also a complex embedding, since complex
roots of polynomials over R (and hence over Q) come in conjugate pairs. For this
reason, we usually refer to the number of real embeddings and pairs of complex
embeddings. More specifically, if L is a number field of degree n, then we let
r1 be the number of real embeddings and r2 be the number of pairs of complex
embeddings. Since there are n total embeddings, we have r1 + 2r2 = n.

2.1.2 Norm and Trace

Definition and Properties

In this section, we introduce two important functions on number fields: the norm
and the trace. Although this thesis is concerned with number fields, we will work
in a more general setting for much of this chapter. We will mainly be following [9].

Suppose L/K is a finite extension of fields. For an element α ∈ L, consider
the map

rα : L→ L, x 7→ αx.

By regarding L as a vector space over K, it is clear that rα is a K-linear trans-
formation on L.

Next recall two terms from linear algebra: the trace and the determinant of a
linear transformation. If T : V → V is a linear transformation, then the trace
and determinant of T are just the trace and determinant of the matrix of T with
respect to some basis of V . However, what makes the trace and determinant
particularly interesting is that they do not depend on the choice of basis of V .
This follows from the following facts.

Proposition 2.1.4. If A and B are two square matrices of the same size, then:

(i) tr(AB) = tr(BA)

(ii) det(AB) = det(A) det(B)
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If A and B are matrices of T with respect to two different bases of V , then
from linear algebra there exists an invertible matrix P such that

A = PBP−1.

Consequently, by the proposition,

tr(A) = tr(PBP−1) = tr(P−1PB) = tr(B),

and

det(A) = det(PBP−1) = det(P ) det(B) det(P−1) = det(P ) det(B) det(P )−1 = det(B).

Hence the trace and determinant of a linear transformation do not depend on the
choice of basis of the vector space V . Also, if the underlying field of the vector
space V is F , say, then because entries of the matrix of T are elements of F , it
easy to see that the trace and determinant will also be elements of F .

We can now define the norm and trace.

Definition 2.1.5. Suppose L/K is a finite extension of fields.

1. The trace of L/K is the function TrL/K(α) = tr(rα).

2. The norm of L/K is the function NormL/K(α) = det(rα).

From the discussion above, the trace and norm do not depend on the choice
of basis of L as a vector space over K; they just depend on L and K. With the
way the trace and norm are defined, some easy properties follow.

Proposition 2.1.6 (Norm and Trace Properties). Let L/K be a finite extension
of fields with n = [L : K], and suppose α, β ∈ L and c ∈ K. Then the following
hold:

(i) TrL/K(α),NormL/K(α) ∈ K.

(ii) TrL/K(α + β) = TrL/K(α) + TrL/K(β).

(iii) TrL/K(cα) = cTrL/K(α).

(iv) NormL/K(αβ) = NormL/K(α)NormL/K(β).

(v) NormL/K(cα) = cnNormL/K(α).

Proof. Property (i) follows from the observations preceding the definition. For
the next two properties, we first notice that rα+β = rα + rβ and rcα = crα for all
α, β ∈ L, c ∈ K (this is easy). Applying the trace operator to both sides of both
relations and using the linearity of the trace operator on matrices give properties
(ii) and (iii). Taking the determinant of both sides in the second relation gives
property (v). Finally, we have the easy relation: rαβ = rαrβ (a composition of
maps). Taking determinants of both sides and using Proposition 2.1.4(2) yields
property (iv).
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The proof shows that the trace is a linear operator on L as a vector space
over K, essentially because the trace operator on matrices is linear. Also, the
proposition says the norm is multiplicative. Both of these are useful facts. Now
before moving on, let us look at an example.

Example 2.1.7. Consider Q(i)/Q (the subfield of C). This is a degree two
extension as i is a root of the (irreducible) polynomial x2 + 1 ∈ Q[x]. We can
consider an arbitrary element a+ bi ∈ Q(i) (a, b ∈ Q) and ask what

TrQ(i)/Q(a+ bi) and NormQ(i)/Q(a+ bi)

are. We just work with the definitions. We first need to find ra+bi. To do this,
take the basis {1, i} for Q(i). Simple computations show

(a+ bi) · 1 = a+ bi and (a+ bi) · i = −b+ ai.

Therefore the 2× 2 matrix ra+bi is

ra+bi =

(
a −b
b a

)
.

So
TrQ(i)/Q(a+ bi) = tr(ra+bi) = 2a

and
NormQ(i)/Q(a+ bi) = det(ra+bi) = a2 + b2.

Those who recall the definition of the norm of an element of C will notice that
the norm NormQ(i)/Q agrees with the usual norm on C.

A Different Definition

It turns out that there is another way to define the trace and norm. Consider the
number field case first. Let L/Q be a number field. If n = [L : Q], we can let
{σi : i = 1, 2, . . . , n} be the n embeddings of L into C. Then for α ∈ L,

TrL/Q(α) = σ1(α) + σ2(α) + . . .+ σn(α),

and
NormL/Q(α) = σ1(α)σ2(α) · · ·σn(α).

We can redo Example 2.1.7 using the two embeddings

σ1 : Q(i) ↪→ C, i 7→ i,

σ2 : Q(i) ↪→ C, i 7→ −i.

Notice
σ1(a+ bi) = a+ bi and σ2(a+ bi) = a− bi,
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and therefore
TrQ(i)/Q(a+ bi) = a+ bi+ (a− bi) = 2a

and
NormQ(i)/Q(a+ bi) = (a+ bi)(a− bi) = a2 + b2,

which are the same answers as the ones above. So the two definitions are con-
sistent, at least in this example. Ideally, we should be able to use our original
definition to somehow prove that the trace and norm are given by the sum and
product of the embeddings. This is what we aim to do now. The proof follows
the one presented in [9], Section 1.5.

Definition 2.1.8. Let L/K be a finite extension of fields and suppose α ∈ L.
Then the characteristic polynomial of α acting on L is the polynomial in t given
by

cL/K(t) = det(tI − rα).

The reader will notice that in the notation cL/K(t), there is no α, but it is
inherent in the matrix rα.

Observe that cL/K(t) is in fact monic. Also, the Cayley-Hamilton theorem tells
us that cL/K(rα) = 0. However, by definition of rα, we can also view cL/K(rα) as
a K-linear transformation on L which multiplies each element of L by cL/K(α),
since rα was multiplication by α. Therefore the statement cL/K(rα) = 0 implies
cL/K(α) = 0. This will be important later. Now, let us prove the following lemma.

Lemma 2.1.9. Suppose A = [ai,j] is an n × n matrix with coefficients in some
field, and let In represent the n× n identity matrix. Then the coefficient of tn−1

in det(tIn − A) is −tr(A).

Proof. The proof will be by induction on n. The statement is clearly true for
n = 1, 2 (after a small calculation for the n = 2 case). So let n > 2, and assume
the statement is true for matrices of size smaller than n. We will expand the
determinant along column n. If B is the (n − 1) × (n − 1) matrix formed by
removing the n-th row and column from A, then

det(tIn − A) = (t− an,n) det(tIn−1 −B) + . . . .

Crucially, the order of t in the omitted terms will be (strictly) less than n−1. This
is easily verified as the last entry in the n-th column will be the only entry with a
t-factor, and each of the other subdeterminants will have an order of t of only n−2.
Therefore the only way to get a term with tn−1 is from (t− an,n) det(tIn−1 −B).
At this point we can use the induction hypothesis to see

(t− an,n) det(tIn−1 −B) = (t− an,n)(tn−1 − tr(B)tn−2 + . . .) (ind. hypothesis)

= tn − tr(B)tn−1 − an,ntn−1 + . . .

= tn − (tr(B) + an,n)tn−1 + lower order terms

= tn − tr(A)tn−1 + lower order terms,
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which proves the lemma.

With this lemma, we can make some observations about the characteristic
polynomial of α acting on L/K, where [L : K] = n . Since

cL/K(t) = det(tI − rα),

the lemma tells us that the coefficient of tn−1 is

−tr(rα) = −TrL/K(α).

Plugging in t = 0 to cL/K(t) shows the constant term of cL/K(t) is

det(−rα) = (−1)n det(rα) = (−1)nNormL/K(α).

Since the norm and the trace are both encoded in the characteristic polynomial,
one would imagine that working with the characteristic polynomial will yield in-
formation on the norm and trace. We can now state and prove the main theorem.

Theorem 2.1.10. Suppose
K ⊆ L ⊆M

is a chain of separable extensions, with M also Galois over K (normal and sep-
arable), and let n = [L : K]. Let G = Gal(M/K) and H = Gal(M/L). By the
Galois correspondence (Theorem A.3.10), H ≤ G is a subgroup.

M

Gal(M/K)=G

H=Gal(M/L)

L

n

K

Since [G : H] = n, let
{σiH : i = 1, 2, . . . , n}

be the n distinct left cosets of H in G. In this way, the σi are (distinct) embeddings
of L into the normal extension M of K. Then for α ∈ L,

(i) TrL/K(α) = σ1(α) + σ2(α) + . . .+ σn(α), and

(ii) NormL/K(α) = σ1(α)σ2(α) · · · σn(α).

Proof. Let α ∈ L and let mK(t) ∈ K[t] be the minimal polynomial of α over
K. Then mK(t) is the characteristic polynomial of α acting on K(α)/K. To see
why, first recall that cK(α)/K(α) = 0 (see remarks following Definition 2.1.8), and
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therefore mK(t)|cK(α)/K(t). But since both are monic of degree [K(α) : K], in
fact mK(t) = cK(α)/K(t). So now let

[L : K(α)] = d and [K(α) : K] = m.

L

n

d

yyyyyyyyy

K(α)

m EEEEEEEE

K

Then L is a vector space direct sum of d copies of K(α) (it is a degree d vector
space over K(α)), and the claim is that the characteristic polynomial of α acting
on L is cL/K(t) = mK(t)d.

To prove this claim, let A be the matrix of α acting on K(α). Since L is the
direct sum of d copies of K(α), we can take d linearly independent copies of the
basis for K(α)/K and use that as a basis of L. Therefore, in this basis,

rα =


A 0 · · · 0
0 A · · · 0
...

...
. . .

...
0 0 · · · A

 .

Consequently,

tImd − rα =


tIm − A 0 · · · 0

0 tIm − A · · · 0
...

...
. . .

...
0 0 · · · tIm − A

 .

Since the determinant of a block diagonal matrix is the product of the determi-
nants of the individual blocks, we find

det(tImd − rα) = det(tIm − A)d = cK(α)/K(t)d = mK(t)d,

which proves the claim.

Next, since mK(t) is an irreducible polynomial of degree m and M is normal
and separable over K, we can let α = α1, α2, . . . , αm be the m distinct roots of
mK(t) in M , meaning

mK(t) =
m∏
i=1

(t− αi).
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By Lemma 2.1.9 and the subsequent notes tell, TrL/K(α) is the sum of the roots
of the characteristic polynomial of α acting on L, and NormL/K(α) is the product
of the roots. Since the characteristic polynomial is mK(t)d which has roots αi :
i = 1, 2, . . . ,m, each with multiplicity d, we have

TrL/K(α) = d(α1 + α2 + . . .+ αm),

and
NormL/K(α) = (α1α2 · · ·αm)d.

Let P = Gal(M/K(α)).

M

Gal(M/K(α))=P

H=Gal(M/L)

L

n

d

yyyyyyyyy

K(α)

m EEEEEEEE

K

The Galois Correspondence (A.3.10) says H ≤ P . Moreover, d = [P : H] and
m = [G : P ]. Choose coset representatives βi so that

{βiP : i = 1, 2, . . . ,m}
are the distinct cosets of P in G and similarly choose representatives γj so that

{γjH : j = 1, 2, . . . , d}
are the distinct cosets of H in P . Then the set

{βiγj : i = 1, 2, . . . ,m; j = 1, 2, . . . , d}
is a choice of coset representatives of H in G. Notice that since the γj ∈ P =
Gal(M/K(α)), we have γj(α) = α for all j. Moreover, by reordering, we can
ensure βi(α) = αi for all i. From the setup preceding the theorem, the σi were
also coset representatives for H in G, and therefore they differ from the elements
βiγj by elements of H, all of which leave α fixed. Therefore

n∑
k=1

σk(α) =
m∑
i=1

d∑
j=1

βiγj(α)

= d
m∑
i=1

βi(α) (since γj(α) = α)

= d

m∑
i=1

αi (as βi(α) = αi)

= TrL/K(α).
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Similarly,

n∏
k=1

σk(α) =
m∏
i=1

d∏
j=1

βiγj(α)

=

(
m∏
i=1

βi(α)

)d

(since γj(α) = α)

=

(
m∏
i=1

αi

)d

(as βi(α) = αi)

= NormL/K(α).

Since number fields are finite extensions of Q, which has characteristic zero, all
number fields are separable, and so the theorem applies. Notice that if a number
field is also Galois over Q, then the theorem applies with L = M , meaning the σi
are just the elements of the Galois group.

2.2 Dedekind Domains and Ideal Factorization

The next step in the development of this material would be to examine the so
called ring of integers. But before we do, we will use this section to prove the
unique factorization of ideals in Dedekind rings. Once this is done, we can in-
troduce the ring of integers and explain how the results of this section apply to
that ring. Since it is an important result which we will be utilizing regularly
throughout this chapter and the subsequent ones, it is worthwhile to go through
this proof, despite the amount of space it will require. The lemmas, theorems,
and proofs are all from [9], with the exception of the section on Noetherian rings.

2.2.1 Localization

The first concept to introduce is that of localization. In topology, one way to
understand a certain space is to look at the local behavior around each point in
the space, and then somehow combine all this information to yield a greater un-
derstanding of the space as a whole. This is the motivation behind “localization.”

Recall the definitions of prime and maximal ideals:

Definition 2.2.1. If R is a ring and I is an ideal with I 6= R, then I is said to
be prime if whenever ab ∈ I, then either a ∈ I or b ∈ I. The ideal I is said to
be maximal the only ideals containing I are R and I. That is, there is no ideal J
with I ⊂ J ⊂ R.
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These should be fairly familiar concepts. In ring theory, the points of the
associated “topological space” are the prime ideals of the ring, and the topology
is the Zariski topology. For this reason, we want to understand localization at
prime ideals.

Localization is actually defined more generally. Suppose R is a ring which is
an integral domain (no zero divisors), and let S be a subset of R which is multi-
plicative and does not contain zero. The set S does not need to be a subring or
even an ideal of R; the only requirement is that the product of two elements of S
is also in S. Consider the set R× S with the equivalence relation

(r, s) ∼ (r′, s′)⇔ rs′ = r′s.

This is in fact an equivalence relation, as the reader can easily verify. Typically,
the equivalence class of (r, s) is denoted r/s. The addition and multiplication on
the set of equivalence classes of R (under this relation) are defined as follows:

r/s+ r′/s′ = (rs′ + r′s)/(ss′)

and
(r/s)(r′/s′) = rr′/ss′.

It is another exercise for the reader to check that these operations are well-defined.
The set of equivalence classes with these two operations form a ring, denoted RS

(or sometimes S−1R), called the localization of R at S. It is easy to see that 0/s
is the zero element and s/s the identity element (here s is any element of S).
Moreover, choosing one s ∈ S we find that the map

R→ RS, r 7→ rs/s

is an embedding of R into RS. We choose any element s instead of 1 since 1 is
not assumed to be in S. The reader might recall that the field of fractions of a
ring is constructed in a similar manner. In fact, if S = R\{0}, then as R has no
zero divisors, S is multiplicative and RS is the field of fractions of R. However,
this definition of localization allows us to insert a wide variety of sets in for S.

Example 2.2.2. R = Z and S = {1, 4, 16, 64, . . .}. Then S is clearly a multi-
plicative subset of R that does not contain zero. It is clear from the definition of
RS that in this case

RS = {a/4k : a, k ∈ Z}.

Example 2.2.3. Let R = Z, but this time let S be the set of integers not divisible
by 5. This is also a multiplicative set because if two numbers are not divisible
by 5 then their product cannot be divisible by 5 by the Fundamental Theorem of
Arithmetic. Hence

RS = {a/b : a, b ∈ Z, 5 6 |b}.
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We can look at this second example more generally. Indeed, the ideal (5) ⊂ Z
is a prime ideal, so if x and y are two elements with x, y /∈ (5), then by definition
of a prime ideal xy /∈ (5). This means the set Z− 5Z forms a multiplicative set.
Replacing Z and (5) by a more general integral domain R and prime ideal p gives
the localization at a prime ideal.

Definition 2.2.4. Let R be an integral domain and p a prime ideal. Then the
localization of R at p is RR−p.

To avoid writing R−p continuously, the localization at p is denoted Rp. How-
ever, try not to be confused and think that p is the set S in our definition of
localization.

The last proposition we state in this section is the relationship between ideals
of our original ring R and ideals of the localization RS. We will not prove the
proposition, but a proof can be found in [9], Section 1.1.

Proposition 2.2.5. Suppose R is an integral domain and S a multiplicative sub-
set of R (which does not contain zero). Then there is a 1-1 correspondence between
the prime ideals of R which have empty intersection with S and prime ideals of
RS. More specifically, if p is a prime ideal of R with p ∩ S = ∅, then the ideal p
corresponds to an ideal pRS of RS.

We also get the following corollary.

Corollary 2.2.6. If R is an integral domain and p a prime ideal, then Rp has
only one maximal ideal, namely pRp.

Proof. Remembering that the localization at p means S = R− p, the correspon-
dence given by the proposition tells us that pRp is a prime ideal of Rp. Moreover,
if it were properly contained in a maximal ideal qRq, then since maximal ideals
are always prime (general fact from ring theory; verify if need be), this would cor-
respond to an ideal q of R which properly contains p and has empty intersection
with R − p, which is a clear contradiction. Hence pRp is a maximal ideal. The
correspondence also tells us that there cannot be any others, since any other max-
imal ideal would have to correspond to an ideal of R properly contained in p, and
hence the ideal would be properly contained in pRp, contradicting maximality.

2.2.2 Noetherian Rings and Modules

Rings

There are two equivalent ways of defining Dedekind rings. One makes uses the
word Noetherian and the other does not. However, since many of the theorems
and lemmas make use of the word Noetherian, we will define the term and define
Dedekind rings appropriately. The definition, along with the rest of the section,
can be found in [5].
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Definition 2.2.7. A commutative ring R is Noetherian if whenever

I1 ⊆ I2 ⊆ I3 ⊆ . . .

is an increasing chain of ideals of R, there exists n such that Im = In for all
m ≥ n.

So a ring is Noetherian if you cannot find an infinite (strictly) increasing chain
of ideals. The ring in the definition is required to be commutative. For our pur-
poses, this is fine, since we will be using subrings of our number fields, which are
consequently commutative. There is a way to define a Noetherian condition for
nonncommutative rings which is similar, but we will not go into that here since
it is not needed. But in case we fail to characterize rings as commutative in this
section, it is worth noting now that all rings in this section are assumed to be
commutative.

We will see that Dedekind rings must be Noetherian (by definition), but in the
proof of the unique factorization of ideals we will also need the fact that quotients
of Noetherian rings are Noetherian as well. First, let us recall a fact from ring
theory. If R is a ring and I an ideal, then there is a one-to-one correspondence

{ideals of R containing I} ←→ {ideals of R/I},

where the ideal J of R (containing I) corresponds to the ideal J/I of R/I. With
this in mind, we can prove the following proposition.

Proposition 2.2.8. If R is a Noetherian ring and I is an ideal of R, then R/I
is Noetherian.

Proof. Suppose we had an infinite ascending chain of ideals

J1 ⊆ J2 ⊆ J3 ⊆ . . .

of R/I. Then from the ideal correspondence preceding the proposition, this would
correspond to an infinite ascending chains of ideals

J1 ⊆ J2 ⊆ J3 ⊆ . . .

of R. But R is Noetherian, so there exists n such that Jm = Jn for all m ≥ n.
Then again by the correspondence, this means Jm = Jn for all m ≥ n. Since this
chain was arbitrary, R/I is Noetherian.

An example of a Noetherian ring is Z, and this follows from the following
theorem.

Theorem 2.2.9. If a commutative ring R is a PID, then R is Noetherian.
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Proof. Since R is a PID, an ascending chain of ideals is a chain

(a1) ⊆ (a2) ⊆ (a3) ⊆ · · · ,

where ai ∈ R. Consider the ideal

I =
∞⋃
n=1

(an) / R.

Since R is a PID, I = (α) for some α. Since

α ∈
∞⋃
n=1

(an),

α ∈ (aj) for some j, and hence (α) ⊆ (aj). But then this means for all k ≥ j,

(α) ⊆ (ak) ⊆ (α),

and hence (ak) = (α) for all k ≥ j. Therefore R is Noetherian by definition.

For an example of a ring which is not Noetherian, consider R = Q[x1, x2, . . .].
The ring R is certainly commutative, but the chain of ideals

(x1) ⊆ (x1, x2) ⊆ (x1, x2, x3) ⊆ . . .

is an ascending chain which does not stabilize after any term. Therefore R cannot
be Noetherian.

Modules

While we will not be needing Noetherian modules in this section on Dedekind
rings, it will be useful in later sections. The definition of Noetherian modules is
nearly identical to that of Noetherian rings.

Definition 2.2.10. Suppose R is a ring and M a (left) R-module. Then M is
said to be Noetherian if whenever

M1 ⊆M2 ⊆M3 ⊆ · · ·

is an increasing chain of submodules of M , there exists n such that Mk = Mn for
all k ≥ n.

It is worth remarking that if there is a ring R, then R is naturally a left
R-module over itself, sometimes denoted RR. Moreover, submodules of RR cor-
respond to left ideals of R, as the reader can easily check. If R is commutative,
left ideals are also two-sided ideals. So assuming R is commutative, an ascending
chain of submodules of RR corresponds to an ascending chain of ideals of R (and
vice-versa). Therefore an alternative definition of Noetherian (commutative) rings
could be a ring R is Noetherian if RR is a Noetherian module. This is summarized
in the following proposition.
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Proposition 2.2.11. A commutative ring R is Noetherian if and only if R is
Noetherian as a left module over itself.

The following theorem is an important characterization of Noetherian mod-
ules:

Theorem 2.2.12. Suppose R is a ring and M a left R-module. Then the following
statements are equivalent:

(i) M is a Noetherian R-module.

(ii) Every nonempty set of submodules of M contains a maximal element (under
inclusion).

(iii) Every submodule of M is finitely generated.

Proof. (i) =⇒ (ii): Suppose M is Noetherian, and let Σ denote a nonempty
collection of submodules of M . Choose some M1 ∈ Σ (possible as Σ is nonempty).
If M1 is maximal, then (ii) holds. If not, then there exists some M2 ∈ Σ with
M1 ⊂ M2. If M2 is maximal, then (ii) holds. If not, then there exists M3 ∈ Σ
with M2 ⊂M3, and so on. If (ii) continually fails then we would have an infinite
ascending chain of submodules of M

M1 ⊂M2 ⊂M3 ⊂ · · ·

which does not stabilize, contradicting the fact that M is Noetherian.

(ii) =⇒ (iii): Suppose N is a submodule of M , and let Σ denote the set of
all finitely generated submodules of N . Clearly {0} ∈ Σ, so Σ is nonempty. By
(ii), there exists a maximal element N ′ ∈ Σ. We want N ′ = N . Suppose N ′ ⊂ N .
Then there exists n ∈ N\N ′. Since N ′ ∈ Σ, N ′ is finitely generated, and so
the submodule generated by N ′ and n is also finitely generated (hence in Σ) and
properly contains N ′, contradicting the maximiality of N ′. Therefore N ′ = N
and N is finitely generated.

(iii) =⇒ (i): Suppose
M1 ⊆M2 ⊆M3 ⊆ · · ·

is an increasing chain of submodules of M , and let

N =
∞⋃
i=1

Mi.

Then N is a submodule of M , and by (iii) is finitely generated, say by n1, . . . , nk.
Since each ni ∈ N , there exists some Mji such that ni ∈ Mji . Let m =
max{j1, . . . , jk}. Then ni ∈ Mm for all i, meaning N ⊆ Mm ⊆ N , so Mm = N .
Therefore Mk = Mm for all k ≥ m and hence (i) holds.
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Corollary 2.2.13. A commutative ring R is Noetherian if and only if every ideal
of R is finitely generated.

Proof. By the proposition, R is a Noetherian ring if and only if RR is a Noetherian
module. But RR is a Noetherian module if and only if every submodule is finitely
generated (by the theorem). Since ideals of R are submodule of RR and vice-versa,
the statement follows.

It is a good exercise for the reader to use this corollary to give a one line proof
of Theorem 2.2.9.

There are two other useful propositions. These proofs come from [12].

Proposition 2.2.14. Let R be a ring and M be an R-module, with N ⊆ M a
submodule. If both N and M/N are Noetherian, then so is M .

Proof. Suppose first that M1 ⊆M2 are two submodules of M such that M1∩N =
M2 ∩ N , and both M1 and M2 have the the same image in M/N . The claim is
that M1 = M2. For suppose m2 ∈ M2. Since both M1 and M2 have the same
image in M/N , we can certainly find an m1 ∈ M1 with m1 + N = m2 + N , so
m2 − m1 ∈ N . But then m2 − m1 ∈ M2 ∩ N (as m1 ∈ M2 as well), but as
M1∩N = M2∩N , this implies m2−m1 ∈M1∩N ⊂M1, so m2 ∈M1. Therefore
M1 = M2 (reverse inclusion was assumed).

So now suppose
M1 ⊆M2 ⊆M3 ⊆ · · ·

is an increasing chain of submodules of M . Then the sequence

M1 ∩N ⊆M2 ∩N ⊆M3 ∩N ⊆ · · ·

is an increasing chain of submodules of N . Since N was assumed to be Noetherian,
there exists j such that Mn ∩N = Mj ∩N for all n ≥ j. Similarly,

M1/N ⊆M2/N ⊆M3/N ⊆ · · ·

is an increasing chain of submodules ofM/N , which was assumed to be Noetherian
as well. Therefore there exists k such that Mi/N = Mk/N for all i ≥ k. Taking
m = max{j, k} shows that for all n ≥ m, Mn and Mm have the same image in
M/N and Mn ∩ N = Mm ∩ N . Therefore by the claim above, Mn = Mm for all
n ≥ m, meaning M is Noetherian.

Remark 2.2.15. The converse of this statement should be clear. Indeed if M is
a Noetherian module and N a submodule, then as submodules of N are also
submodules of M , N will clearly be Noetherian. Also, the proof that M/N is
Noetherian is very similar to the proof of Proposition 2.2.8.
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By the above proposition, we get the following.

Proposition 2.2.16. Let R be a Noetherian ring. Then every finitely generated
R-module is Noetherian.

Proof. The proof is by induction on the number of generators. Suppose M can
be generated by a single element, say m ∈ M . Then we can construct a module
homomorphism

φ : R→M, r 7→ rm.

It is easily checked that this is a surjective R-module homomorphism, and so
by the first isomorphism theorem M ∼= R/ kerφ. Since R is a Noetherian ring,
it is Noetherian as a module over itself, and so quotients of R by submodules
are also Noetherian. Therefore M is Noetherian. Now suppose it is true up to
n−1 generators, and then suppose M is generated by n elements, say m1, . . . ,mn.
Then M contains a submodule N generated by n−1 elements (say the submodule
generated by m1, . . . ,mn−1), and the quotient M/N is generated by one element.
By induction, both N and M/N are Noetherian, and so by Proposition 2.2.14,
M is Noetherian.

2.2.3 Dedekind Rings

In this section we finally define Dedekind rings. First, we make the following
definition.

Definition 2.2.17. A discrete valuation ring is a principal ideal domain with
exactly one maximal ideal.

Discrete valutation rings will be abbreviated DVR. As noted in [9], every field
is a DVR. This is because there are only two ideals, namely the zero ideal and
the whole field. Therefore fields are the “trivial case.” However, in this thesis,
we will only be concerned with the DVRs which are not fields. We will need the
following proposition.

Proposition 2.2.18. Suppose R is a DVR and suppose p = Rπ is the unique
maximal ideal of R, where π ∈ R. Then

(i) If R is not a field, then every nonzero element α ∈ R can be written as
α = uπk where u ∈ R is a unit and k ∈ Z≥0.

(ii) Every nonzero ideal has the form Rπk for k ∈ Z≥0.

Proof. First, recall that in a PID, prime ideals are maximal and irreducible el-
ements are prime (in general, maximal ideals are prime and prime elements are
irreducible). The claim is that π is the only prime element of R, up to multipli-
cation by units. This is because if π1 were another prime element which is not
a unit multiple of π, then Rπ1 would be another prime ideal of R, and hence
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a maximal ideal distinct from p. But a DVR can only have one maximal ideal,
so this cannot happen. Hence π is the unique prime element of R up to unit
multiples. So now let α ∈ R be any element. Since R is a PID, R is necessarily a
UFD and so α factors into a unit times a product of irreducible elements. Since
irreducible elements are prime, the only irreducible element of R is π (or π times
a unit), and so (i) follows. Item (ii) immediately follows from (i) and the fact
that R is a PID.

Property (ii) will be useful in the next section. But now we have all the
definitions needed to introduce Dedekind rings.

Definition 2.2.19. An integral domain R is a Dedeking ring if it is Noetherian
and the localization Rp is a DVR for every (nonzero) prime ideal p of R.

Example 2.2.20. Consider R = Z. We know Z is an integral domain and
Theorem 2.2.9 implies Z is Noetherian. Corollary 2.2.6 says that Z(p) has only
one maximal ideal for every prime p (these are all the prime ideals of Z). Lastly,
the correspondence given by Proposition 2.2.5 tells us that since Z is a PID, Z(p)

will be a PID for every prime p. Hence Z is a Dedekind ring.

There is also the following property of Dedekind rings.

Proposition 2.2.21. If R is a Dedekind ring, then every nonzero prime ideal of
R is maximal.

Proof. Suppose the statement were false. Then there would exist a nonzero prime
ideal p1 of R which was not maximal, and therefore would be properly contained
in a maximal (and hence prime) ideal p2 (i.e. p1 ⊂ p2). But the correspondence
in Proposition 2.2.5 then implies that p1Rp2 ⊂ p2Rp2 is a proper containment of
prime ideals of Rp2 . But R is a Dedekind domain, and hence Rp2 is a DVR, and
so can only have one nonzero prime ideal (remember in a PID, the maximal ideals
are precisely the prime ideals). This is a contradiction, meaning p1 was maximal.
This proves the proposition.

2.2.4 Unique Factorization into Prime Ideals

Recall some basic ideas from ring theory. If R is a ring (commutative in our case)
and I and J are ideals, then

I + J = {i+ j : i ∈ I, j ∈ J}

and

IJ = {
k∑

m=1

imjm : im ∈ I, jm ∈ J}

are both ideals as well. The finite sums in the definition of IJ are necessary to
make IJ into an ideal. It should be clear that IJ ⊆ I (and similarly IJ ⊆ J).
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The aim of this section is to show that in a Dedekind ring, we can decompose any
ideal into a product of prime ideals, similar to the way integers have a prime fac-
torization. So let us begin that process. This proof follows that of [9], Section 1.3.

There are a few lemmas and theorems which are needed. The first is a theorem the
reader may or may not be familiar with: the Chinese Remainder Theorem. We
will not supply a proof here, although we do mention the more classical version
of this theorem in the next chapter.

Theorem 2.2.22. Suppose R is a ring with identity and Q1, . . . ,Qn ideals of R
such that Qi +Qj = R for i 6= j. Set Q = ∩iQi. Then the mapping

r 7→ (r +Q1, . . . , r +Qn)

induces a ring isomorphism

R/Q ∼= R/Q1 ⊕ · · · ⊕R/Qn.

The next goal is to give a better illustration of what Q in the CRT actually
is. The following proposition does that.

Proposition 2.2.23. Suppose R, Q1, . . . ,Qn, Q are as in the previous theorem
and assume further that R is commutative. Then Q = ∩iQi is

Q = Q1Q2 · · · Qn.

Proof. The proof will be by induction on n. Suppose n = 2. We want to show
Q1 ∩Q2 = Q1Q2, so we will show both inclusions. First the inclusion Q1 ∩Q2 ⊆
Q1Q2. Let q ∈ Q1 ∩Q2. Since Q1 +Q2 = R by assumption, there exists q1 ∈ Q1,
q2 ∈ Q2 such that q1 + q2 = 1. Then

q =

∈Q2︷︸︸︷
q

∈Q1︷︸︸︷
q1 +

∈Q1︷︸︸︷
q

∈Q2︷︸︸︷
q2 ,

and hence q ∈ Q1Q2 (as R is commutative). The reverse inclusion is immediate
since Q1Q2 ⊆ Q1 and Q1Q2 ⊆ Q2. So the proposition is true for n = 2. Now let
n > 2, and assume the theorem is true up to n− 1. Set

Q′n−1 = Qn−1 ∩Qn.

By the inductive hypothesis,

Q′n−1 = QnQn−1.

We want to be able to apply the inductive hypothesis on the n− 1 ideals
Q1,Q2, . . . ,Qn−2,Q′n−1. The only thing to check is that Q′n−1 + Qj = R for
j < n− 1. First observe that

R = R ·R = (Qn +Qj)(Qn−1 +Qj) ⊆ QnQn−1 +Qj.
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Since
QnQn−1 ⊆ Qn ∩Qn−1 = Q′n−1,

we see
R ⊆ QnQn−1 +Qj ⊆ Q′n−1 +Qj ⊆ R,

and hence R = Q′n−1 +Qj, as required. Therefore the inductive hypothesis can
be applied to the n− 1 ideals Q1,Q2, . . . ,Qn−2,Q′n−1. Clearly the intersection of
all these ideals is still Q, and so

Q =
n⋂
i=1

Qi = Q1 ∩Q2 ∩ · · ·Qn−2 ∩Q′n−1 = Q1Q2 · · · Qn−2Q′n−1 = Q1Q2 · · · Qn.

The next lemma and subsequent corollary are going to be important because
they will tell us how to pick the prime ideal divisors in our ideal factorization.

Lemma 2.2.24. Suppose R is a commutative Noetherian ring in which every
prime ideal is maximal. Then every ideal of R contains a product of prime ideals.

Proof. Suppose the statement were false. Then there would be an ideal J such
that J does not contain a product of prime ideals. Pick J maximal with this
property. Then J is not a prime ideal, so we can pick elements x, y /∈ J such that
xy ∈ J . We let A = Rx+ J and B = Ry + J . Then as A and B both contain J ,
they both contain a product of prime ideals as J was said to be the largest ideal
without such a product. But then as xy ∈ J , we see AB ⊆ J . So this means J
must also contain a product of prime ideals, which is a contradiction. Therefore
no such J exists and the lemma is proved.

Corollary 2.2.25. With R as in the previous lemma, there exists prime ideals
p1, p2, . . . , pn of R and positive integers a1, a2, . . . , an such that

pa11 pa22 · · · pann = 0.

Proof. Take the zero ideal in the previous lemma, and use the fact that 0 is the
only element of the zero ideal.

There are two more lemmas we need. The next one will show that powers of
prime ideals are coprime (meaning the sum of the ideals is equal to the whole
ring), and so we will be able to apply the CRT to them later.

Lemma 2.2.26. Suppose R is a commutative ring and let p1 and p2 be two distinct
maximal ideals of R. Then pa1 + pb2 = R for any a, b ∈ Z>0.
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Proof. First, recall that the sum of two distinct maximal ideals must be the whole
ring, so p1 + p2 = R. This is because p1 + p2 contains the ideal p1, and since p1

is maximal, we must have p1 + p2 = p1 or R. Applying the same logic to p2

shows that p1 + p2 = p2 or R. Since p1 and p2 are distinct, the only possibility is
p1 + p2 = R. With this, we find

R = Ra = (p1 + p2)a ⊆ pa1 + p2 ⊆ R,

meaning pa1 + p2 = R for any integer a > 0. So now suppose pa1 + pc2 = R for some
integer c ≥ 1. We want to get the same relation with c+ 1 instead of c. Well

pc2 = pc2R = pc2(pa1 + p2) ⊆ pa1 + pc+1
2 .

Therefore
R = pa1 + pc2 ⊆ pa1 + (pa1 + pc+1

2 ) ⊆ pa1 + pc+1
2 ⊆ R,

and so pa1 + pc+1
2 = R, as required. Therefore the statement is true for any chosen

positive integers a, b.

One lemma which we will not prove is the following.

Lemma 2.2.27. Let R be as in lemma 2.2.24 and suppose p1, p2, . . . , pn are the
prime ideals in corollary 2.2.25. Then p1, p2, . . . , pn are all the prime ideals of R.

We are almost in position to prove the main theorem. The last lemma we
need to prove will help describe ideals of R/pa where R is a Dedekind ring and p
is a prime ideal.

Lemma 2.2.28. Suppose p is a maximal ideal of a commutative ring R and let
a be a positive integer. Then the inclusion of R into Rp induces an isomorphism

R/pa ∼= Rp/p
aRp.

Proof. Consider the map

φ : R/pa → Rp/p
aRp, r + pa 7→ r + paRp.

It should be clear that φ is a ring homomorphism, and that φ is injective. Showing
φ is surjective will prove the lemma. So take any r/s ∈ Rp (so r ∈ R, s /∈ p). We
are assuming p is a maximal ideal, so Rs + p = R. By the same logic as in the
proof of the previous lemma, Rs + pa = R. Therefore there exists c ∈ R, p ∈ pa

with cs+ p = 1. Therefore c = 1/s− p/s. So

φ(rc+ pa) = rc+ paRp (definition)

= r(1/s− p/s) + paRp

= r/s+ paRp,

as p ∈ pa and r/s ∈ Rp (meaning pr/s ∈ paRp). Therefore φ is surjective and
hence an isomorphism.
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Corollary 2.2.29. If R is a Dedeking ring and p is a nonzero prime ideal of R,
then for any positive a ∈ Z, every ideal of R/pa is a power of p/pa. Moreover,
p/pa is principal.

Proof. By the previous lemma, we can replace R/pa by Rp/p
aRp. Since R is a

Dedekind ring and p is a prime ideal, by definition Rp is a DVR. So the statements
follow from the properties of DVR we proved in Proposition 2.2.18.

Finally, we can prove the unique factorization of ideals.

Theorem 2.2.30. Let R be a Dedekind ring and A a nonzero ideal of R. Then A
is contained in only finitely many distinct prime ideals p1, p2, . . . , pn, and moreover

A = pa11 pa22 · · · pann

for some unique positive integers ai.

Proof. Let B = R/A. Then R is a commutative ring which is Noetherian by
Proposition 2.2.8, and every prime ideal of B is maximal (as they are in R by
Proposition 2.2.21). Therefore the conditions of Lemma 2.2.24 are satisfied. More-
over, every prime ideal of B corresponds to a prime ideal of R which contains A.
By Lemma 2.2.27, there are only finitely many prime ideals p1, p2, . . . , pn of R
containing A. Corollary 2.2.25 says some product

pb11 pb22 · · · pbnn = 0

in B for some bi > 0, which means pb11 pb22 · · · pbnn ⊆ A. Set B′ = R/pb11 pb22 · · · pbnn .
By Lemma 2.2.26, we can apply the CRT to get

B = R/pb11 pb22 · · · pbnn ∼= R/pb11 ⊕ · · · ⊕R/pbnn .

It is a fact from ring theory that since each of the R/pbii are rings with identity,
the ideals of B are precisely those which are the direct sum of ideals of the R/pbii .
By Corollary 2.2.29, we find that ideals of R/pbii are of the form pcii /p

bi
i for some

ci ≤ bi. Under the isomorphism given by the CRT, this means ideals of B′ are
the image in B′ of ideals of R of the form pc11 pc22 · · · pcnn , where ci ≤ bi for all i.
Since pb11 pb22 · · · pbnn ⊆ A, A/pbn1 · · · pbnn is an ideal of B′, and this means A has the
same image in B′ as some product pc11 pc22 · · · pcnn . Since both contain pb11 pb22 · · · pbnn ,
they must be equal. That is,

A = pc11 pc22 · · · pcnn

for some positive integers ci.

The prime ideals pi are uniquely determined by A since those are the prime
ideals containing A. The integers ci are uniquely determined because they are
the least positive integer for which the power of the maximal ideal of Rpi/ARpi is
the zero ideal in this ring.
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So we have proved the unique factorization of ideals in Dedekind rings. The
proof was not overly complicated, but of course it required a series of lemmas and
theorems.

We can talk about one ideal dividing another ideal in the same manner as we
talk about one integer dividing another. In this case, we say for a ring R, ideal
B divides ideal A if there exists ideal C of R with BC = A. What Theorem
2.2.30 says is that for two ideals A and B, B|A if and only if B contains A. So
to contain is to divide , which a very helpful phrase when dealing with ideal
factorization.

2.3 Ring of Integers

As noted in the beginning of the previous section, the next step in the development
of Algebraic Number Theory is to examine the ring of integers. We can now define
this ring and eventually show that it is a Dedekind ring.

2.3.1 Definition and Example

Definition 2.3.1. Suppose R is a subring of a commutative ring R′. An element
a ∈ R′ is said to be integral over R if there exists a monic polynomial f(x) ∈ R[x]
with f(a) = 0. If it exists, f(x) is an equation of integral dependence for a.

For example, we can let R = Z and R′ = Z[
√

2], and then let a =
√

2. In this
case, a is integral over Z because a satisfies the monic polynomial x2 − 2 ∈ Z[x].
For a nonexample, consider R = Z and R′ = Q. Then the element 1/2 ∈ Q is
not integral over Z because there is no monic polynomial in Z[x] with 1/2 as a
root. The reader will note, however, that 1/2 does satisy 2x − 1 ∈ Z[x], so the
condition that the polynomial be monic is crucial.

Now suppose we have an integral domain R, and let K denote its field of fractions.
There is a natural embedding of R into K.

Definition 2.3.2. 1. The set of all elements of K which are integral over R
is called the integral closure of R in K.

2. If every element of K which is integral over R already is an element of R,
then R is integrally closed.

Apply these definitions to the case R = Z to get the following.

Definition 2.3.3. If K/Q is a number field, then an element α ∈ K is called an
algebraic integer if it is integral over Z. That is, α is an algebraic integer if there
exists a monic polynomial f(x) ∈ Z[x] with f(α) = 0.
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By Gauss’ lemma, it suffices to check if the minimal polynomial of the element
α is in Z[x] because the minimal polynomial divides any other polynomial with
α as a root. Namely, if f(x) ∈ Z[x] has α as a root, then if mα(x) ∈ Q[x] is the
minimal polynomial of α over Q then we know mα(x)|f(x). But Gauss’ lemma
implies that since f(x) can be factored over Q, it can be factored over Z. Thus
mα(x) ∈ Z[x].

It is also worth noting how this definition differs from that of an algebraic el-
ement, which is defined in Appendix A. An algebraic number has to satify some
polynomial in Q[x], whereas the algebraic integer has to satisfy a monic polyno-
mial in Z[x]. So for example, the element α = 1/2 +

√
2 ∈ Q(

√
2) is algebraic (as

it lives in the finite extension Q(
√

2); see appendix), but it is not an algebraic
integer as its minimal polynomial does not lie in Z[x], as the reader will verify.

Now use Definition 2.3.2 in the case R = Z.

Definition 2.3.4. If K/Q is a number field, then the integral closure of Z in K
is called the ring of integers of K, denoted OK .

The simplest example is when K = Q. In this case, we know that elements
of Q are integral over Z if and only if they are in Z. This is because the minimal
polynomial of α ∈ Q is x−α ∈ Q[x], which is clearly in Z[x] if and only if α ∈ Z.
Hence for K = Q, OK = Z. The easiest nontrivial case would be that of quadratic
extensions. The following computations can also be found in [6].

Example 2.3.5. Let K = Q(
√
d). First observe that we can assume d is square-

free, since the square roots of any square factors are elements of Z (and hence of
Q). So assume d is squarefree. Any element α ∈ K can be written as α = a+b

√
d

for a, b ∈ Q. If b 6= 0, then the minimal polynomial of α is going to have degree
two over Q, and one can check that it is

mα(x) = x2 − 2ax+ (a2 − db2).

Now we want to see what conditions on a and b give us α ∈ OK . From the above,
this happens precisely when 2a, a2− db2 ∈ Z. Well if a2− db2 ∈ Z, then certainly
4(a2− db2) ∈ Z, and expanding and absorbing into the squares we see this means
(2a)2 − d(2b)2 ∈ Z. But we already know 2a ∈ Z, so this implies d(2b)2 ∈ Z. We
know that b ∈ Q, so 2b ∈ Q and we can write 2b = r/s, for r, s ∈ Z, s 6= 0. Then
the condition

d(2b)2 ∈ Z =⇒ dr2

s2
∈ Z,

and this implies s2|dr2. But d was assumed to be squarefree, so one quickly sees
that this yields s|r, and since 2b = r/s, this means 2b ∈ Z. Since 2a, 2b ∈ Z,
write 2a = A and 2b = B for A,B ∈ Z. Similarly to what we did earlier, we see
that

a2 − db2 ∈ Z =⇒ 4(a2 − db2) ∈ 4Z =⇒ (2a)2 − d(2b)2 ∈ 4Z,
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but we can now substitute in A and B to find A2 − dB2 ∈ 4Z, or 4|A2 − dB2.
Hence A2 − dB2 ≡ 0 mod 4, or

A2 ≡ dB2 mod 4.

But squares can only be 0 or 1 modulo 4, and so we have two cases:

(a) d ≡ 2, 3 mod 4: In this case, we must have A,B ≡ 0 mod 4 as A2, B2 can
only be 0 or 1 modulo 4. Hence A and B are even, and since A = 2a and
B = 2b this means a, b ∈ Z.

(b) d ≡ 1 mod 4: This means A2 ≡ B2 mod 4, and so both are either 0 or both
are 1 modulo four. In either case, they must have the same parity, namely
A ≡ B mod 2. If both are even, then a, b ∈ Z as in case (a). If both are
odd, then a and b are half-integers.

Note that we do not need to check the case when d ≡ 0 mod 4 because this would
mean 4|d, contradicting the fact that d is squarefree. We use the notation 〈−〉Z
to denote the Z-span of the elements in the brackets. So for example

〈
1,
√

2
〉
Z =

a+ b
√

2 where a, b ∈ Z. The above work shows

OK =
〈

1,
√
d
〉
Z

if d ≡ 2, 3 mod 4,

and

OK =

〈
1,

1 +
√
d

2

〉
Z

if d ≡ 1 mod 4.

While computing this answer took a page of tricks and algebra, it is good to
see a concrete example to illustrate the more abstract definitions. Quadratic ex-
tensions are the easiest non-trivial examples to demonstrate many of the concepts
we will be discussing throughout this thesis.

The next example we want to look at is the ring of integers of a cyclotomic
field K = Q(ζn), where ζn is some primitive n-th root of unity. We will be dealing
with cyclotomic extensions almost exclusively in Chapter 3, so this theorem will
be of great importance. We will not prove it, but a proof can be found in [9].

Theorem 2.3.6. If ζn is a primitive n-th root of unity, then the ring of integers
of K = Q(ζn) is OK = Z[ζn].

One remark before we move forward to the next section. While it is clear that
not every element in K is in OK , there is a nice result which we can prove. If
α ∈ K, then it satisfies some monic polynomial over Q, say

αd + ad−1α
d−1 + . . .+ a1α + a0 = 0, ai ∈ Q.
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For n ∈ Z, mutliply both sides by nd and notice that this yields

(nα)d + nad−1(nα)d−1 + n2ad−2(nα)d−2 + . . .+ nd−1a1(nα) + a0 = 0.

If n is chosen so that it clears the denominators of the ai, then nα ∈ OK . We
have just proved the following.

Proposition 2.3.7. Suppose α ∈ K, where K is a number field. Then there
exists n ∈ Z such that nα ∈ OK.

2.3.2 Proof OK is a ring

We have yet to show that OK is actually a ring. That is the purpose of this
section, and the proof is from [6]. First, consider the following lemma.

Lemma 2.3.8. If K is a number field, then α ∈ K is an algebraic integer if
and only if there exists a nonzero finitely generated Z-module M ⊆ K such that
αM ⊆M .

Proof. Suppose α ∈ OK . Then α satisifes some polynomial over Z, say

a0 + a1α + . . .+ αn = 0, ai ∈ Z.

If we let M = Z[α], then M is generated by 1, α, α2, . . . , αn−1, and αM ⊆ M
since

αn = −a0 − a1α− . . .− an−1α
n−1.

Conversely, suppose M ⊆ K is a nonzero finitely generated Z-module such that
αM ⊆M . Let w1, . . . , ws be a generating set for M over Z. For each wi, write

αwi =
s∑
j=1

cijwj, cij ∈ Z

which is possible since αwi ∈M . Let C be the matrix C = (cij). Notice that

αI(w1, . . . , ws)
t = C(w1, . . . , ws)

t,

meaning
(αI − C)(w1, . . . , ws)

t = 0.

Therefore det(αI − C) = 0, and so α is a solution to the polynomial f(x) =
det(xI − C), which is a monic polynomial with coefficients in Z (as entries of C
are integers). Therefore α ∈ OK .

Using this, we can show OK is a ring.

Theorem 2.3.9. Suppose α, β ∈ OK, where K is some number field. Then α+β
and αβ are both in OK, meaning OK is a ring.
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Proof. Let α, β ∈ OK . By the previous lemma, M = Z[α] and N = Z[β] are
nonzero finitely generated Z-modules such that αM ⊆ M and βN ⊆ N (see the
proof of the lemma). Suppose M is generated by {v1, . . . , vm} and N is generated
by {w1, . . . , wn}. Then consider MN , where

MN =

{
k∑
i=1

mini : mi ∈M,ni ∈ N

}
.

It is clear that MN is generated by {viwj} where 1 ≤ i ≤ m and 1 ≤ j ≤ n.
Moreover

(α + β)MN ⊆ (αM)N +M(β)N ⊆MN

and
αβMN ⊆ (αM)(βN) ⊆MN.

Therefore α + β and αβ are in OK by the previous lemma.

As a simple consequence, we have the following proposition.

Proposition 2.3.10. If K is a number field and α ∈ OK, then TrK/Q(α),NormK/Q(α) ∈
Z.

Proof. Suppose α ∈ OK , and let α = α1, α2, . . . , αn denote the conjugates of α in
a splitting field L (of the minimal polynomial of α over Q). Then α1, . . . , αn ∈ OL
as each of the αi satisfies the same minimal polynomial as α. Since the trace and
norm are the sum and product of these conjugates, respectively,

TrK/Q(α),NormK/Q(α) ∈ OL ∩Q = Z.

There is also the following proposition.

Proposition 2.3.11. Suppose α ∈ OK for some number field K. Then α is a
unit (i.e. α−1 ∈ OK) if and only if NormK/Q = ±1.

Proof. First suppose α is a unit. Then α−1 ∈ OK , so αα−1 = 1. Then as the
norm is multiplicative,

NormK/Q(α)NormK/Q(α−1) = NormK/Q(1) = 1.

By the previous proposition, NormK/Q(α) ∈ Z, and so NormK/Q(α)|1 in Z, which
implies

NormK/Q(α) = ±1.

Conversely, suppose NormK/Q(α) = 1. Let m(x) ∈ Z[x] denote the minimal
polynomial of α over Z (as α ∈ OK this makes sense) and let L be a splitting
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field of m(x) which contains K. Let α = α1, α2, . . . , αn denote the n conjugates
of α in L (where n = degm(x)). The norm is the product of these conjugates, so

α(α2 · · ·αn) = NormK/Q(α) = 1,

meaning
α−1 = ±α2 · · ·αn.

However, α−1 ∈ K (as K is a field), and α2 · · ·αn ∈ OL as OL is a ring. Therefore
α−1 ∈ OL ∩K = OK , meaning α is a unit.

Note that the hypothesis that α ∈ OK is important. There could be elements
of norm 1 in K, and although they are trivially units in K (as all nonzero elements
of K are invertible), they need not be in OK . For example, take K = Q(i), so
OK = Z[i]. In Example 2.1.7, we proved

NormK/Q(a+ bi) = a2 + b2.

We then see that the element 3
5

+ 4
5
i ∈ K has norm 1 but is not in OK , and thus

is not a unit in OK .

2.3.3 Extension of Dedekind Rings

We now prove that the ring of integers of a number field is a Dedekind ring. Once
we show this, then by Theorem 2.2.30, we will also have unique factorization of
ideals for OK , which is a tool we use continuously through this chapter and the
next.

A Bilinear Form

We will not prove everything, unfortunately. There are a few theorems which will
only be stated because they are necessary for the proof of the main theorem. For
this section, the proofs can be found in [9].

Let L be a finite dimensional extension of K. Proposition 2.1.6 proves that the
trace map of L/K is a K-linear mapping. So define a K-bilinear form L×L→ K
as

(x, y) = TrL/K(xy).

It is left to the reader to verify (quite easily) that this is a symmetric bilinear
form. Recall the following definition from linear algebra:

Definition 2.3.12. Let V be a finite dimensional vector space over a field K,
and let B : V × V → K be a (symmetric) K-bilinear form. Then B is said to be
nondegenerate if for all v ∈ V there exists w ∈ V with B(v, w) 6= 0.

The trace bilinear form provides useful information about the extension L/K.
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Theorem 2.3.13. If L/K is a finite field extension, then L is separable over K if
and only if the bilinear form (x, y) = TrL/K(xy) from L×L→ K is nondegenerate.

There is a simple consequence of this which will be needed. Recall from linear
algebra that with a symmetric, nondegenerate bilinear form and a basis of a vector
space, we can find a dual basis. Formally:

Theorem 2.3.14. Let L be a finite dimensional separable extension of K, and
let u1, . . . , un be a basis of L over K. Then there exists a basis v1, . . . , vn of L
over K (called the dual basis with respect to the bilinear form TrL/K) such that
TrL/K(uivj) = δij, where δij is the Kronecker delta symbol.

Anyone who has taken a linear algebra course will probably have seen this
already.

The proof that OK is a Dedekind ring

The last theorem we will need is a characterization of Dedekind rings. Again, we
will not prove this, but the proof can be found in [9], Section 1.3.

Theorem 2.3.15. Let R be an integral domain which is not a field. Then R is
a Dedekind ring if and only if R is a Noetherian, integrally closed domain such
that each nonzero prime ideal of R is maximal.

It is this alternative definition which we use to prove the main theorem. Before
stating the theorem, let us prove a couple of necessary lemmas.

Lemma 2.3.16. Suppose R ⊂ R′ are integral domains with R integrally closed
and R′ integral over R. If P is a nonzero prime ideal of R′, then P ∩ R is a
nonzero prime ideal of R.

Proof. Take 0 6= x ∈ P. As R′ is integral over R, x satisfies some monic polyno-
mial in R[x]. So let

f(t) = a0 + a1t+ . . .+ art
r + tr+1 ∈ R[x]

be the polynomial of lowest degree satisfied by x. This ensures that a0 6= 0. Then

a0 = −a1x− . . .− xr+1 ∈ P ∩R.

Thus P ∩ R 6= {0}. To show it is a prime ideal, suppose xy ∈ P ∩ R, for some
two elements x, y ∈ R. Then xy ∈ P, which means either x ∈ P or y ∈ P (as P
is a prime ideal). But as x, y ∈ R, this means either x ∈ P ∩ R or y ∈ P ∩ R,
meaning P ∩R is a prime ideal, as required.

Lemma 2.3.17. If K is a field and R′ is an integral domain containing K and
integral over K, then R′ is a field.
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Proof. If R′ is not a field, then it must have some proper nonzero maximal ideal,
say P 6= R′. By the previous lemma, P∩K is a nonzero prime ideal of K. As K
is a field and all nonzero ideals contain 1 ∈ K, 1 ∈ P ∩K. But then 1 ∈ P, and
so P = R′, a contradiction. Therefore R′ is a field.

Now to the main theorem.

Theorem 2.3.18. Let R be a Dedekind ring with quotient field K and let L be a
finite dimensional separable extension of K. Then the integral closure of R in L
is a Dedekind ring.

Proof. Let R′ be the integral closure of R in L, so that we have the following.

L R′? _oo

K R?
_oo

We will show that R′ satisfies the criteria given to us by the previous theorem.
First, notice that R′ is integrally closed. If there is an element a of L which is
integral over R′, then it would be integral over R (verify if necessary). But as
R′ is the integral closure of R in L, we must have a ∈ R′. So R′ is integrally closed.

Next, we will show R′ is Noetherian. Select a basis a1, . . . , an of L over K.
In much the same way as in Proposition 2.3.7, we can multiply each ai by an
element of R so that the new element lives in R′. Since we can do this with each
individual element, we can find one r ∈ R such that ra1, . . . , ran is a basis of L
over K (it is still linearly independent) and the basis elements lie in R′. So we
can assume without loss of generality that the ai ∈ R′ to begin with. Now let
b1, . . . , bn be a dual basis of L over K, which exists by Theorem 2.3.14. So

TrL/K(aibj) = δij.

The goal is to show

R′ ⊆
∑

Rbj.

Pick y ∈ R′ and write

y =
∑

cjbj, cj ∈ K,

which is possible since the {bj} form a basis for L over K. But notice that we
have

TrL/K(yaj) = (y, aj) =
∑

ck(bk, aj) = cj.

But as y, aj ∈ R′, so is yaj (the proof of this is very similar to the proof that OK
is a ring). But since yaj ∈ R′, by an argument completely analagous to the one in
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Proposition 2.3.10, TrL/K(yaj) ∈ R′ ∩K. As R is integrally closed, R′ ∩K = R,
as elements of K which are integral over R must be in R. Therefore

cj = TrL/K(yaj) ∈ R′ ∩K = R,

and thus
y ∈

∑
Rbj.

Hence
R′ ⊆

∑
Rbj ⊆ L.

Thus R′ is a submodule of a finitely generated R-module. By Proposition 2.2.16,
the finitely generated R-module ∑

Rbj

is Noetherian, and so R′ is finitely generated as an R-module. But this clearly
implies R′ is finitely generated as an R′-module, meaning R′ is Noetherian, as
required.

Finally, we need nonzero prime ideals of R′ to be maximal, so let P be a nonzero
prime ideal of R′. By Lemma 2.3.16, p = R ∩ P is a nonzero prime ideal of R.
Since R is a Dedekind ring, R/p is a field (as p is a maximal ideal of R), and
R′/P is an integral domain (as P is a prime ideal of R′) containing a copy of R/p.
Take x̄ = x+ P ∈ R′/P with x ∈ R′. Then there exists a monic polynomial

f(t) = c0 + c1t+ . . .+ tm ∈ R[x]

with f(x) = 0 because x is integral over R. But reducing the coefficients mod
p gives a polynomial in (R/p)[x] with x̄ as a root. Therefore R′/P is integral
over R/p. But then by Lemma 2.3.15, R/P is a field, meaning P is maximal, as
required.

Corollary 2.3.19. If K is a number field, OK is a Dedekind ring.

Proof. We have seen that Z is a Dedekind ring. Since OK is the integral closure
of Z in a separable extension of Q, Theorem 2.3.18 implies OK is a Dedekind
ring.

By using the proof of Theorem 2.3.18, we can actually conclude that OK is
a free module of rank n = [K : Q] over Z. First, recall the definition of a free
module (from [5]).

Definition 2.3.20. An R-module M is called free on the subset A ⊂ M if for
every m ∈ M there exist unique nonzero elements r1, . . . , rn ∈ R and unique
a1, . . . , an of A such that

m = r1a1 + r2a2 + . . .+ rnan.

If R is assumed to be commutative, then A is a set of free generators for M (or
a basis), and |A| is called the rank of M .
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It can be shown that every free R-module of finite rank has the form Rm for
some m ∈ N. As a non-example, consider R = Z and M = Z/2Z⊕ Z/2Z. Then
the set {(1, 0), (0, 1)} is a generating set for M . However, it is not free. For
example, the element (1, 0) can be written as (1, 0), or 3 · (1, 0), or 5 · (1, 0), and
so on. So the representation of elements as R-linear combinations of elements of
M is not unique. Therefore M is not free (though it is finitely generated). This
example provides a nice segue to the following theorem.

Theorem 2.3.21. Let R be a PID and let M be a finitely generated R-module.
Then M has the following form:

M ∼= Rr ⊕R/(a1)⊕R/(a2)⊕ · · · ⊕R/(am),

where r ≥ 0 and a1, a2, . . . , am ∈ R\R× with a1|a2| . . . |am.

For obvious reasons, this is called the structure theorem for finitely generated
modules over a PID. Thus if R is a PID, every finitely generated R-module has
a free part, as seen by the Rr, and a torsion part, namely the m quotient sum-
mands. In particular, this theorem shows that for R a PID, a submodule of a free
R-module of finite rank is also free, and of no bigger rank.

Using these ideas, it becomes fairly straightforward to prove that OK is a free
Z-module.

Theorem 2.3.22. If L is a number field, then OL is a free module of rank n =
[L : Q].

Proof. Recall that in Theorem 2.3.18, we had the following setup:

L R′? _oo

K R?
_oo

Notice that in the proof of that theorem, there came a point where we had

R′ ⊆
∑

Rbj,

where bj was a basis of L/K. This means that R′ is contained in a free R-module
of rank n(= [L : K]). Similarly, using the original basis we had for L/K, namely
{a1, . . . , an} ⊂ R′, it is clear that∑

Raj ⊆ R′.

Thus R′ contains a free R-module of rank n (free as the set {ai} was a basis). Now
take R = Z, so that K = Q, R′ = OL, and L is our number field. Then as Z is a
PID, the structure theorem says that OL must be a free module of rank ≤ n by
the first containment, and must also have rank ≥ n by the second containment.
Therefore OL is a free Z-module of rank n.
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This also shows that for number fields K, OK will have an integral basis. That
is, it will have a generating set of n elements which are Z-linearly independent.

To summarize, we have shown that OK is a Dedekind ring, meaning there is
unique factorization of ideals into prime ideals. We have also shown that OK is
a free Z-module of rank [K : Q].

2.3.4 Discriminant

For this section we will have the following setup. Let R be a Dedekind ring, K its
quotient field. Also let L/K be a finite, separable extension, and R′ the integral
closure of R in L. So the diagram is as follows:

L R′? _oo

K R?
_oo

In this section, we introduce the discriminant, which will be an extremely
important tool for studying the factorization of ideals in extensions. The notes
for this section come from a combination of [9] and [12].

Definition 2.3.23. Suppose {x1, x2, . . . , xn} is a basis for L/K (so n = [L : K]).
Then the discriminant of this basis is defined as

∆(x1, x2, . . . , xn) = det(TrL/K(xixj)).

Of course, this definition applies to number fields. If K = Q and L is a a
number field of degree n over Q, then we can calculate the discriminant of a
number field. In fact, there is a nice way of calculating discriminants which uses
the n embeddings σ1, . . . , σn : K ↪→ C. The proof of this fact is outlined in [6].

Proposition 2.3.24. Suppose L/Q is a number field of degree n and the σi are
the n embeddings as described above. If {x1, . . . , xn} is a basis for L/Q, then

∆(x1, . . . , xn) = [det(σi(xj))]
2.

Proof. Suppose M = (σi(xj)). Simply observe that

det(TrL/K(xixj)) = det

(
n∑
k=1

σk(xixj)

)
(Theorem 2.1.10)

= det

(
n∑
k=1

σk(xi)σk(xj)

)
(σi are homomorphisms)

= det(M tM)

= det(M)2,

which is what we wanted.
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Example 2.3.25. Let K = Q(α), where α is a root of the irreducible polynomial
f(x) = x2 +ax+b ∈ Z[x] (so it has no roots in Z). Let us try to calculate ∆(1, α),
as {1, α} is clearly a basis for K/Q. With any luck, the answer we get will agree
with what we already know as the discriminant of a quadratic polynomial. Let
us use both formulations. If we denote the other root of f(x) as ᾱ, then the two
embeddings are given by the maps

σ1 : K → C, α 7→ α,

σ2 : K → C, α 7→ ᾱ.

(a) Using the trace definition: with Theorem 2.1.10, we can easily calculate

TrK/Q(1) = 2, TrK/Q(α) = −a.

The last element we need the trace of is α2 = −aα− b. Using the linearity
of the trace we find

TrK/Q(α2) = TrK/Q(−aα− b) = −aTrK/Q(α)− TrK/Q(b) = −a2 − 2b.

Therefore

∆(1, α) = det

(
2 −a
−a a2 − 2b

)
= a2 − 4b,

which is the discriminant of the quadratic as we know it.

(b) With the other formula, we find

∆(1, α) =

[
det

(
1 α
1 ᾱ

)]2

= (α− ᾱ)2 = (α + ᾱ)2 − 4αᾱ = a2 − 4b,

which agrees with the answer in (a).

There is a special case we can consider.

Proposition 2.3.26. Suppose L/Q is a number field of degree n, and suppose
L = Q(α) for some α ∈ L. Let f(x) ∈ Q[x] be the minimal polynomial of α over
Q. Then

∆(1, α, α2, . . . , αn−1) = (−1)n(n−1)/2NormL/Q(f ′(α)).

Remark 2.3.27. Since L/Q is a finite extension of characteristic zero fields, it
is separable. Hence f ′(α) 6= 0, since if it were then f(x) ∈ Q[x] would not be
separable.

Proof. This proof makes use of the Vandermonde determinant, which is a formula
from linear algebra. Let σi, 1 ≤ i ≤ n, be the n embeddings of L into C, and
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let α = α1, . . . , αn denote the n conjugates of α (that is, αi = σi(α)). From the
previous proposition,

∆(1, α, . . . , αn−1) = det(σi(α
j))2 = det(αji )

2.

The Vandermonde determinant formula says that this is precisely

det(αji )
2 =

(∏
i<j

(αi − αj)

)2

.

Notice
(αi − αj)2 = −(αj − αi)(αi − αj).

Applying this to each term in the product, we get(∏
i<j

(αi − αj)

)2

= (−1)n(n−1)/2
∏
i

(∏
j 6=i

(αi − αj)

)
.

Now, we know that f(x) factors as

f(x) = (x− α)(x− α2) · · · (x− αn)

in the Galois closure of L. We will leave it to the reader to check that this implies

f ′(αj) =
∏
i 6=j

(αj − αi).

Therefore

(−1)n(n−1)/2
∏
i

(∏
j 6=i

(αi − αj)

)
= (−1)n(n−1)/2

∏
j

f ′(αj) = (−1)n(n−1)/2
∏
j

f ′(σj(α)).

The coefficients of f ′(x) are in Q, and the σi necessarily fix Q (any homomorphism
will fix Q), the reader can verify that

(−1)n(n−1)/2
∏
j

f ′(σj(α)) = (−1)n(n−1)/2
∏
j

σj(f
′(α)) = (−1)n(n−1)/2NormL/Q(f ′(α)).

This is just a helpful formula for when we want to calculate discriminants of
sets of this form (which we will do later).

Now let us return to the situation we had to begin with. While we have
technically defined the discriminant, we are most interested in the discriminants
of bases of L/K that lie in OK . If {x1, . . . , xn} is a basis for L/K such that xi ∈ R′
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for all j, then xixj ∈ R′ for all i, j, and consequently TrL/K(xixj) ∈ K ∩R′ = R.
Taking the determinant, we find

∆(x1, . . . , xn) = det(TrL/K(xixj)) ∈ R.

Since this is true for any basis of L/K lying in R′, we can consider the ideal
generated by the discriminants of all such bases. This ideal is what we refer to
as the discriminant, sometimes referred to as the relative discriminant of L/K.

Definition 2.3.28. The discriminant ideal ∆ = ∆(R′/R) is defined as the ideal
generated by ∆(x1, . . . , xn), where the {x1, . . . , xn} range over all bases of L/K
such that xi ∈ R′ for all i.

It may seem like calculating this ideal is a complicated procedure because we
have to somehow consider all such bases. However, in number fields it is not so
intimidating because of the following lemma.

Lemma 2.3.29. If R′ is a free R module with generators x1, . . . , xn, then ∆(R′/R) =
R∆(x1, . . . , xn).

Proof. Suppose {y1, . . . , yn} is a basis for L/K with yi ∈ R′ for all i. Since the xi
are generators for R′ over R, we have

yi =
n∑
j=1

cijxj, cij ∈ R.

We need to relate the matrix [TrL/K(yiyj)] to the matrix [TrL/K(xixj)], and letting
C = [cij], a simple calculation shows

[TrL/K(yiyj)] = C[TrL/K(xixj)]C
t.

Taking determinants, we find

∆(y1, . . . , yn) = det(C)2∆(x1, . . . , xn).

Since det(C) ∈ R, ∆(y1, . . . , yn) is in the principal ideal generated by ∆(x1, . . . , xn),
which proves the inclusion

∆(R′/R) ⊆ R∆(x1, . . . , xn).

The other conclusion is obvious from the definition.

This applies to number fields because we have seen that for number fields K,
OK is a free Z-module of rank [K : Q].

Taking a look at Lemma 2.3.29, we see that the xi were any set of Z-generators.
In fact, if we took the {yi} to be the set of generators, then the ideal generated by
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∆(y1, . . . , yn) would have been the same as the one generated by ∆(x1, . . . , xn).
This is because the change of basis matrix C above would have to be invertible
since both sets are bases. Therefore det(C) is a unit in R, and hence so is det(C)2.
So ∆(y1, . . . , yn) and ∆(x1, . . . , xn) differ by the square of a unit, and therefore
generate the same principal ideal. In particular, if R = Z and R′ = OK for some
number field K, then this shows ∆(OK/Z) is a well-defined integer, as the only
element in Z×2 is 1. Hence the discriminants of any two integral bases must be
equal. We refer to the absolute discriminant of a number field as being this well-
defined integer.

An an exercise, the reader can prove that if K = Q(
√
d), where d is square-

free, then

∆(OK/Z) =

{
4d if d ≡ 2, 3 mod 4
d if d ≡ 1 mod 4

.

(Hint: Use the integral basis we calculated.)

One last fact which we will not prove is the following.

Proposition 2.3.30. Suppose K is a number field over Q of degree n with ring
of integers OK. Take n elements w1, . . . , wn in OK. Then the Z-submodule of OK
they form (call it N) is of finite index in OK if and only if ∆(w1, . . . , wn) 6= 0.
Moreover, if this is the case, then

∆(w1, . . . , wn) = (OK : N)2∆(OK/Z).

In particular, if the discriminant of the n elements w1, . . . , wn is squarefree as
an element of Z, then they form an integral basis for OK .

2.3.5 Factoring Prime Ideals in Extensions

Before moving on, let us make a quick note. We have been providing theorems
and proofs in a very general setting, only showing how it applies to number fields
after the proofs. However, at this point, we will start using extensions of number
fields and their ring of integers instead of arbitrary extensions of Dedekind rings.
This will help narrow our attention to the true subject of this thesis.

Ramification Index

This section will follow a bit of both [9] and [12]. Suppose now that we have the
following.
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L OL? _oo

K OK? _oo

Q Z? _oo

Here OL and OK are the ring of integers of the number fields L and K, where
L/K is a finite extension. Of course, OL is still the integral closure of OK in L.
Since OL is a Dedekind ring, we know by Theorem 2.2.30 that there is unique
factorization of ideals. One question we can ask is: if we take a prime ideal p of
OK , how does it factor as an ideal in OL? We should be a little careful because the
ideal we want to consider is pOL, as this makes it into an ideal in OL. However,
by Theorem 2.2.30, we can say

pOL = Pe1
1 Pe2

2 · · ·Peg
g ,

where the Pi are distinct prime ideals of OL, and the ei ∈ Z with ei ≥ 1.

Definition 2.3.31. Let p be a prime ideal of OK with pOL having the factoriza-
tion as above. Then:

(a) If one of the ei > 1, then p is ramified in OL. Otherwise p is unramified in
OL. Sometimes we say p is ramified (or unramified) in L instead of OL.

(b) The number ei is called the ramification index of Pi, and is denoted e(Pi/p).

(c) We say P divides p if it occurs in the factorization of pOL.

(d) If the prime ideal P of OL occurs in the factorization of pOL, then P is a
prime lying above p.

The following theorem is a very powerful result, though we will not prove it
immediately. We sketch a proof in Chapter 5 once we introduce the Minkowski
bound.

Theorem 2.3.32. If K/Q is a number field, then there exists a prime p ∈ Z such
that pOK is ramified. In particular, there is no unramified extension of Q.

This theorem is significant because unramified extensions of other fields do
exist, but this theorem says that every extension over Q contains some ramifica-
tion. This idea will be utilized in several proofs.

The following lemma (from [12]) describes the prime ideals of OL lying above
p.
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Lemma 2.3.33. A prime ideal P divides p (i.e. is a prime lying above p) if and
only if p = P ∩K.

Proof. In the forward direction, suppose P is a prime lying above p. Then we
know from Theorem 2.2.30 that P contains pOL, and hence contains p. But of
course p ⊂ K as well. Therefore p ⊂ P ∩ K. But as P ∩ K 6= OK and p is a
maximal ideal in OK (recall in a Dedekind ring, prime ideals are maximal), we
must have p = P ∩K.

Conversely, suppose p = P ∩ K. Then p ⊂ P, and so pOL ⊂ P as P is an
ideal of OL. Again using Theorem 2.2.30, this means P occurs in the factoriza-
tion of pOL, proving the lemma.

Remark 2.3.34. We should note that in the lemma above and the subsequent
proof, we could replace K with OK and everything will still be valid. So alterna-
tively we will use the characterization that a prime ideal P divides p if and only
if p = P ∩ OK .

This is more or less the formalization of the “to contain is to divide” principle
mentioned at the end of section 2.2.4. Nonetheless, we will be utilizing it in proofs
later in this section, so it is important to know.

Example 2.3.35. Take K = Q, L = Q(i), so OL = Z[i]. The ideal (2) ⊂ Z is
prime, so we can consider how (2) factors in OL. We claim

(2) = (1 + i)2.

Notice (1 + i)2 = 2i. It is left to the reader to verify that the product of two
principal ideals is the principal ideal generated by the product of the generators.
Therefore

(1 + i)2 = (2i)

as ideals. But as −i is a unit in Z[i]

(2i) = (−i · 2i) = (2),

which proves the claim. We also claim 1 + i ∈ Z[i] is an irreducible element, and
since Z[i] is a PID, this means 1 + i is a prime element, so the ideal it generates
is a prime ideal. To see it is irreducible, suppose 1 + i = rs, where r, s ∈ Z[i].
Taking norms, we find

2 = NormL/Q(1 + i) = NormL/Q(r)NormL/Q(s).

Since r, s ∈ Z[i], their norms are in Z, so one of NormL/Q(r) or NormL/Q(s) is
±1, meaning one of the elements r or s is a unit. Therefore 1 + i is irreducible,
and by the above reasoning (1 + i) is a prime ideal. Therefore the ideal (2) ⊂ Z
ramifies in OL.

Later we prove a theorem which helps determine the factorization of prime
ideals in extensions, thereby reducing the amount of work needed.
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Residue Field

The next number to define is the residue field degree. However, we will explain
why the definition makes sense before defining it. Assume we have the same setup
as before, with p a prime ideal of OK and P a prime ideal of OL lying over p. We
have the natural inclusion

OK ↪→ OL.
Compose this inclusion map with the natural projection

OL −→→ OL/P

to get a map
φ : OK → OL/P.

The kernel of this map is easily seen to be P ∩ OK , which by Remark 2.3.34 is
just p. Therefore the first isomorphism theorem yields an injective map, which
we still call φ,

φ : OK/p→ OL/P.
Since p and P are both maximal ideals in their respective rings, both OK/p and
OL/P are fields, so we can view OL/P as a finite extension of OK/p. Therefore
the following definition makes sense.

Definition 2.3.36. With the above setup, the residue field degree, denoted
f(P/p) is defined as

f(P/p) = [OL/P : OK/p] .

Indeed, if p ∩ Z = pZ, then these are fields of characteristic p, as they are
extensions of Z/pZ by the same reasoning as above. It is clear that f(P/p) is a
finite number, but we have not shown OK/p is a finite field, so let us quickly do
that now. This proof comes from [6].

Lemma 2.3.37. Suppose A ⊂ OK is any ideal. Then OK/A is a finite ring.

Proof. Choose any a ∈ A ∩ Z. Then clearly

(a) ⊆ A ⊆ OK .

One easily checks that the map

OK/(a)→ OK/A, α + (a) 7→ α + A

is a well-defined, surjective homomorphism. Therefore, it suffices to show that
OK/(a) is finite. Since OK is a free Z-module of rank n = [K : Q], let {v1, . . . , vn}
be a Z-basis of OK . Then OK/(a) is isomorphic as an additive group to⊕

(Z/(a))vi ∼= (Z/(a))n .

Since Z/(a) is finite, so is (Z/(a))n (with cardinality an <∞), and thus OK/(a)
is finite.

Therefore OK/p really is a finite field of characteristic p, as is OL/P.
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Norms of Ideals

While we are on the subject, let us, very briefly, define the norm of an ideal. As
it is not a major topic for this thesis, there is no point in lingering on the sub-
ject for too long. However, some examples become easier when utilizing the norm.

In general, if L/K is a finite extension of number fields, then the norm of an
ideal of OL is an ideal in OK .

Definition 2.3.38. If P is a prime ideal of OK , then let p = P ∩ OL. Then P
is a prime lying above p, and the (relative) norm of P is defined as

NL/K(P) = pf(P/p).

We then extend the norm to all ideals of OL multiplicatively. This is possible
by unique factorization into prime ideals. If we take the case K = Q, OK = Z,
then as the norm is an ideal in Z, it is principal, generated by some n ∈ Z. If we
restrict to n ≥ 0, then this norm is unique and so we can make another definition.

Definition 2.3.39. In the case of K = Q, for an ideal A of OL, its norm (also
called the absolute norm) is the unique positive integer N(A) such that

NL/Q(A) = (N(A)).

Recall in the last lemma, we proved that ideals in number fields have finite
quotients. It turns out the norm is related to this cardinality.

Proposition 2.3.40. If A is a nonzero ideal in OL, where L is a number field
over Q, then

N(A) = |OL/A| .
Furthermore, if the ideal is principal, then we can relate the norm to the norm

of elements.

Proposition 2.3.41. If A = (α), for some α ∈ OL, then N(A) = |NormL/Q(α)|.
Let us take a look at a quick example.

Example 2.3.42. Consider K = Q(i), so OK = Z[i]. Consider the ideal A =
(1+i) ∈ Z[i]. This is a principal ideal, so N(A) = |NormK/Q(1+i)|. We calculated
the norm of an element a + bi ∈ Q(i) in Section 2.1, and found it to be a2 + b2.
Therefore

N(A) = |NormK/Q(1 + i)| = 1 + 1 = 2.

Alternatively, recall Example 2.3.35. There, we found the factorization of the
prime ideal (2) ⊆ Z as

(2) = (1 + i)2 = A2.

The norm of the ideal (2) in Z[i] is the norm of the element 2 in Q(i), which is 4
by the above formula. The norm is multiplcative, so

4 = N(A)2.

Since N(A) ≥ 0, this implies N(A) = 2, which is the same answer as above.

45



Towers of Extensions

One extremely useful fact is that both the ramification index and the residue
field degree multiply in towers. Namely, suppose we have the following tower of
extensions.

M OM? _oo P

L OL? _oo P ∩ OL

K OK? _oo p

Q Z? _oo

Let p be a prime ideal of OK , and let P be a prime ideal of OM lying above p.
Then by Remark 2.3.34, P ∩ OL is a prime ideal of OL lying above p. We will
prove the following proposition.

Proposition 2.3.43. With the above setup,

(a) e(P/p) = e(P/P ∩ OL)e(P ∩ OL/p), and

(b) f(P/p) = f(P/P ∩ OL)f(P ∩ OL/p).

Proof. Statement (b) follows because it is a statement about vector space dimen-
sions, which we know are mutliplicative in towers. To prove (a), let PL = P∩OL.
When we factor p in OL, we know PL occurs in the factorization with exponent
e(PL/p). Moreover, in the factorization of PL in OM , the prime ideal P occurs
with exponent e(P/PL). Consequently, P occurs in the factorization of p with
exponent e(P/PL)e(PL/p). But as the exponent is also e(P/p), we are done.

As a simple example of how this can be useful, consider the following.

Proposition 2.3.44. Suppose L and K are number fields over Q, and suppose
further that every prime which ramifies in K remains unramified in L. Then
K ∩ L = Q.

Proof. Our diagram looks like this:

L

GGGGGGGGG K

wwwwwwwww

L ∩K

Q
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Suppose L ∩K 6= Q. Then by Theorem 2.3.32, there must exist a prime p ∈ Z
which is ramified in L ∩K. But by Proposition 2.3.43, p must then be ramified
in both L and K. By assumption, every prime which ramified in K is unramified
in L, a contradiction. Therefore L ∩K = Q.

Action of Galois group

Before we state and prove the main theorem of the section, let us discuss a special
case of the setup we have been considering in previous subsections. If we assume
that L/K is a finite Galois extension of number fields, we can look at the action
of Gal(L/K) on prime ideals. It should be clear that if σ ∈ Gal(L/K), then
σ(OL) = OL. Indeed, σ(OL) ⊆ OL because σ must send elements of OL to solu-
tions of their respective minimal polynomials, which means integral elements are
sent to integral elements. Applying the same logic to σ−1 shows σ−1(OL) ⊆ OL,
so applying σ to both sides shows OL ⊆ σ(OL) ⊆ OL, meaning σ(OL) = OL.

We can now take this a step further. Suppose p is a prime of OK and P is a
prime of OL lying above p. We have the following proposition, whose proof comes
from [1].

Proposition 2.3.45. With the above notation, σ(P) is another prime ideal lying
above p.

Proof. First, we need to show that σ(P) is in fact a prime ideal. To see this,
suppose αβ ∈ σ(P), where α, β ∈ OL. Since σ(OL) = OL, there exists α′, β′ ∈ OL
with α = σ(α′) and β = σ(α′). Then

αβ = σ(α′)σ(β′) = σ(α′β′) ∈ σ(P),

which means α′β′ ∈ P. As P is a prime ideal, either α′ ∈ P or β′ ∈ P, meaning
at least one of α, β ∈ σ(P). Therefore σ(P) is a prime ideal.

Next, we need to show σ(P) lies above p. But this will follow almost imme-
diately from Remark 2.3.34. We want to show σ(P) ∩ OK = p. Remember that
σ fixes element of OK and p pointwise as both are contained in K. Therefore

p = σ(p) = σ(P ∩ OK) = σ(P) ∩ OK ,

which means σ(P) is a prime above p, as required.

In fact, what we will show now is that the action of the Galois group on the
primes above p is transitive. This proof comes from [12].

Lemma 2.3.46. Let L/K be a finite Galois extension of number fields. If p is
a prime ideal of OK and P1 and P2 are two primes of OL above p, then there
exists σ ∈ Gal(L/K) with σ(P1) = P2.
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Proof. Suppose there were no such σ. Then for all σ ∈ Gal(L/K), σ(P1) 6= P2.
Lemma 2.2.26 implies we can use the Chinese Remainder Theorem (2.2.22), and
so there exists β ∈ OL such that β ∈ P2 but β /∈ σ(P1) for all σ ∈ Gal(L/K).
Let

b = NormL/K(β) =
∏

σ∈Gal(L/K)

σ(β).

Since each σ(β) ∈ OL, their product is as well. Since b ∈ K, we have b ∈
K ∩OL = OK . Moreover, taking the identity element in Gal(L/K) shows β is in
the product, meaning ∏

σ∈Gal(L/K)

σ(β) ∈ P2

as P2 is an ideal. That is,

∏
σ∈Gal(L/K)

σ(β) = β ·

 ∏
e6=σ∈Gal(L/K)

σ(β)

 ∈ P2.

Therefore b ∈ P2, and hence b ∈ P2 ∩ OK = p. However, for all σ ∈ Gal(L/K),
we know

β /∈ σ−1(P1),

meaning σ(β) /∈ P1. However, the fact that∏
σ∈Gal(L/K)

σ(β) = b ∈ p ⊂ P1

contradicts the primality of P1. Therefore there must exist σ ∈ Gal(L/K) with
σ(P1) = P2.

We will use this lemma in the next subsection.

Relating ramification index and residue field degree

We will now prove the following, which comes from [9] (with slight modifications
from [12]).

Theorem 2.3.47. Suppose L/K is a finite extension of number fields with re-
spective ring of integers OL and OK. Take p, a prime ideal of OK, and consider
the factorization in OL,

pOL = Pe1
1 Pe2

2 · · ·Peg
g ,

where the Pi are distinct prime ideals of OL. Then

g∑
i=1

e(Pi/p)f(Pi/p) = [L : K].
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Proof. Let ei = e(Pi/p) and fi = f(Pi/p). To show equality we will show that
both sides are equal to [OL/pOL : OK/p], starting with the left side. From the
Chinese Remainder Theorem (2.2.22), we have the decomposition

OL/pOL ∼=
⊕
i

OL/Pei
i .

Therefore, it suffices to show thatOL/Pei
i has dimension eifi overOK/p. Consider

Pa
i /P

a+1
i , for 0 ≤ a < ei. In the section on unique factorization of ideals, corollary

2.2.29 says that the ideal Pa
i /P

a+1
i is principal in the ring OL/Pa+1

i , and so it has
a single generator as an OL/Pa+1

i -module. But as there is a natural inclusion

OL/Pi ↪→ OL/Pa+1
i , α + Pi 7→ α + Pa+1

i ,

it also has a single generator as anOL/Pi-module. It is therefore a one-dimensional
vector space over OL/Pi. But as fi = [OL/Pi : OK/p], this means it is also an
fi-dimensional vector space over OK/p. As a vector space, OL/Pei

i is the direct
sum of the spaces Pa

i /P
a+1
i for 0 ≤ a < ei, and since each has dimension fi as

an OK/p-vector space, the dimension of OL/Pei
i over OK/p is precisely eifi, as

required.

Now we need to show this dimension is also [L : K]. For simplicity of notation,
let R′ = OL and R = OK . Consider the localization Rp and the correponding
localization R′p (that is, our multiplicative set in both cases is the complement of
p in R). In Theorem 2.3.18, we showed that R′ is a finitely generated R-module,
so R′p is a finitely generated module over Rp. So let x1, . . . , xn be a minimal gen-
erating set. Since R is a Dedekind ring, Rp is a DVR by definition, and therefore
it has a unique maximal ideal. Say it is Rpπ for some π ∈ R. We show the xi
form a basis for L/K.

To show linear independence, suppose there were a nontrivial dependence relation

n∑
i=1

aixi = 0,

where the ai ∈ K. Since not all the ai are zero (by assumption), multiply by
a suitable constant so that the ai ∈ Rp. Moreover, by dividing by the highest
power of π which divides all the ai, we can find a relation where not all the ai are
0 and at least one ai ∈ Rp\Rpπ. The claim is that a−1

i ∈ Rp. To see this, since
ai /∈ Rpπ, the ideal it generates, namely Rpai, is not in Rpπ. But as every proper
ideal is contained in a maximal ideal and Rpπ is the unique maximal ideal of Rp,
we must have Rpai = Rp. Therefore there exists a−1

i ∈ Rp with a−1
i ai = 1. But

then this means
xi = a−1

i

∑
j 6=i

ajxj.
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Therefore xi is generated by the xj for j 6= i, contradicting the fact that the xi
were a minimal generating set. Therefore no such dependence relation exists.

Now we show they span, so suppose they did not. Then
∑n

i=1Kxi would be
a proper subspace of L. That means we can find some y ∈ L with

Ky ∩
n∑
i=1

Kxi = {0}.

Since y ∈ L, there exists some t ∈ R such that ty ∈ R′. This is exactly the
same logic as in Proposition 2.3.7. That is, take the minimal polynomial of y over
K and mutliply by a suitable constant so as to cancel the denominators. But if
ty ∈ R′, then since R′p is generated by the xi as a module over Rp,

ty ∈ R′p =
n∑
i=1

Rpxi ⊆
n∑
i=1

Kxi,

which is a contradiction by choice of y. Therefore the xi form a basis of [L : K],
meaning n = [L : K].

To finish off the proof, notice we have a vector space isomorphism

R′p/pR
′
p
∼=

n⊕
i=1

(Rp/pRp)x̄i,

where the xi are the reduction of xi modulo pRp. Since p is maximal in R = OK ,
Lemma 2.2.28 applies, and we have an isomorphism

Rp/pRp
∼= R/p.

Therefore

R′p/pR
′
p
∼=

n⊕
i=1

(R/p)x̄i.

Applying this same lemma to each term in the direct sum

R′/pR′ ∼=
⊕

R′/Pei
i

we saw in the beginning of the proof, we find

R′p/pR
′
p
∼=
⊕

R′p/P
ei
i R
′
p
∼=
⊕

R′/Pei
i .

Therefore the dimension of R′p/pR
′
p as a vector space over R/p is also

n∑
i=1

eifi.
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So now back to

R′p/pR
′
p
∼=

n⊕
i=1

(R/p)x̄i.

The left side as a vector space over R/p is
∑
eifi, whereas the right side has

dimension n = [L : K]. Therefore

n∑
i=1

eifi = [L : K].

A simple consequence of this theorem is the following.

Corollary 2.3.48. With the same conditions as in the previous theorem, if L/K
is also Galois, then all the e(Pi/p) = e and f(Pi/p) = f . Moreover

efg = [L : K].

Proof. Let G = Gal(L/K). Lemma 2.3.46 states that G acts transitively on the
primes above p. It is clear that since the factorization into prime ideals is unique
that

e(σ(Pi)/p) = e(Pi/p),

for σ ∈ G. By transitivity of the action, all the ramification indices must be
equal. Moreover, σ fixes OK/p since it fixes elements of K elementwise, and it
takes OL/Pi to OL/σ(Pi) as σ(OL) = OL. Therefore

f(σ(Pi)/p) = [OL/σ(Pi) : OK/p] = [OL/Pi : OK/p] = f(Pi/p).

Again by transitivity of the action of G on the prime ideals above p, all the residue
field degrees must be equal as well. Therefore by looking at the formula in the
previous theorem and substituting e for all the ei and f for all the fi gives

efg = [L : K].

Finding Factorizations

Before looking at some concrete examples, let us prove a theorem which will make
factoring ideals considerably easier. The statement and proof are from [12].

Theorem 2.3.49 (Dedekind-Kummer). Suppose L/K is a finite extension of
number fields and OL = OK [α]. Let f(x) denote the minimal polynomial of α
over K, and let p be a prime ideal of OK. Let f̄(x) denote the polynomial found by
reducing the coefficients of f(x) modulo p, and suppose f̄(x) ≡

∏
ḡi(x)ei mod p,
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where the ḡi(x) are distinct irreducible polynomials in (OK/p)[x]. Choose gi(x) ∈
OK [x] to be any polynomial which reduces to ḡi(x) modulo p. Then

pOL =
r∏
i=1

(p, gi(α))ei

is the factorization of pOL into prime ideals. Moreover,

OL/(p, gi(α))ei ∼= (OK/p)[x]/(ḡi(x)),

and so the residue field degree corresponding to this prime ideal is the degree of
gi(x).

Proof. By assumption, OL = OK [α], and so there is an isomorphism

OK [x]/(f(x))→ OL, x 7→ α.

Reducing both sides modulo p gives an isomorphism

Fp[x]/(f̄(x)) ∼= OL/pOL, x 7→ α,

where Fp = OK/p. Maximal ideals in Fp[x]/(f̄(x)) correspond to those generated
by irreducible polynomials which divide f̄(x), which are precisely the ḡi(x), and

r∏
i=1

(ḡi(x))ei = 0 ∈ Fp[x]/(f̄(x)),

but no smaller powers ei give zero. Under the isomorphism, the ideal

(ḡi(x)) 7→ (gi(α)) + pOL.

Lifting this to an ideal of OL gives Pi = (p, gi(α)) (since it must contain pOL
by the ideal correspondence). Prime ideals are always mapped to prime ideals,
and so the Pi are a complete set of prime ideals of OL which contain pOL, which
means they are the ideals which occur in the factorization of pOL. The ei occuring
in the factorization are uniquely determined since earlier we remarked that they
were chosen so that no smaller power of ei accomplished

r∏
i=1

(ḡi(x))ei = 0 ∈ Fp[x]/(f̄(x)).

Therefore the ramification indices are given by these ei. Furthermore, the state-
ment about the residue field degree follows because under the isomorphism,

OL/(p, gi(α))ei ∼= (OK/p)[x]/(ḡi(x)),

so as an OK/p-vector space, the dimension of OL/(p, gi(α))ei is precisely deg gi(x).

Why this theorem is so useful is that it provides us with a quick way to
determine the factorization into prime ideals.
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Examples

As promised, let us work through a couple of examples.

Example 2.3.50. Consider K = Q(i) and OK = Z[i], just as in our previous
examples. This is a Galois extension of Q (it is the splitting field of x2 +1 ∈ Q[x]),
and the degree of the extension is 2. So all the ramification indices and residue
field degrees will be equal for all primes above any prime ideal of Z. We have
seen that the prime ideal (2) of Z factors as

(2) = (1 + i)2 = P2.

Thus there is only one prime ideal above (2), and its ramification index is e = 2.
By Corollary 2.3.48, efg = 2. Therefore g = 1 (which we could have gotten by
inspection), and f = 1, which means OK/P ∼= Z/2Z. Also, using this to calculate
the norm of A using the definition:

N(A) = (2)f(A/(2)) = (2)2 = (4),

which is the same answer we got when we calculated the norm previously.

Let us try and factor the ideal (3) of Z by using the Dedekind-Kummer theo-
rem. In this case, α = i and its minimal polynomial over Q is x2 + 1. The
theorem instructs us to factor x2 + 1 modulo 3. As −1 is not a quadratic residue
mod 3, x2 +1 has no roots mod 3, which means it is irreducible (as any non-trivial
factor of a quadratic polynomial would be linear). Therefore (3) remains inert,
which simply means it remains prime in OK . Technically, the theorem says

(3) = (3, 1 + i2),

but as 1 + i2 = 0, we get (3) = (3). Here e = 1, meaning 3 is unramified in K,
and g = 1. This also means that f = 2, so

[OK/(3) : Z/3Z] = 2,

and hence the residue field OK/(3) is the field of nine elements.

For the sake of completeness, let us consider the ideal (5) of Z. Factoring x2 + 1
mod 5 gives

x2 + 1 = (x− 2)(x+ 2) mod 5,

so the Dedekind-Kummer theorem says

(5) = (5,−2 + i)(5, 2 + i).

As Z[i] is a PID, it would be nice to find generators for these two ideals. Since
the (absolute) norm of (5) in OK is 25 and norm is multiplicative, the norm
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of both these prime ideals must be 5 (no proper ideal has norm 1). Clearly
−2 + i ∈ (5,−2 + i), so (−2 + i) ⊆ (5,−2 + i). But the norm of (−2 + i) is also 5,
so by norm considerations (−2 + i) = (5,−2 + i). Similarly, (5, 2 + i) = (2 + i).
Therefore

(5) = (2 + i)(2− i) = P1P2.

Here e = 1, so 5 is unramified. Also g = 2, and so f = 1 for both prime ideals
above (5). Consequently,

OK/P1
∼= OK/P2

∼= Z/5Z.

Remark 2.3.51. This example introduces two more terms. We defined inert in the
example itself, and it means that a prime ideal remains prime in the extension
field. In the last example, (5) split into as many prime ideal factors as possible,
and in this case we say (5) splits completely.

Example 2.3.52. Let us consider a non-Galois extension, say K = Q( 3
√

2). It
can be checked that the ring of integers is Z[ 3

√
2]. This is a degree three number

field, but it is not Galois as it is not normal. Consider the prime ideals (2), (3),
and (5) in Z. Again, we will use the Dedekind-Kummer theorem. We need to
factor the minimal polynomial of 3

√
2, which is x3 − 2. Let α = 3

√
2. It is easily

verified that
x3 − 2 = x3 mod 2,

x3 − 2 = (x+ 1)3 mod 3,

and
x3 − 2 = (x+ 2)(x2 + 3x− 1) mod 5.

Therefore
(2) = (2, α)3 = p3,

(3) = (3, α + 1)3 = q3,

and
(5) = (5, 2 +

3
√

2)(5, (
3
√

2)2 + 3
3
√

2− 1) = P1P2.

In the factorization of (2), we see g = 1, e = e(p/(2)) = 3, which means f = 1
(as [K : Q] = 3). Therefore 2 is ramified (actually totally ramified, which means
the ramification index is [K : Q]). Moreover, as f = 1,

OK/p ∼= Z/2Z.

For the ideal (3), again we have g = 1, e = e(q/(3)) = 3, and therefore f = 1.
So 3 is also totally ramified in K, and

OK/q ∼= Z/3Z.

Finally, for 5, let ei and fi denote the ramification indices and residue field
degrees corresponding to Pi. Then we find e1 = e2 = 1, meaning 5 is unramified
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in K. We also find g = 2. However, f1 = 1 and f2 = 2, so f1 6= f2, which shows
that they need not be equal if the extension is not Galois. So

OK/P1
∼= Z/5Z,

but
OK/P2

∼= F25,

the field of 25 elements. But it is still the case that

1 · 1 + 1 · 2 = 3,

meaning
g∑
i=1

eifi = [K : Q].

Observe that in the first example, as−1 ≡ 3 mod 4, the discriminant ∆(OK/Z) =
−4 = −22, and 2 ramified in K. In the second example, the discriminant is calcu-
lated to be −108 = −1 · 22 · 33, and 2 and 3 both ramify. It seems that if a prime
divides the discriminant, then it will ramify. As it turns out, this is a necessary
and sufficient condition, which leads us into the next section.

2.3.6 Ramified Primes

Let us return to our general setting:

L R′? _oo

K R?
_oo

Recall this means R is a Dedekind ring with quotient field K, L is a finite
separable extension of K, and R′ is the integral closure of R in L. At this point,
we want to prove that the prime ideals of R which ramify in R′ are precisely those
which contain the discriminant ideal ∆(R′/R). Of course, for number fields, this
will translate to: the prime ideals of OK which ramify in OL are precisely those
containing ∆(OL/OK). This proof will mostly be following [9]. First, we have
the following lemma.

Lemma 2.3.53. Let S be a multiplicative set in R. Then

∆(R′S/RS) = ∆(R′/R)S.

Proof. We prove both inclusions. For the “⊇” inclusion, suppose x1, . . . , xn is a
basis for L/K contained in R′. Then by the natural inclusion R′ ↪→ R′S, we can
regard the xi ∈ R′S. Therefore

∆(x1, . . . , xn) ∈ ∆(R′S/RS).
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Since this is true for any basis of L/K contained in R′, we get

∆(R′S/RS) ⊇ ∆(R′/R),

from which is follows that

∆(R′S/RS) ⊇ ∆(R′/R)RS,

as ∆(R′S/RS) is an ideal in RS. But as ∆(R′/R) is an ideal in R, ∆(R′/R)R =
∆(R′/R), so

∆(R′/R)RS = ∆(R′/R)S.

Therefore
∆(R′S/RS) ⊇ ∆(R′/R)S.

For the reverse inclusion, suppose y1, . . . , yn is a basis for L/K with each yi ∈ R′S.
Then certainly we can find some s ∈ S with syi ∈ R′ for all 1 ≤ i ≤ n. But then

∆(sy1, . . . , syn) ∈ ∆(R′/R).

Also

∆(sy1, . . . , syn) = det[TrL/K(syisyj)] = det[s2TrL/K(yiyj) = s2n∆(y1, . . . , yn),

which implies

∆(y1, . . . , yn) =
∆(sy1, . . . , syn)

s2n
∈ ∆(R′/R)S.

Since y1, . . . , yn was an arbitrary basis contained in R′S, this yields

∆(R′S/RS) ⊆ ∆(R′/R)S.

Therefore equality holds.

There is also a fact from linear algebra which we will need to call upon, so we
state it without proof.

Proposition 2.3.54. Suppose V is a finite-dimensional vector space over a field
F , and let

B : V × V → F

be a symmetric, non-degenerate bilinear form. If v1, . . . , vn is a basis for V , then
the matrix of B with respect to this basis, i.e.

M = [B(vi, vj)],

is invertible.
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We will be using the nondegeneracy of the trace bilinear form in separable
extensions. We are now in position to prove the theorem.

Theorem 2.3.55. Suppose R and R′ are as above, and let p be a prime ideal of
R. Suppose that for every prime Pi of R′ lying above p, the extension R′/P is
separable over R/p. Then p ramifies in R′ if and only if ∆(R′/R) ⊆ p.

Proof. The proof will come in a series of steps.

(1) Simplifying the situation: Consider the localization at p. It is clear
that ∆(R′/R) ⊆ p if and only if ∆(R′/R)p ⊆ pRp. By Lemma 2.3.53,
∆(R′/R)p = ∆(R′p/Rp), so this happens if and only if ∆(R′p/Rp) ⊆ pRp.
Also p is ramified in R′ if and only if pRp ramifies in R′p. Therefore, it
suffices to prove the theorem after replacing R with Rp and R′ with R′p.
Since R is a Dedekind ring, Rp is a DVR, and hence a PID. So we will
assume that R is a DVR to begin with and keep the current notation.

(2) Proving equivalence with a simpler condition: We know R′ is finitely
generated over R, but now as R is assumed to be a PID and R′ is torsion
free, by the structure theorem (Theorem 2.3.21), R′ is a free R-module.
Therefore there exist free generators x1, . . . , xn of R′ over R, which is also
a basis for L/K. Taking residues modulo pR′ gives a basis x̄1, . . . , x̄n of
R′/pR′ as a vector space over R/p. Recall that in the section on norms and
traces we considered the regular representation of a field extension over its
base field. In the same way, let y ∈ R′ and consider the map

ry : R′ → R′, x 7→ xy,

which is R-linear. We have a basis x1, . . . , xn, so write

xiy =
n∑
j=1

aijxj.

Then the matrix of ry with respect to this basis is [aij]. By taking residues
of both sides of the relation

xiy =
n∑
j=1

aijxj

modulo pR′, similar logic shows that the matrix of rȳ with respect to the
basis x̄1, . . . , x̄n is [āij]. We will let

Tp : R′/pR′ → R/p

be the linear map given by

Tp(ȳ) = Tr(rȳ) = Tr[āij].
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What the above work shows is that

TrL/K(y) = Tp(ȳ).

Now that we know this, since R′ is free over R, by Theorem 2.3.29, we know

∆(R′/R) = R∆(x1, . . . , xn).

Therefore
∆(R′/R) ⊆ p⇐⇒ ∆(x1, . . . , xn) ∈ p.

Again taking residues modulo pR′, this holds (by the above) if and only if

∆(x̄1, . . . , x̄n) = det[Tp(x̄ix̄j)] = det[TrL/K(xixj)] = ∆(x1, . . . , xn) = 0.

So we have reduced the problem to seeing if

∆(x̄1, . . . , x̄n) = 0 ∈ R/p.

(3) Unramified means no containment: Suppose we have the factorization

pR′ = Pe1
1 · · ·Peg

g ,

which by the Chinese Remainder Theorem (2.2.22) implies

R′/pR′ ∼= R′/Pe1
1 ⊕ · · · ⊕R′/Peg

g .

We will be assuming throughout this proof that R′/Pi is separable over R/p!
If p is unramified, then ei = 1 for all i. Just as Tp was used to denote the
trace map from R′/pR′ to R/p, we will let TPi

denote the trace map from
R′/Pi to R/p. Form a new basis for R′/pR′ over R/p by selecting a basis
for each component in the direct sum above and combining them to form a
basis for R′/pR′, and let this basis be denoted {ui}. For ȳ ∈ R′/pR′, write

ȳ = ȳ1 + . . .+ ȳg,

where ȳi ∈ R′/Pi. Consider now the matrix of rȳ in this new basis. It is
not hard to see that this matrix is formed by combining the matrices of rȳi ,
where rȳi acts on R′/Pi. That is, in this new basis,

rȳ =


rȳ1 0 · · · 0
0 rȳ2 · · · 0
...

...
. . .

...
0 0 · · · rȳg

 .

Taking traces of both sides yields

Tp(ȳ) = TP1(ȳ1) + TP2(ȳ2) + . . .+ TPg(ȳg).

58



Equally as important, if M denotes the matrix of the bilinear form Tp in
the basis {uj} and Mi denotes the matrix of the bilinear form TPi

in the
respective bases of R′/Pi, then

M =


M1 0 · · · 0
0 M2 · · · 0
...

...
. . .

...
0 0 · · · Mg

 .

Taking determinants of both sides yields

∆(u1, . . . , un) = det(M1) · · · det(Mg).

Since R′/Pi is a separable extension of R/p, by Proposition 2.3.54 each of
the det(Mi) 6= 0 as the Mi are invertible. Letting C denote the change of
basis matrix between {x̄1, . . . , x̄n} and {u1, . . . , un}, we get

∆(x̄1, . . . , x̄n) = det(C)2∆(u1, . . . , un) 6= 0.

Therefore by step 2, ∆(R′/R) 6⊆ p.

(4) Ramification means containment: Let pR′ have the same factorization
as above, and suppose ei > 1 for some i. Without loss of generality, assume
e1 > 1. Let f = f(P1/p). Let u1, . . . , uf be basis for R′/Pe1

1 such that
u1 ∈ P1/P

e1
1 . This is possible since P1/P

e1
1 is a 1-dimensional subspace

of R′/Pe1
1 , so we can simply complete a basis after choosing u1 ∈ P1/P

e1
1 .

Then ue11 = 0, which means u1 is nilpotent. This also implies that u1uj is
nilpotent for j = 1, . . . , n. Consider the operator ru1uj . This is a nilpotent
matrix, and so all the roots of the characteristic polynomial are 0 (fact from
linear algebra). Therefore

TP1(u1uj) = Tr(ru1uj) = 0.

But if this is the case, then letting M1 be the matrix in step (3) shows M1

has a row of zeroes. If a matrix has a row of zeroes, then its determinant is
zero, so det(M1) = 0. But as we saw above

∆(x̄1, . . . , x̄n) = det(C)2∆(u1, . . . , un) = 0.

By step (2), this implies ∆(R′/R) ⊆ p. This completes the proof.

Corollary 2.3.56. Suppose L/K is a finite extension of number fields with re-
spective rings of integers OL and OK. Then a prime p of OK ramifies in OL if
and only if ∆(OL/OK) ⊆ p.
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Proof. Since finite extensions of finite fields are separable (see appendix B), all
the conditions of Theorem 2.3.55 are met.

Corollary 2.3.57. If L/K is as in the previous corollary, only finitely many
prime ideals of OK ramify in OL.

Proof. We know OK is a Dedekind ring. We saw in the section on unique factor-
ization of ideals into prime ideals that there are only finitely many prime ideals
which can contain any given ideal. Therefore there are finitely many primes
containing ∆(OL/OK). Now apply Theorem 2.3.55.

Let us use the theorem to prove something about cyclotomic fields.

Proposition 2.3.58. K = Q(ζm), where ζm is a primitive m-th root of unity. If
p 6 |m, then p is unramified in K.

Proof. Let f(x) ∈ Q[x] denote the minimal polynomial of ζm over Q. We know ζm
satisifes xm− 1 ∈ Z[x], and so it is an algebraic integer, which means its minimal
polynomial is also in Z[x] by Gauss’ lemma. So f(x) ∈ Z[x]. Write

xm − 1 = f(x)h(x),

for some h(x) ∈ Z[x] (since the minimal polynomial must divide any other poly-
nomial with ζm as a root). Consider OK , the ring of integers of K. By Theorem
2.3.6, OK = Z[ζm]. By Theorem 2.3.55 above, the primes which ramify in OK
are those which contain the discriminant ∆(OK/Z). The discriminant of the set
formed by powers of ζm sits inside ∆(OK/Z), i.e.

∆(1, ζm, ζ
2
m, . . . , ζ

ϕ(m)−1
m ) ∈ ∆(OK/Z).

But as we remarked in Section 2.3.4, the discriminant ∆(OK/Z) is a well-defined

integer, and therefore ∆(1, ζm, ζ
2
m, . . . , ζ

ϕ(m)−1
m ) is the discriminant ∆(OK/Z). Call

this discriminant ∆. Therefore the prime ideals which contain ∆(OK/Z) are
precisely those containing ∆. By Proposition 2.3.26, we have

∆ = ±NormK/Q(f ′(ζn)),

where the sign depends on ϕ(m) (the degree [K : Q]). Taking derivatives of both
sides of xm − 1 = f(x)h(x) gives

mxm−1 = f ′(x)h(x) + f(x)h′(x).

Plugging in x = ζm and remembering that f(ζm) = 0 yields

mζm−1
m = f ′(ζm)h(ζm).

Now we take norms of both sides. First recall the norm is multiplicative. Second,
as m ∈ Z,

NormK/Q(m) = m[K:Q] = mϕ(m),
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where ϕ(m) is Euler’s totient function (see appendix C). Moreover, we know
NormK/Q(ζm) ∈ Z. But as ζmm = 1, this implies

(
NormK/Q(ζm)

)m
= 1, so

NormK/Q(ζm) is a root of unity in Z. But there are only two, namely ±1. There-
fore NormK/Q(ζm) = ±1, and so NormK/Q(ζm−1

m ) = ±1. Taking norms of both
sides above and putting all this together yields

mϕ(m) = ±NormK/Q(f ′(ζm))NormK/Q(h(ζm)).

Therefore NormK/Q(f ′(ζm)) divides a power of m, which means ∆ divides a power
of m. Therefore the only primes that ramify are those dividing m. This proves
the proposition.

Remark 2.3.59. Since we never proved theorem 2.3.6, it is worthwhile to remark
that this proof would have worked without this theorem. Indeed, we could have
simply observed that

Z[ζm] ⊆ OK ,
so that

∆(1, ζm, ζ
2
m, . . . , ζ

ϕ(m)−1
m ) ∈ ∆(OK/Z).

With this, Janusz simply notes that if a prime ideal were to contain ∆(OK/Z),
it would necessarily contain

∆ = ∆(1, ζm, ζ
2
m, . . . , ζ

ϕ(m)−1
m ),

and the rest of the proof follows exactly as above. So we can safely say that we
have actually completed this proof without assuming any prior results.

So in the cyclotomic case, the only primes which ramify are those dividing m,
and other primes are therefore unramified.

Going back to the two examples in the previous section, in both cases no other
primes can ramify in those number fields since we considered every prime dividing
the discriminant (and hence every prime ideal containing the discriminant as “to
contain is to divide”).

2.3.7 Decomposition and Inertia Groups

Decomposition Group

In this section we will delve deeper into our study of the action of the Galois
group on the prime ideals of the extension. Let us return to the setup,

L OL? _oo

K OK? _oo

Q Z? _oo

61



but now let us suppose that L/K is a Galois extension. Lemma 2.3.46 states that
if p is a prime ideal of OK , then Gal(L/K) acts transitively on the primes lying
above p. Let

pOL = (P1P2 · · ·Pg)
e

be the factorization of p in OL. Notice that since the ramification indices of all the
primes Pi are equal in Galois extensions, it makes sense to write the factorization
like this.

One may recall from group theory that if a group G acts on a nonempty set
S, then the stabilizer of the element s ∈ S is the set of G which fix s, i.e.

{g ∈ G : g · s = s}.

In the above situation, we have Gal(L/K) acting on the Pi, so we can consider
the stabilizer of one of these primes, which leads to the next definition. Most of
this section can be found in [16], though some parts are from [12].

Definition 2.3.60. With the situation above, the decomposition group of the
prime Pi is defined as

D(Pi/p) = {σ ∈ Gal(L/K) : σ(Pi) = Pi}.

Since the stabilizer of an element is a subgroup of the acting group G, we
automatically get D(Pi/p) ≤ Gal(L/K) is a subgroup. The next question to
consider is: what is the order of D(Pi/p), and how are two groups for two different
primes related? As it turns out, the order of the decomposition group does not
depend on the prime Pi, and the decomposition groups for different primes are
related. First, let us examine the order of the group. Recall the orbit-stabilizer
theorem from group theory.

Proposition 2.3.61 (Orbit-Stabilizer). Suppose G acts on a nonempty set S,
and take any s ∈ S. Let Gs denote the stabilizer of s and let Gs denote the orbit
of s. Then

|Gs| = [G : Gs].

Let e denote the ramification index (as above in the factorization of pOL) and
let f denote the common residue field degree (since all the f(Pi/p) are equal in
Galois extensions by Corollary 2.3.48). Then we get the following proposition.

Proposition 2.3.62. Let pOL have the factorization as above, namely

pOL = (P1P2 · · ·Pg)
e .

Then for all i, |D(Pi/p)| = ef .
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Proof. Let G = Gal(L/K). Since the action of G on the primes above p is
transitive, the size of the orbit of Pi is g. Therefore the orbit-stabilizer theorem
says

[G : D(Pi/p)] = g.

However,
|G| = |Gal(L/K)| = [L : K]

since we are in a Galois extension, and by Corollary 2.3.48,

[L : K] = efg.

Therefore |D(Pi/p)| = efg/g = ef , as required.

This answers the question about the order of D(Pi/p). As for the second
question, it would be nice to somehow relate D(Pi/p) with D(Pj/p), if possible.

Proposition 2.3.63. For two different primes Pi and Pj dividing p, the decom-
position groups D(Pi/p) and D(Pj/p) are conjugate in Gal(L/K). Namely, there
exists σ ∈ Gal(L/K) with

σD(Pi/p)σ−1 = D(Pj/p).

Proof. Since the action of Gal(L/K) on the primes above p is transitive, we can
choose σ ∈ Gal(L/K) with σ(Pi) = Pj. Notice that

σ−1τσ(Pi) = Pi ⇐⇒ τσ(Pi) = σ(Pi).

Since σ(Pi) = Pj, this says

σ−1τσ ∈ D(Pi/p)⇐⇒ τ ∈ D(Pj/p),

which implies
σ−1D(Pj/p)σ = D(Pi/p),

or
D(Pj/p) = σD(Pi/p)σ−1.

At this point, it would probably be helpful to look at a couple of examples.
Both of these can be found in [20].

Example 2.3.64. Consider the cyclotomic extension K = Q(ζ15)/Q. The degree
of this extension is given by ϕ(15), where ϕ is Euler’s totient function (see ap-
pendix C). It is easy to calculate that ϕ(15) = 8, so [Q(ζ15) : Q] = 8. Moreover,
it can also be verified that the minimal polynomial of ζ15 over Q is

f(x) = x8 − x7 + x5 − x4 + x3 − x+ 1.
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(Note: One only really needs to check that ζ15 satisfies f(x) because f(x) is a
monic polynomial of degree 8.) The Galois group Gal(K/Q) is isomorphic to
(Z/15Z)×, which is a group of order 8. Elements of Gal(K/Q) can be labeled as
σi for 1 ≤ i ≤ 15, (i, 15) = 1, where

σi : ζ15 7→ ζ i15.

Lastly, we will need that OK = Z[ζ15], which is Theorem 2.3.6.

(a) Let us factor the ideal (3) of Z. By the Dedekind-Kummer theorem, we
should factor f(x) mod 3. One easily checks that

f(x) ≡ (1 + x+ x2 + x3 + x4)2 mod 3,

which means that (3) factors as

(3)OK = (3, 1 + ζ15 + ζ2
15 + ζ3

15 + ζ4
15)2 = p2

3.

So e(p3/3) = 2 and f(p3/3) = 4, again by the Dedekind-Kummer theorem.
Therefore

|D(p3/3)| = 2 · 4 = 8,

but as
D(p3/3) ≤ Gal(K/Q),

and Gal(K/Q) has order 8, we must have D(p3/3) = Gal(K/Q).

The other way we could have gotten this equality is by realizing that
Gal(K/Q) acts transitively on the primes above (3), but there is only one
prime above (3), meaning every element of Gal(K/Q) must stabilize p3.

(b) Now consider the ideal (2) of Z. This time we need to factor f(x) modulo
2, and we find

f(x) ≡ (1 + x+ x4)(1 + x3 + x4) mod 2.

Therefore, by the Dedekind-Kummer theorem,

(2) = (2, 1 + ζ15 + ζ4
15)(1 + ζ3

15 + ζ4
15) = p2p

′
2.

Moreover,

e(p2/2) = e(p′2/2) = 1, f(p2/2) = f(p′2/2) = 4.

Hence
|D(p2/2)| = |D(p′2/2)| = 1 · 4 = 4.
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So this time we will get proper subgroups of Gal(L/K). Let us try and find
D(p2/2). As we see in the Dedekind-Kummer theorem, p2 is the kernel of
the map

Z[ζ15]→ Z[ζ15]/p2
∼= F2/(x

4 + x+ 1), ζ 7→ x.

Take an element σk ∈ Gal(K/Q). We see

σk(p2) = σk(2, 1 + ζ15 + ζ4
15) = (2, 1 + ζk15 + ζ4k

15 ).

So σk(p2) = p2 if and only if (2, 1 + ζk15 + ζ4k
15 ) lies in the kernel of the above

map. By definition of the map, this will happen if and only if 1 + xk + x4k

is an F2[x]-multiple of 1 + x + x4. Since we only need to check values of
k ≤ 15 and (k, 15) = 1, going through the list we find four values, namely
k = 1, 2, 4, 8. Since D(p2/2) has order 4, this is the whole group, so

D(p2/2) = {σ1, σ2, σ4, σ8}.

Instead of finding D(p′2/2) in the same way, let us use the conjugate rela-
tion between the two groups. That is, we know D(p2/2) and D(p′2/2) are
conjugate in Gal(K/Q), which is an abelian group. Therefore, conjugation
in Gal(K/Q) leaves every element fixed, so we must have

D(p′2/2) = D(p2/2).

A Surjective Homomorphism

In this section, we get to see a relationship between the decomposition group and
the Galois group of the residue field for a given prime ideal of OL. Assume we
are in the same situation as before, and consider σ ∈ D(Pi/p). We know that
σ ∈ Gal(L/K) as D(Pi/p) ≤ Gal(L/K). In the beginning of the subsection of
Section 2.3.5 titled “Action of Galois Group,” we showed σ(OL) = OL. Moreover,
σ(Pi) = Pi by definition of the decomposition group of Pi. Therefore, σ induces
an automorphism σ̄ of OL/Pi. As it clearly fixes OK/p (as σ ∈ Gal(L/K) fixes
every element of K elementwise), we get a natural homomorphism of groups

D(Pi/p)→ Gal(FPi
/Fp),

where FPi
= OL/Pi and Fp = OK/p. This is summarized in the following propo-

sition.

Proposition 2.3.65. Suppose P is a prime ideal of OL lying above p. Let FP =
OL/P and Fp = OK/p. Then there is a natural group homomorphism

φ : D(P/p)→ Gal(FP/Fp).
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The goal now is to show that the homomorphism φ is surjective. First, let us
turn our attention to the group Gal(FPi

/Fp). Both FPi
and Fp are finite fields,

so the Galois group is cyclic, and generated by the Frobenius automorphism (see
appendix B). The Frobenius map is the map

x 7→ xq,

where q is the number of elements in Fp = OK/p. But recall from Proposition
2.3.40 that

N(p) = |OK/p| .

Therefore the Frobenius automorphism, which is the generator for Gal(FPi
/Fp),

is the map
Frobp : x 7→ xN(p).

To show φ is surjective, it suffices to prove this Frobenius map is in the image of φ.

Before we do this, we require two propositions, both of which can be found in
[16].

Proposition 2.3.66. Suppose M/K is a finite Galois extension of number fields
(as usual), and suppose p is a prime ideal of OK and P is a prime ideal of OM
lying above p. Then the fixed field MD(P/p) is the smallest subfield of L ⊂M such
that P is the only prime ideal of OM lying above P ∩ OL.

Proof. Let D = D(P/p). The picture we are considering is this

P M

MD

P ∩ OL L

p K

We will show that MD has the desired property (i.e. that P is the only prime ideal
of OM lying above P∩OMD), and then show that any other field L ⊂M with this
property must containMD. First consider the fixed fieldMD. Then by the Funda-
mental Theorem of Galois Theory (FTGT, Theorem A.3.10), Gal(M/MD) ∼= D.
Certainly P is a prime lying above the ideal P ∩ OMD . Moreover, the Galois
group acts transitively on the primes above P ∩ OMD . But as Gal(M/MD) ∼=
D = D(P/p), every element in Gal(M/MD) fixes P, meaning P is the unique
prime lying above P ∩ OL.
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Now suppose L is any subfield of M which this property, i.e. that P is the
only prime lying above P ∩ OL. Then every element of Gal(M/L) fixes P. As
Gal(M/L) ≤ Gal(M/K), this means Gal(M/L) ≤ D(P/p). The FTGT then
implies

MD(P/p) ⊂ L,

proving the proposition.

Later, we complete the picture given by Proposition 2.3.66. Namely, we will
see a more detailed illustration of what happens to p as it climbs up the ladder
of fields.

Proposition 2.3.67. Let L/K be a finite Galois extension of number fields, and
let P be a prime ideal of OL lying above the ideal p of OK. Let D = D(P/p), and
consider the field LD. Denote PD = P ∩ OLD . Then e(PD/p) = f(PD/p) = 1,
and e(P/p) = e(P/PD) and f(P/p) = f(P/PD).

P L

PD LD

p K

Proof. Let G = Gal(L/K), g(P/p) denote the number of prime ideals of OL
lying above p, and g(P/PD) denote the number of primes above PD. As we saw
in Proposition 2.3.62, [G : D] = g(P/p). The Fundamental Theorem of Galois
Theory tells us that [G : D] = [LD : K], and therefore g(P/p) = [LD : K]. By
Corollary 2.3.48,

e(P/PD)f(P/PD)g(P/PD) = [L : LD].

Proposition 2.3.66 asserts that g(P/PD) = 1, which means

e(P/PD)f(P/PD) = [L : LD].

But

[L : LD] =
[L : K]

[LD : K]

=
e(P/p)f(P/p)g(P/p)

[LD : K]

=
e(P/p)f(P/p)[LD : K]

[LD : K]

= e(P/p)f(P/p).
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Therefore,
e(P/PD)f(P/PD) = e(P/p)f(P/p).

But as ramification indices and residue field degrees are multiplicative (Proposi-
tion 2.3.43),

e(P/PD) ≤ e(P/p) and f(P/PD) ≤ f(P/p).

Hence, in both cases, equality must hold. And since

e(P/p) = e(P/PD)e(PD/p) and f(P/p) = f(P/PD)f(PD/p),

we immediately find
e(PD/p) = f(PD/p) = 1,

proving the proposition.

And now, with this, we can prove the surjectivity of our homomorphism φ.

Proposition 2.3.68. Let L/K be a finite Galois extension of number fields. Sup-
pose P is a prime ideal of OL lying above the prime ideal p of OK. Let FP = OL/P
and Fp = OK/p. Then the group homomorphism

φ : D(P/p)→ Gal(FP/Fp)

is surjective.

Proof. The extension FP/Fp is a finite separable extension (extensions of finite
fields are separable; see appendix B), and so the conditions of the primitive ele-
ment theorem 2.1.2 are satisfied, meaning there exists ᾱ ∈ FP with FP = Fp(ᾱ).
Let m̄(x) ∈ Fp(x) denote the minimal polynomial of α over Fp. Lift ᾱ to an
element α ∈ OL, and consider its characteristic polynomial over LD, cL/LD(x)
(we encountered this in Chapter 2, Section 1.2). In the proof of Theorem 2.1.10,
we showed that cL/LD(x) was a power of the minimal polynomial m(x) of α over
LD. In fact, we showed cL/LD(x) = m(x)d, where d = [L : LD(α)].

L
d

wwwwwwwww

LD(α)

m GGGGGGGG

LD

K

But now consider
g(x) =

∏
σ∈D

(x− σ(α)).
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The claim is that cL/LD(x) = g(x). Clearly g(x) is monic. Let m = [LD(α) : LD]
and H = Gal(L/LD(α)). Then we can let

σ1H, σ2H, . . . , σmH

be the m left cosets of H in D = Gal(L/LD). The minimal polynomial of α over
LD has the form

m(x) = (x− σ1(α))(x− σ2(α)) · · · (x− σm(α)).

To see why, notice that since m = [LD(α) : LD], the degree of the minimal
polynomial of α over LD must be m. Moreover, D = Gal(L/LD) acts transitively
on the roots of m(x). Since elements of H leave α fixed, the list of cosets above
shows that the σi(α) are the m distinct roots of m(x). Therefore m(x) will factor
in L in this way. But since

D = σ1H ∪ σ2H ∪ · · · ∪ σmH

and H leaves α fixed, we find that

g(x) =
∏
σ∈D

(x− σ(α))

=
∏
h∈H

(x− σ1h(α))(x− σ2h(α)) · · · (x− σmh(α))

=
∏
h∈H

(x− σ1(α))(x− σ2(α)) · · · (x− σm(α))

= m(x)|H|

= m(x)d.

Therefore cL/LD(x) = g(x), so

cL/LD(x) =
∏
σ∈D

(x− σ(α)).

The coefficients of cL/LD(x) are sums and products of elements of OL, and we
know the coefficients of the characteristic polynomial must lie in the base field
LD. So we find the coefficients are in OL ∩LD = OLD . Therefore, it makes sense
to reduce the polynomial cL/LD(x) ∈ OLD [x] modulo PD = P ∩ OLD . So let

c̄(x) = cL/LD(x) =
∏
σ∈D

(x− σ̄(ᾱ))

denote the reduced polynomial. By the previous proposition, as f(PD/p) = 1,
we have an isomorphism OLD/PD

∼= OK/p, so we can regard the coefficients of
c̄(x) as living in Fp, i.e. c̄(x) ∈ Fp[x]. Moreover, as α is a root of cL/LD(x), ᾱ
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is a root of c̄(x), so m̄(x) (i.e. the minimal polynomial of ᾱ over FIp) satisfies
m̄(x)|c̄(x). Therefore all the roots of m̄(x) are roots of c̄(x). But as m̄(x) is the
minimal polynomial of ᾱ, we know

m̄(x) =
∏

τ∈Gal(FP/Fp)

(x− τ(ᾱ)).

In particular, Frobp(ᾱ) is a root of m̄(x), so it is a root of c̄(x). Since the roots of
c̄(x) have the form σ̄(ᾱ) for some σ ∈ D and ᾱ generates FP, we get Frobp = φ(σ)
for some σ ∈ D. As Frobp generates Gal(FP/Fp), φ must be surjective.

Inertia Group

We have a surjective homomorphism

φ : D(P/p)→ Gal(FP/Fp).

We can now define the inertia group of P.

Definition 2.3.69. The inertia group of P is defined as

I(P/p) = kerφ.

Explicitly,

I(P/p) = {σ ∈ D(P/p) : σ(α) ≡ α mod P for all α ∈ OL}.

Remark 2.3.70. In case it is unclear, the notation σ(α) ≡ α mod P means σ(α)−
α ∈ P.

By defining the inertia group in this way, we get a corollary to Proposition
2.3.68.

Corollary 2.3.71. The size of the inertia group is |I(P/p)| = e(P/p).

Proof. We know the size of D(P/p) is e(P/p)f(P/p), and the size of Gal(FP/Fp)
is f(P/p). The corollary follows because of the isomorphism

D(P/p)/I(P/p) ∼= Gal(FP/Fp).

Remark 2.3.72. A consequence of this corollary is that P is unramified if and
only if its inertia group I(P/p) is the trivial group. Moreover, if P is unramified,
then the surjective homomorphism becomes an isomorphism because it has trivial
kernel.
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This homomorphism (and isomorphism in the unramified case) gives us some
idea of why we should care about the decomposition group. It relates the Galois
group of what one might call a more “localized” view of the field extension L/K
to the “global” Galois group Gal(L/K). In fact, we will make this precise later
in this thesis when we use this idea to help us calculate the Galois group of a
polynomial over Z.

Just as the decomposition groups of two primes P1 and P2 lying above p were
conjugate in Gal(L/K), the inertia groups of two different primes are conjugate
as well.

Proposition 2.3.73. If P1 and P2 are two primes of OL lying above p, then
there exists σ ∈ Gal(L/K) such that

σI(P1/p)σ−1 = I(P2/p).

Proof. Let σ ∈ Gal(L/K) be such that σ(P1) = P2. Let τ ∈ I(P1/p). Then by
definition, τ(α)− α ∈ P1 for all α ∈ OL. So if α is any element of OL, notice

στσ−1(α)− α = στσ−1(α)− σσ−1(α)

= σ(τ(σ−1(α))− σ−1(α))

∈ σ(P1) = P2.

Since α was arbitrary, this shows σI(P1/p)σ−1 ⊆ I(P2/p). To get the reverse
containment, repeat the same argument above with σ−1 instead of σ and τ ∈
I(P2/p).

A Tower of Extensions

We alluded to the fact that we would be providing a more “complete” tower of
extensions so that we could see the behavior of p as it climbed up to the top of
the ladder. We are in a position to do that now. This proposition comes from
[12]. The setup is as follows. We have our usual Galois extension of number fields
L/K, p is a prime ideal of OK and P is a prime of OL lying above p. We let
D = D(P/p), I = I(P/p), e = e(P/p), f = f(P/p), and consider the fields LI

and LD. Denote PI = P ∩ OLI and PD = P ∩ OLD .

P L

e

PI LI

f

PD LD

g

p K
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Proposition 2.3.74. (a) The only prime lying above PD in OL is P.

(b) The prime ideal PD is unramified in LI , with f(PI/PD) = f .

(c) The prime ideal PI is totally ramified in L, with e(P/PI) = e.

(d) We have the factorization

pOLD = PDP
e2
2 · · ·Peg

g .

(e) If D is normal in Gal(L/K), then

pOLD =
∏

σPD,

where σ runs through the a set of representatives of Gal(L/K)/D = Gal(LD/K).

Proof. We have already seen part (a) in Proposition 2.3.66. Item (d) follows from
2.3.66 and Proposition 2.3.67. Part (e) follows from (d) and the fact that LD/K
is Galois if D is normal, and the Galois group is Gal(LD/K) ∼= Gal(L/K)/D.
First, let us prove (c). We know L/LI is Galois with Galois group I. Therefore it
suffices to show that e(P/PI) = e, since then by the relation in Corollary 2.3.48,
we must have f(P/PI) = 1 and g(P/PI) = 1. And to show e(P/PI) = e, all we
need to show is that

|I(P/PI)| = |I|.

First consider D(P/PI). By definition, this is

{σ ∈ Gal(L/LI) : σ(P) = P}.

But Gal(L/LI) = I, and

I ≤ D = {σ ∈ Gal(L/K) : σ(P) = P}.

Therefore every element of I fixes P, meaning

D(P/PI) = I.

However, we also know

I(P/PI) = {σ ∈ D(P/PI) : σ(α)− α ∈ P for all α ∈ OL}.

So using the fact that D(P/PI) = I, we get

I(P/PI) = {σ ∈ I : σ(α)− α ∈ P for all α ∈ OL} = I.

Since we have equality of sets, we certainly have equality of sizes, so

e(P/PI) = e,
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which proves part (c). Part (b) also follows, since

f(P/p) = f(PD/p)f(PI/PD)f(P/PI).

The first and third terms in the product on the right hand side are 1 by parts (a)
and (c), which means

f(P/p) = f(PI/PD).

Since the degree of the extension LI/LD is [D : I] = f(P/p) by the Fundamental
Theorem of Galois Theory, we find that e(PI/PD) = g(PI/PD) = 1 by Corollary
2.3.48, which proves (b).

What this proposition shows is that all the ramification happens in the top
extension, all the residue extension happens in the middle. If D is also normal,
then all the splitting happens in the bottom extension. So it really does give a
picture as to what happens to p as it climbs up to L.

2.3.8 Artin Automorphism

This section will be dealing exclusively with unramified primes, and most of the
results come from [3]. However, we do have the same setup as usual.

Suppose e(P/p) = 1. Then we know that I(P/p) is the trivial group, mean-
ing our surjective homomorphism

φ : D(P/p)→ Gal(FP/Fp)

becomes an isomorphism. We have seen that Gal(FP/Fp) is a cyclic group, gen-
erated by the Frobenius map

Frobp : α 7→ αN(p).

Therefore, there is some element σ ∈ D(P/p) which maps to it under φ. Moreover,
D(P/p) is also cyclic, and generated by σ.

Definition 2.3.75. The element σ is called the Frobenius element at P, and it
is denoted

σ =

(
P

L/K

)
.

The following proposition provides a characterization of this Frobenius ele-
ment.

Proposition 2.3.76. The Frobenius element at P is the unique element σ ∈
Gal(L/K) such that

σ(α) ≡ αN(p) mod P

for all α ∈ OL.
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Proof. Suppose first that σ satisfies the above relation. Then certainly σ(P) ⊆ P.
But σ(P) takes P to another prime lying above p, and since these primes are
distinct, we must have σ(P) = P. Therefore σ ∈ D(P/p). But under our

isomorphism φ, the element σ clearly maps to Frobp, which means σ =
(

P
L/K

)
.

If τ is another element of Gal(L/K) satisfying

τ(α) ≡ αN(p) mod P

for all α ∈ OL, then the above work shows τ ∈ D(P/p) and also gets mapped to
Frobp under φ. But since φ is an isomorphism, and hence injective, which means
we must have σ = τ . Therefore σ is unique.

Now to get to the Artin automorphism, we make the further assumption that
Gal(L/K) is abelian. To see why this is relevant, recall Proposition 2.3.63 which
states that the decomposition groups for two different primes lying above p are
conjugate in Gal(L/K). Conjugate subgroups in an abelian group are necessarily
equal. Therefore the decomposition groups do not depend on the prime above p,
and instead depend solely on p. It would be nice if the Frobenius element also
did not depend on the prime above p, which is what the next proposition shows.

Proposition 2.3.77. Assume Gal(L/K) is abelian. Then the Frobenius element(
P

L/K

)
does not depend on the choice of prime P lying above p.

Proof. Suppose P1 and P2 are two primes lying above p, and let σ1 and σ2 denote
their respective Frobenius elements. Choose τ ∈ Gal(L/K) with τ(P1) = P2 (the
Galois group still acts transitively on the primes of p). Let α ∈ OL. Then since
σ1(α)− αN(p) ∈ P1, we get

τσ1(α) ≡ τ(αN(p)) mod P2.

But τ is a homomorphism, so

τ(αN(p)) ≡ τ(α)N(p) mod P2.

We know Gal(L/K) is abelian, so σ1τ = τσ1, meaning

σ1τ(α) ≡ τ(α)N(p) mod P2.

Since τ(OL) = OL (we have seen this before), as α ranges over all of OL, so does
τ(α), which means

σ1(β) ≡ βN(p) mod P2

for all β ∈ OL. But this means

σ1 =

(
P2

L/K

)
= σ2,

which shows that the Frobenius elements for all primes lying above p are the
same.
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Since the Frobenius element does not depend on the prime above p, we can
make the following definition.

Definition 2.3.78. The Artin automorphism, denoted
(

p
L/K

)
, is the Frobenius

element at any prime lying above p.

Notice that if our extension is abelian and p splits completely in OL, then

the Artin automorphism
(

p
L/K

)
is trivial, since the decomposition groups of the

primes lying above p are all the trivial group. Conversely, if the Artin auto-
morphism is trivial, then since it generates the decomposition group of any prime
above p, all the decomposition groups are trivial, which means p splits completely.
Therefore the Artin automorphism of p is trivial if and only if p splits completely.

There is one more proposition which we want to prove, and then we can ap-
ply this to cyclotomic extensions. This proposition talks about the restriction of
the Artin automorphism to intermediate extensions.

Proposition 2.3.79. Suppose M/K is an abelian Galois exension and L an
intermediate field. Let p be a prime of OK which is unramified in OM . Then(

p
L/K

)
and

(
p

M/K

)
are both defined and(

p

L/K

)
=

(
p

M/K

) ∣∣∣
L
.

Remark 2.3.80. Since Gal(M/K) is abelian, we immediately get Gal(M/L) is a
normal subgroup, so L/K is a Galois extension and it is abelian since quotients of
abelian groups are abelian. Therefore both Artin maps in the proposition make
sense.

Proof. The diagram illustrating the situation is:

P M

P′ = P ∩ OL L

p K

Let P be a prime of OM lying above p, σ =
(

p
M/K

)
and σ′ =

(
p

L/K

)
. By our

characterization of Frobenius elements,

σ(α)− αN(p) ∈ P
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for all α ∈ OM . Let P′ = P ∩ OL. If α ∈ OL, then σ(α) ∈ OL and αN(p) ∈ OL,
so

σ(α)− αN(p) ∈ OL.
But we know it is also in P, so

σ(α)− αN(p) ∈ OL ∩P = P′.

Since α ∈ OL was arbitrary, this implies

σ|L = σ′,

which is what we wanted to show.

Example 2.3.81. Consider a cyclotomic extension. In the usual setup, K = Q,
and L = Q(ζm) for some m, where ζm is a primitive m-th root of unity. We know
that

Gal(Q(ζm)/Q) ∼= (Z/mZ)× .

As usual, we will write elements of the Galois group as σk, where σk is the map
which maps ζm 7→ ζkm. Proposition 2.3.58 shows that the only primes which ram-
ify are those dividing m. So pick p prime with p 6 |m. Theorem 2.3.6 asserts that
the ring of integers of Q(ζm) is Z[ζm]. Let p be a prime above p.

We want to determine
(

p
Q(ζm)/Q

)
. It is the unique element σ such that

σ(α) ≡ αp mod p

for all α ∈ Z[ζm].
The claim is that σ = σp. Take any element

∑
aiζ

i
m ∈ Z[ζm]. Then

σp

(∑
aiζ

i
m

)
=
∑

aiζ
ip
m .

The field OL/p is of characteristic p, and as ai ∈ Z, this means api ≡ ai mod p.
Therefore ∑

aiζ
ip
m ≡

∑
api ζ

ip
m .

But again as we are in characteristic p,∑
api ζ

ip
m ≡

(∑
aiζ

i
m

)p
mod p

(see appendix B if unclear). Therefore

σp

(∑
aiζ

i
m

)
≡
(∑

aiζ
i
m

)p
mod p.

Since
∑
aiζ

i
m represented any element in Z[ζm], this shows σ = σp, as desired.

Therefore the Artin automorphism is just the p-th power map.
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Chapter 3

Finite abelian case

With most of the required algebraic number theory introduced, we can move on
to the heart of the thesis. In this chapter, we will be proving that every finite
abelian group occurs as the Galois group of a totally real number field, and we
will be examining the primes in these extensions. That is, we will discuss which
primes are ramified, which split completely, etc. In addition to all the material in
the previous chapter, we will also be introducing and utilizing cubic reciprocity
and Dirichlet density to help understand the factorizations of primes in these
abelian extensions.

3.1 Existence

3.1.1 Four Essential Theorems

Before moving towards the existence proof, we will need a few theorems. The
hope is that the reader has seen the first three in a course on group theory or
abstract algebra, so we will not take the time to prove them here. Proofs can be
found in [5], but we will make a few remarks along the way. The first theorem is
Cauchy’s theorem.

Theorem 3.1.1 (Cauchy). Let G be a finite group of order n and p a prime with
p|n Then G contains an element of order p.

Remark 3.1.2. Cauchy’s theorem guarantees that for every prime divisior p of |G|,
there is a subgroup of order p, as one could take the subgroup generated by the
element of order p.

The other theorem from group theory, perhaps unsurprisingly, is the structure
theorem for finitely generated abelian groups.

Theorem 3.1.3. Let G be a finitely generated abelian group. Then there exist
numbers r ≥ 0, ni ≥ 2 for i = 1, 2, . . . , s (for some s) such that

G ∼= Zr × Z/n1Z× Z/n2Z× · · · × Z/nsZ,
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with the added condition that ni|ni+1 for all 1 ≤ i ≤ s− 1. This representation is
also unique. Moreover, if G is finite, then r = 0.

This follows from the structure theorem for finitely generated modules over a
PID which was introduced in the previous chapter, and the proof can be found
in Chapter 12 of [5]. This theorem is nice because it provides a full classification
of finitely generated abelian groups up to isomorphism, and in particular it pro-
duces every finite abelian group up to isomorphism. So in the existence proof we
provide later, we just need to prove that every group of this form appears as the
Galois group of a totally real number field, and this is precisely what we will do.

Using the structure theorem, we can get, rather easily in fact, the Chinese Re-
mainder Theorem, although some books may refer to the Chinese Remainder
Theorem when proving Theorem 3.1.3. For one particular case, consider

Z/p1Z× Z/p2Z× · · · × Z/pkZ,

where the pi are distinct primes. This is a finite group of order n = p1 · · · pk. As
it is written, it is not in the form given to us by the structure theorem. The claim
is that the only group of order n = p1 · · · pk, up to isomorphism, is Z/nZ. But
this is almost immediate from the theorem. The condition ni|ni+1 and the fact
n1n2 · · ·ns = n imply that every prime factor of n has to appear in the final term
ns, so ns = p1 · · · pk. But as there are no other factors of n we must have s = 1.
This says that the only abelian group of order n (where n is a product of distinct
primes) is Z/nZ. Since

Z/p1Z× Z/p2Z× · · · × Z/pkZ

has order n, it must be isomorphic to Z/nZ, as desired. This argument can be
generalized to prime powers instead of primes.

We will state and prove the Chinese Remainder Theorem as it is generally known
(i.e. in its classical form), although we already encountered a more general form
of this theorem in Section 2.2.4.

Theorem 3.1.4 (Chinese Remainder Theorem). Suppose m1,m2, . . . ,mk are
pairwise relatively prime positive integers. Then for any numbers r1, . . . , rk, the
system of equations

x ≡ r1 mod m1

x ≡ r2 mod m2

...

x ≡ rk mod mk

has a solution x ∈ Z. Moreover, this solution is unique modulo m = m1m2 · · ·mk.
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Proof. We know that Z/miZ has a natural ring structure, namely with addition
and multiplication modulo mi. Consequently, the direct product

Z/m1Z× Z/m2Z× · · · × Z/mkZ

has a ring structure given by componentwise addition and multiplication. Also,
using the natural projections

πi : Z→ Z/miZ

which are ring homomorphisms, we can build a ring homomorphism

π : Z→ Z/m1Z× Z/m2Z× · · · × Z/mkZ

given by
π(n) = (π1(n), π2(n), . . . , πk(n)).

This is easily verified to be a ring homomorphism since each of the πi are. Let
m = m1m2 · · ·mk. It should be clear that the kernel of π contains the ideal (m)
of Z. But the reverse inclusion is also true, namely (m) = ker π, because π(n) = 0
if and only if n ∈ (mi) for all i, which happens if and only if n ∈ (m). Thus the
first isomorphism theorem says that we have an injection

Z/mZ ↪→ Z/m1Z× Z/m2Z× · · · × Z/mkZ.

But since both the domain and the target space have the same size m, the map
is also surjective, and therefore an isomorphism. Hence for

(r1, r2, . . . , rk) ∈ Z/m1Z× Z/m2Z× · · · × Z/mkZ

we can find r ∈ Z/mZ that maps to this element, and it is unique. Viewing r as
an element of Z gives the desired result.

The last theorem we will need is Dirichlet’s theorem for primes in arithmetic
progressions, which will come in handy on more than one occassion. It is a
wonderful theorem, but one whose proof takes us too far afield, so we will not be
able to prove it here. A proof is presented in [14].

Theorem 3.1.5. Let a and m be natural numbers such that (a,m) = 1 (i.e. rel-
atively prime). There there are infinitely many primes p such that p ≡ a mod m.

When we discuss Dirichlet density later in this chapter, we will be able to say
slightly more about this theorem.
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3.1.2 The Proof

First, we will prove two lemmas and two propositions. Throughout this section,
ζk denotes a primitive k-th root of unity.

Proposition 3.1.6. If (n,m) = 1, then Q(ζn) ∩Q(ζm) = Q.

Proof. Recall from Theorem 2.3.58 that the primes of Z which ramify in Q(ζn)
are those dividing n. Since (n,m) = 1, every prime which ramifies in Q(ζn)
remains unramified when factored in Q(ζm). Therefore the proposition follows
from Proposition 2.3.44.

With this, we can prove the following.

Lemma 3.1.7. If (n,m) = 1, then Q(ζn)Q(ζm) = Q(ζnm).

Proof. Notice ζnnm ∈ Q(ζm), because ζnnm is an m-th root of unity, and ζmnm ∈
Q(ζn). This shows Q(ζnm) contains both Q(ζn) and Q(ζm), and hence contains
the composite extension,

Q(ζn)Q(ζm) ⊆ Q(ζnm).

Notice that the previous proposition (3.1.6) shows Q(ζn) and Q(ζm) are disjoint
extensions of Q. Therefore, their compositum, call it K, has degree

[K : Q] = [Q(ζn) : Q][Q(ζm) : Q] = ϕ(n)ϕ(m)

(Corollary A.4.6). But

[Q(ζnm) : Q] = ϕ(nm) = ϕ(n)ϕ(m)

by the multiplicative properties of Euler’s totient function. Therefore

[Q(ζnm) : K] = 1.

But as K ⊆ Q(ζnm), we must have equality.

As a consequence of this lemma, we get the following.

Lemma 3.1.8. If p1, . . . , pk are distinct primes, then for all i,

Q(ζpi) ∩
∏
j 6=i

Q(ζpj) = Q.

Proof. Pick any 1 ≤ i ≤ k. Since the pj are distinct, continually using the
previous lemma on the Q(ζpj), j 6= i, shows∏

j 6=i

Q(ζpj) = Q(ζmi
), mi =

∏
j 6=i

pj.
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But as pi is different from all the other pj, (pi,mi) = 1, and so Proposition 3.1.6
yields

Q(pi) ∩Q(ζmi
) = Q,

or
Q(pi) ∩

∏
j 6=i

Q(ζpj) = Q.

Since i was arbitrary, the lemma is proved.

Now, let us provide a setup for the last proposition, as well as recall some
facts. Suppose we consider the field extension Q(ζn)/Q, where ζn is a primitive
n-th root of unity. As we saw in the previous chapter, this is a normal extension
of Q, because it is the splitting field of the polynomial xn − 1 ∈ Q[x], and we
know splitting fields are normal extensions (appendix A). Also recall that

Gal(Q(ζn)/Q) ∼= (Z/nZ)× .

An element τ ∈ Gal(Q(ζn)/Q) is completely determined by its action on ζn, as it
is a generator for this extension, and also must send ζn 7→ ζan, where (a, n) = 1, as
these are the primitive n-th roots of unity. As (n−1, n) = 1 and the Galois group
acts transitively on the primitive n-th roots of unity, there must be an element in
the Galois group which sends ζn to ζn−1

n = ζ−1
n . Denote that element by φ. It is

easy to see that φ has order two in Gal(Q(ζn)/Q).

Proposition 3.1.9. If H = 〈φ〉, where φ is as above, then Q(ζn)H = Q(ζn+ζ−1
n ).

Proof. We clearly have the inclusion

Q(ζn + ζ−1
n ) ⊂ Q(ζn)H ,

because φ(ζn + ζ−1
n ) = ζ−1

n + ζn. Thus if we can show that

[Q(ζn) : Q(ζn + ζ−1
n )] = 2,

we would be done by the Fundamental Theorem of Galois Theory (FTGT, The-
orem A.3.10). But observe that ζn is a root of the polynomial

x2 − (ζn + ζ−1
n )x+ 1 ∈ Q(ζn + ζ−1

n )[x].

Since ζn satisfies a degree two polynomial over Q(ζn+ζ−1
n ), its minimal polynomial

over Q(ζn + ζ−1
n ) cannot have a greater degree, meaning

[Q(ζn) : Q(ζn + ζ−1
n )] ≤ 2.

But we know from the FTGT that

Q(ζn + ζ−1
n ) ⊆ Q(ζn)H ⊂ Q(ζn)
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because H is a proper subgroup of Gal(Q(ζn)/Q), meaning its fixed field is not
the whole field (since that corresponds to the trivial subgroup). This implies

[Q(ζn) : Q(ζn + ζ−1
n )] 6= 1,

and hence the degree must be two. Therefore Q(ζn + ζ−1
n ) is the fixed field of H,

since the FTGT tells us that Q(ζn) will be degree two over the fixed field.

Remark 3.1.10. As easy consequence of this proposition is that the minimal poly-
nomial of ζn + ζ−1

n is of degree ϕ(n)/2, and it is a good exercise for the reader to
explain why.

With this proposition proved, we can now prove the main theorem.

Theorem 3.1.11. Let G be a finite abelian group. Then there exists a totally
real number field K/Q with Galois group G.

Proof. The structure theorem for finitely generated abelian groups tells us that

G ∼= Z/n1Z× Z/n2Z× · · · × Z/nkZ,

where n1|n2| . . . |nk. For each i, choose pi prime such that

pi ≡ 1 mod 2ni,

and such that the pi are distinct (this will be possible by Dirichlet’s theorem). Now
consider Q(ζpi). This is a Galois extension of Q with Galois group Gi isomorphic
to (Z/piZ)×. Choose Hi ≤ Gi to be the unique subgroup of Gi of order pi−1

ni

(unique as Gi is cyclic of order pi − 1). As Gi is abelian, Hi / Gi is normal, so
Q(ζpi)

Hi is Galois over Q by the Fundamental Theorem of Galois Theory, and
its Galois group over Q is isomorphic to Gi/Hi. As this is a quotient of a cyclic
group, the quotient is still cyclic, and its order is

pi − 1

(pi − 1)/ni
= ni.

Therefore Gi/Hi
∼= Z/niZ. Moreover, by Lemma 3.1.8 above,

Q(ζpi) ∩
∏
j 6=i

Q(ζpj) = Q

for all i. As Q(ζpi)
Hi ⊆ Q(ζpi), we immediately get

Q(ζpi)
Hi ∩

∏
j 6=i

Q(ζpj)
Hj = Q

for all i. Therefore, if we consider the composite

K = Q(ζp1)
H1 · · ·Q(ζpk)Hk ,
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then K is Galois over Q with Galois group

Gal(K/Q) ∼= Gal(Q(ζp1)
H1/Q)× · · · ×Gal(Q(ζpk)Hk/Q) ∼= Z/n1Z× · · · ×Z/nkZ,

which is what we needed.

To finish the proof, we need to show K is totally real. As K is the compos-
ite of the Q(ζpi)

Hi , it suffices to show each of these is totally real. As pi−1
ni

is even
(by choice of pi), |Hi| is even, so Cauchy’s theorem says there is an element in Hi

of order two, say φi. Moreover, φ is determined completely by its action on ζpi .
Since φi : ζpi 7→ ζapi (for some a) and φ2

i = e, the number a satisfies a2 = 1, which
means a = ±1. But φi 6= e implies a = −1, since a = 1 would correspond to the
identity map. Therefore φi : ζpi 7→ ζ−1

pi
. The proposition above (3.1.9) shows that

the fixed field of 〈φi〉 is Q(ζpi + ζ−1
pi

). By the Galois correspondence we have the
inclusions

Q ⊂ Q(ζpi)
Hi ⊂ Q(ζpi + ζ−1

pi
) ⊂ Q(ζpi).

But as Q(ζpi + ζ−1
pi

) is a totally real number field, Q(ζpi)
Hi must be totally real

as well. Since this is true for all i we get each Q(ζpi)
Hi is totally real, and hence

K is totally real.

This theorem proves the existence of such extensions. It would be nice to
know there were infinitely many such extensions. Indeed, this is the case.

Corollary 3.1.12. If G is a finite abelian group, then there are infinitely many
totally real number fields with Galois group G over Q.

Proof. Again, let
G ∼= Z/n1Z× Z/n2Z× · · · × Z/nkZ.

In the proof of the above theorem, there was a choice in picking our primes pi.
But for each ni, there are infinitely many primes pi satisfying pi ≡ 1 mod 2ni
by Dirichlet’s theorem. This, in turn, allows us to construct infinitely many
composite extensions (as in the proof of the theorem) with the required Galois
group.

So we have proved the existence of not just one, but infinitely many totally
real extensions, for every finite abelian group.

3.2 Primes in Extensions

Now that we have totally real extensions of Q for every finite abelian group, we
can consider the behavior of primes in these extensions.
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3.2.1 Ramified Primes

Let us consider the easiest case first, namely the ramified case. We will prove two
lemmas, and these will help not only in this section, but also when we consider
the primes which split completely. These come from [13].

Lemma 3.2.1. Suppose M/K is a Galois extension of number fields and L is
an intermediate extension. Let p be a prime of OK and P the prime of OM
lying above p. Then PL = P ∩ OL is the prime ideal of L lying above p. Let
G = Gal(M/K) and H = Gal(M/L).

P M

G

H=Gal(M/L)

PL = P ∩ OL L

p K

Then

(a) D(P/PL) = H ∩D(P/p) and

(b) I(P/pL) = H ∩ I(P/p).

If, in addition, H is normal in G, then if π denotes the canonical projection of G
onto G/H ∼= Gal(L/K), then

(c) π(D(P/p)) = D(PL/p) and

(d) π(I(P/p)) = I(PL/p).

Proof. Items (a) and (b) follow directly from the definition of the decomposi-
tion group and inertia group. For (c), notice that π certainly maps D(P/p) to
D(PL/p). The kernel of this map is D(P/p)∩H = D(P/PL) (by (a)). To show
the map is onto, we can compute the size of the image. By the first isomorphism
theorem, the image has cardinality

|D(P/p)|
|D(P/PL)|

=
e(P/p)f(P/p)

e(P/PL)f(P/PL)
.

But by Proposition 2.3.43, e and f are multiplicative in towers, so

e(P/p)f(P/p)

e(P/PL)f(P/PL)
= e(PL/p)f(PL/p) = |D(PL/p)|.

Therefore the map is onto and

π(D(P/p)) = D(PL/p),

which proves (c). For (d), the work is exactly the same except we do not have
to worry about the residue field degree as the cardinality of the inertia group
depends only on the ramification index.
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Using this lemma, we can prove the following.

Lemma 3.2.2. Let L1/K and L2/K be two linearly disjoint (finite) Galois ex-
tensions of number fields (i.e. L1 ∩ L2 = K) and M = L1L2 be the compositum.
If p is a prime ideal of OK, then p splits completely in M if and only if it splits
completely in L1 and L2. Similarly, p is unramified in M if and only if it is
unramified in L1 and L2.

M = L1L2

ssssssssss

KKKKKKKKKK

L1

KKKKKKKKKKK L2

sssssssssss

K

Proof. Since L1 and L2 are disjoint,

Gal(M/K) ∼= Gal(L1/K)×Gal(L2/K).

Take P to be a prime of OM lying above p. We have seen that as |D(P/p)| =
e(P/p)f(P/p), p splits completely in M if and only if this decomposition group
is trivial, i.e. D(P/p) = {e}. Let P1 = P ∩ L1 and P2 = P ∩ L2. Note that L1

is the fixed field of {e} ×Gal(L2/K), which is a normal subgroup of Gal(M/K).
Similarly, L2 is the fixed field of Gal(L1/K)× {e}, which is another normal sub-
group of Gal(M/K). Therefore, we can apply (c) of the previous lemma in both
cases. But part (c) of the lemma above implies both D(P1/p) and D(P2/p) are
trivial. Therefore p splits completely in L1 and L2.

Conversely, suppose p splits completely in L1 and L2. Then, as before, D(P1/p)
and D(P2/p) are trivial. Take σ ∈ D(P/p). Again using (c) in the previous
proposition (it applies for the same reason as above), we get the projections of σ
onto Gal(L1/K) and Gal(L2/K) are both trivial. But as

Gal(M/K) ∼= Gal(L1/K)×Gal(L2/K),

this implies σ is the identity. Therefore the decomposition group D(P/p) is triv-
ial, and so p splits completely in M .

To prove the last part of the lemma, note that an unramified prime corresponds
to a trivial inertia group. Follow the same steps as we just did for the decompo-
sition group and replace D with I. Since part (d) of the previous lemma gives
a corresponding result for inertia groups, the same work can be used, and the
statement follows.
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Of course, we can inductively extend this lemma to any finite number of
extensions.

Corollary 3.2.3. Suppose L1, . . . , Lm are all finite Galois extensions of a number
field K such that

Li ∩
∏
j 6=i

Lj = K

for all 1 ≤ i ≤ m. Let M = L1 · · ·Lk. If p is a prime ideal of OK, then p splits
compeletely in M if and only if it splits completely in all the Li. Similarly, p is
unramified in M if and only if it is unramified in all the Li.

So now let us consider the number field K constructed in the proof of Theorem
3.1.11.

Let G be a finite abelian group, and write

G ∼= Z/n1Z× Z/n2Z× · · · × Z/nkZ

as before (with ni|ni+1). Recall that we first choose primes pi ≡ 1 mod 2ni. The
totally real number field constructed in the proof of Theorem 3.1.11 is then

K =
∏

Q(ζpi)
Hi ,

where Hi ≤ Gal(Q(ζpi)/Q) is the unique subgroup of order pi−1
ni

.

The next proposition proves which primes ramify in K.

Proposition 3.2.4. The only primes which ramify in K are p1, . . . , pk.

Proof. Let Q(ζpi)
Hi be as in the remarks preceding the proposition, and let Ki =

Q(ζpi)
Hi . By Corollary 3.2.3, a prime is unramified in K if and only if it is

unramfied in all the Ki. This also means that a prime ramifies in K if and only
if it ramifies in some Ki. So let us consider which primes ramify in Ki. Well
Ki ⊆ Q(ζpi), and we know from Proposition 2.3.58 that the only prime which
ramifies in Q(ζpi) is pi. Therefore the only prime which can possibly ramify in
Ki is pi. However, as there are no unramified extensions of Q (Theorem 2.3.32),
some prime must ramify in Ki, and therefore pi ramifies. Therefore pi is the only
prime which ramifies in Ki, and hence p1, . . . , pk ramify in K. If p is a prime
different from the pi, then we see that p remains unramified in all the Ki, and
hence in K by Corollary 3.2.3.

There are two simple corollaries of this proposition.

Corollary 3.2.5. Suppose G is a finite abelian group, and write

G ∼= Z/n1Z× Z/n2Z× · · · × Z/nkZ
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where ni|ni+1, which is possible by the Structure Theorem for Finitely Generated
Abelian Groups. Then there exist infinitely many totally real number fields K
which are ramified at precisely k primes such that Gal(K/Q) ∼= G.

Proof. We already constructed such a K in Theorem 3.1.11, saw there were in-
finitely many in Corollary 3.1.12, and the previous proposition shows each K is
unramified outside a set of k distinct primes.

Corollary 3.2.6. If G is a finite cyclic group, then there exist infinitely many
totally real number fields K which are ramified at a single prime and such that
Gal(K/Q) ∼= G.

Proof. Cyclic groups correspond to the case k = 1 in the previous corollary.

The totally real field K of Proposition 3.2.4 is ramified at precisely k primes,
which is precisely the number of generators for the finite group G. Boston and
Markin [2] prove that this we can do no better. That is, we cannot find a totally
real extension K with Gal(K/Q) ∼= G ramified at fewer than k primes. In fact,
they conjecture that if G is a finite group, then the fewest number of ramified
primes in any extension L/Q with Gal(L/Q) ∼= G is the number of generators in
the abelianization of G, namely G/G′, where G′ is the commutator subgroup of
G.

3.2.2 Dirichlet Density

Before investigating the primes which split completely, we will introduce a tool
that will allow us to, in a certain sense, understand how dense (or sparse) a set
of primes is. This material will mainly come from [14].

Let P be the set of all primes in Z and let A ⊆ P be a subset. If one were
to create a notion of “density” for the set A, a natural starting point would be
the question “what fraction of P is contained in A?” Of course, the set P is an
infinite set, so this would have to be modified. Instead, we could consider a given
n ∈ N and consider the fraction

Dn(A) =
#{x ∈ A : x ≤ n}
#{x ∈ P : x ≤ n}

.

Both these sets are finite, and so this quotient makes sense and is a well-defined
rational number in [0, 1]. Then the density of the set A could be

D(A) = lim
n→∞

Dn(A).

This is, in fact, one notion of density, called ”natural density.” This density works
fine, but there is another density which turns out to be the more useful one to
consider.
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Definition 3.2.7. If A ⊆ P is a set of prime numbers, then the Dirichlet density
of A is defined to be

δ(A) = lim
s→1+

∑
p∈A

1
ps

log
(

1
s−1

) ,
where the notation s→ 1+ denotes a limit for s ∈ R as s↘ 1.

The motivation behind this definition comes from the Riemann zeta function

ζ(s) =
∞∑
n=1

1

ns
,

which is an analytic function on the half plane <(s) > 1 (i.e. real part of s
strictly greater than 1). The details go too far off topic, but the zeta function has
a continutation to all of C, with a simple pole at s = 1 (which is where the term
1/(s− 1) comes from). So we can write

ζ(s) =
1

s− 1
+ some analytic function.

Using the Euler product

ζ(s) =
∏
p∈P

1

1− p−s
,

one can show that ∑
p∈P

1

ps
∼ log

(
1

s− 1

)
.

That is,

lim
s→1+

∑
p∈P

1
ps

log
(

1
s−1

) = 1.

Therefore the Dirichlet density of all the primes is δ(P ) = 1. Immediately, we get
the following proposition.

Proposition 3.2.8. A finite set of primes A ⊂ P has Dirichlet density δ(A) = 0.

Proof. By definition,

δ(A) = lim
s→1+

∑
p∈A

1
ps

log
(

1
s−1

) .
Since A is finite, the numerator remains bounded as s→ 1+, and the denominator
is unbounded. Therefore the quotient tends to 0, meaning δ(A) = 0.

In the previous section, we made use of Dirichlet’s theorem on primes in
an arithemetic progression. We now restate that theorem in terms of Dirichlet
density.
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Theorem 3.2.9 (Dirichlet). If (a,m) = 1, then the set of primes p ≡ a mod m
has Dirichlet density 1/ϕ(m).

Remark 3.2.10. Of course, this implies the set of primes ≡ a mod m is infinite,
as 1/ϕ(m) > 0. This also says that the set of primes is, in some sense, equally
distributed amongst the equivalence classes (modulo m) which are coprime to m.
So for example, if m = 6, then the two numbers ≤ 6 and relatively prime to 6 are
1 and 5, so ϕ(6) = 2. Therefore, Dirichlet’s theorem says that, with this notion
of density, 1/2 the primes are of the form 6n + 1 and the other half are of the
form 6n+ 5.

The Dirichlet density will come in handy in the next section as well as later
in the chapter.

3.2.3 Primes which split completely

Now we can investigate the primes which split completely in our abelian extension.
The following theorem, from [3], gives us part of the solution.

Theorem 3.2.11. Suppose K ⊆ Q(ζm) is a subfield, and make the usual identifi-
cation Gal(Q(ζm)/Q) ∼= (Z/mZ)×. Let H ≤ (Z/mZ)× be the subgroup identified
with Gal(Q(ζm)/K). Then the primes p 6 |m which split completely in K/Q are
those such that p mod m ∈ H.

Proof. If p 6 |m, then p is unramified in K. The reader will recall that a prime
splits completely if and only if the Artin automorphism is trivial. Example 2.3.81
shows that the Artin automorphism for the prime p ∈ Z is σp ∈ Gal(Q(ζm)/Q),
where σp is the map which sends ζm 7→ ζpm. Proposition 2.3.79 asserts(

pZ
K/Q

)
=

(
pZ

Q(ζm)/Q

) ∣∣∣
K

= σp|K .

So p splits completely if and only if σp|K = 1. Since

Gal(K/Q) ∼= Gal(Q(ζm)/Q)/Gal(Q(ζm)/K),

we find
σp|K = 1⇐⇒ σp ∈ Gal(Q(ζm)/K).

But under the identification Gal(Q(ζm)/Q) ∼= (Z/mZ)×,

σp ∈ Gal(Q(ζm)/K)⇐⇒ p mod m ∈ H.
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Example 3.2.12. Consider Q(ζ7)/Q. The degree of the extension is ϕ(7) =
6, and the Galois group is cyclic. Consider the real subfield K = Q(ζ7 +
ζ−1

7 ). We have seen (Proposition 3.1.9) that K has index 2 in Q(ζ7). There-
fore Gal(Q(ζ7)/K) has order 2. There is only one subgroup H of order 2 in
(Z/7Z)×. It is easy to compute H = {1, 6}. Therefore, a prime splits completely
in K/Q if and only if p ≡ 1 or 6 mod 7.

In the next section, we generalize this result to tell us about the behavior of
other unramified primes, such as the ones which remain prime in K.

Let us quickly reintroduce notation. Let G be a finite abelian group, and, as
always, write

G ∼= Z/n1Z× Z/n2Z× · · · × Z/nkZ

with ni|ni+1. The totally real number field we built was

K =
∏

Q(ζpi)
Hi ,

where the pi are distinct primes such that pi ≡ 1 mod 2ni andHi ≤ Gal(Q(ζpi)/Q)
is the unique subgroup of order pi−1

ni
. We proved in Proposition 3.2.4 that the

only primes of Z which ramify in K are the pi. Let Ki = Q(ζpi)
Hi .

We proved, in Corollary 3.2.3, that a prime p will split completely in K if and
only if it splits completely in all the Ki. But Theorem 3.2.11 provides us with a
useful way of describing the primes which split in Ki. So we can now state the
main theorem of this section.

Theorem 3.2.13. The set of primes which split completely in K has Dirichlet
density 1

n1n2···nk
. In particular, the set is infinite.

Proof. Abusing notation slightly, we will let Hi also denote the cyclic subgroup
of (Z/piZ)× of order pi−1

ni
. By Theorem 3.2.11 above, the primes which split

completely in Ki are precisely those p such that p mod pi ∈ Hi. The Chinese
Remainder Theorem (3.1.4), gives an isomorphism

Z/p1 · · · pkZ ∼= Z/p1Z× · · · × Z/pkZ.

For each i, choose any element hi ∈ Hi. This isomorphism says that there exists
some unique a mod p1 · · · pk such that

a ≡ hi mod pi for all i.

Moreover, if p is a prime such that p ≡ a mod p1 · · · pk, then p will split com-
pletely in K. To see this, notice that p ≡ a mod p1 · · · pk implies p ≡ hi mod pi
for all i. Therefore p mod pi ∈ Hi for all i, and so by Theorem 3.2.11, p splits in
Ki for all i, meaning p splits completely in K.
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Letting the various hi range over all the elements of Hi provides a set {aj} of
|H1||H2| · · · |Hk| unique values modulo p1 · · · pk. To see they are unique, it suf-
fices to note that two different ai will be different modulo pj for some j, and hence
must be distinct modulo p1 · · · pk. By the above argument p will split completely
in K if p is equivalent to one of these values of aj modulo p1 · · · pk. Conversely, if
p is not equivalent to one of these aj, then p mod pi /∈ Hi for some i, and hence
will not split completely in K. Therefore p splits completely if and only if it is
equivalent to some aj.

As noted above, there are |H1||H2| · · · |Hk| values in the set {aj}. But

|H1||H2| · · · |Hk| =
(p1 − 1)(p2 − 1) · · · (pk − 1)

n1 · · ·nk
.

Euler’s totient function is multiplicative for relatively prime numbers, so

ϕ(p1 · · · pk) = ϕ(p1) · · ·ϕ(pk) = (p1 − 1) · · · (pk − 1).

By Dirichlet’s theorem (Theorem 3.2.9), the set of primes equivalent to aj modulo
p1 · · · pk has Dirichlet density

1

ϕ(p1 · · · pk)
=

1

(p1 − 1) · · · (pk − 1)
.

Since different values of aj give a different set of primes, and Dirichlet density is
clearly additive for disjoint sets (provided the densities exist for each individual
set), the Dirichlet density of the primes which split completely in K is

1

ϕ(p1 · · · pk)
·|{aj}| =

1

(p1 − 1) · · · (pk − 1)
·(p1 − 1)(p2 − 1) · · · (pk − 1)

n1 · · ·nk
=

1

n1 · · ·nk
.

Since this number is strictly positive, the set of primes which split completely is
necessarily infinite.

Remark 3.2.14. This result is a special case of another theorem (which we will
not prove), which says that if K/Q is a number field, then the Dirichlet density
of the set of primes of Z which split completely in K is 1

[K:Q]
. Notice that in our

case, the totally real extension has degree n1n2 · · ·nk over Q, showing that the
theorem works in this specific case.

This theorem not only shows that set of primes which split completely is infi-
nite, it provides a way of finding the primes. Let us take a look at two examples.

Example 3.2.15. Consider G = Z/4Z. In this example k = 1. First, we must
select a prime congruent to 1 mod 8, so let us choose p = 17. Then p−1

n
= 4. Our

totally real number field K is

K = Q(ζ17)H ,
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where
H ≤ Gal(Q(ζ17)/Q) ∼= (Z/17Z)×

is the unique subgroup of order four. Observe that (Z/17Z)× is cyclic. Therefore
the elements of H are those elements a, modulo 17, which have order dividing
four. To find H explicitly, we can simply consider the roots of the equation x4 = 1
modulo 17. One readily checks that the solutions are {1, 4, 13, 16}. So H is the
subgroup consisting of {1, 4, 13, 16} (or these equivalence classes modulo 17).

The only prime which ramifies is p = 17 since K is a subfield of Q(ζ17) and
17 is the only prime which ramifies in Q(ζ17). Notice this agrees with Proposition
3.2.4 and Corollary 3.2.6. Moreover, by either Theorem 3.2.11 or the proof of the
previous theorem (Theorem 3.2.13), the primes which split completely in K are
those p such that p ≡ 1, 4, 13, or 16 mod 17.

Example 3.2.16. Let G = Z/2Z× Z/2Z. Here, k = 2. This time, we need two
distinct primes p1 and p2, each congruent to 1 mod 4(= 2 · 2). Let p1 = 5 and
p2 = 13. So

K = Q(ζ5)H1Q(ζ13)H2 ,

where H1 is the unique subgroup of (Z/5Z)× is the unique subgroup of order
5−1

2
= 2 and H2 is the unique subgroup of (Z/13Z)× of order 13−1

2
= 6. As in

the previous example, to find H1 we can search for solutions to x2 ≡ 1 mod 5,
which yields H1 = {1, 4}. Similarly, H2 consists of those numbers mod 13 which
are solutions to x6 ≡ 1 mod 13, and those are H2 = {1, 3, 4, 9, 10, 12}.

Here, the primes of Z which ramify in K are p1 = 5 and p2 = 13. To find
the primes which split completely, we proceed as in the proof of Theorem 3.2.13.
There are going to be |H1||H2| = 12 distinct values mod 5 · 13 = 65 to search for.
They will come from the solutions a of the equations

a ≡ h1 mod 5,

a ≡ h2 mod 13,

where h1 and h2 range over all values of H1 and H2, respectively. Again, it is
readily checked that the set of 12 values is

H = {1, 4, 9, 14, 16, 29, 36, 49, 51, 56, 61, 64}.

Therefore the primes which split completely are those p such that p mod 65 ∈ H.
The reader will notice that

ϕ(65) = ϕ(5)ϕ(13) = 4 · 12 = 48,

and so the Dirichlet density of primes which split completely in K is

12

48
=

1

4
=

1

2 · 2
.
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3.2.4 Other Primes

It would, of course, be nice to classify the behavior of the remaining primes of Z
in our constructed abelian extensions (i.e. those which do not ramify and do not
split completely). To do this, we make a generalization of Theorem 3.2.11, which
characterized the primes which split completely.

Theorem 3.2.17. Suppose K ⊆ Q(ζm) is a subfield, let n = [K : Q], and make
the usual identification G = Gal(Q(ζm)/Q) ∼= (Z/mZ)×. Let H ≤ (Z/mZ)× be
the subgroup identified with Gal(Q(ζm)/K). Suppose p 6 |m, so p is unramified

in K and Q(ζm). We have seen that the Artin automorphism
(

pZ
Q(ζm)/Q

)
for the

prime p is σp, where σp : ζm 7→ ζpm. Let f be the smallest natural number for which
σfp ∈ H. Then pZ factors as the product of n

f
distinct prime ideals in K, each

with residue field degree f . In particular, the primes which split into n
f

distinct

prime ideals in K are those primes such that pf mod m ∈ H but pd mod m /∈ H
for d ≤ f .

Proof. Recall Gal(K/Q) ∼= G/H. The condition that f is the smallest natural
number for which σfp ∈ H is precisely the statement that the restriction of σp to
K has order f in Gal(K/Q). Proposition 2.3.79 shows

σ̄p =

(
pZ
K/Q

)
=

(
pZ

Q(ζm)/Q

) ∣∣∣
K

= σp|K .

So σ̄p has order f . Let P be a prime of OK lying above p. We know p is unramified
and so we have an isomorphism

D(P/p) ∼= Gal(FP/Fp),

where FP = OK/P and Fp = Z/pZ (Proposition 2.3.65 and Remark 2.3.72). Since
D(P/p) is cyclic (as p is unramified) and generated by σ̄p, the order |D(P/p)| = f ,
and therefore Gal(FP/Fp) has order f in Gal(K/Q). Since |Gal(FP/Fp)| = [FP :
Fp], by definition residue field degree of P is precisely f . As K/Q is a Galois
extension, the residue field degree and ramification index is equal for every prime
lying above p. If p splits into g distinct primes, we have the identity

efg = n

by Theorem 2.3.48. But p is unramified, so e = 1, and therefore g = n
f
. Hence p

splits into n
f

distinct prime ideals in K, each with residue field degree f .

For the last part of the theorem, notice that σfp : ζm 7→ ζp
f

m , and so σfp is the
element σpf of the Galois group Gal(Q(ζm)/Q). Of course, using the usual iden-

tification, we can regard this as the element pf of (Z/mZ)×. But as

σpf |K = σfp |K = σ̄fp = 1 ∈ Gal(K/Q)
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and Gal(K/Q) ∼= G/H, this implies pf mod m ∈ H. Moreover, if d ≤ f , then
pd mod m /∈ H as this would imply σdp ∈ Gal(Q(ζm)/K) ∼= H, which contradicts
the minimality of f .

Before applying this theorem, let us first illustrate a different way to view our
constructed abelian extensions. As always, let G be a finite abelian group with

G ∼= Z/n1Z× Z/n2Z× · · · × Z/nkZ

with ni|ni+1. For each i choose pi ≡ 1 mod 2ni with all the pi distinct primes. Let
n = p1 · · · pk. We have been consideringKi = Q(ζpi)

Hi , whereHi ≤ Gal(Q(ζpi)/Q) ∼=
(Z/piZ)× is the unique subgroup of order pi−1

ni
. Now, lemmas 3.1.7 and 3.1.8 tell

us that

Q(ζn) =
k∏
i=1

Q(ζpi),

and moreover

Gal(Q(ζn)/Q) ∼= Gal(Q(ζp1)/Q)× · · · ×Gal(Q(ζpk)/Q).

Of course, we can write this this as

(Z/nZ)× ∼= (Z/p1Z)× × · · · × (Z/pkZ)× ,

which could also have been found using the Chinese Remainder Theorem. Since

Hi ≤ (Z/piZ)× ,

we can let
H = H1 × · · · ×Hk,

and see that this is a subgroup of

(Z/p1Z)× × · · · × (Z/pkZ)× .

Under the isomorphism above we can consider H as a subgroup of (Z/nZ)×. So
instead of considering the composite

K = K1 · · ·Kk = Q(ζp1)
H1 · · ·Q(ζpk)Hk ,

we can look at
K = Q(ζn)H .

It is clear from the way this is constructed that K is the same totally real ex-
tension we had investigated in previous sections, only this time we see it in a
different light. Namely, now we can view it is a subfield of a single cyclotomic
field instead of considering it as a composite of extensions. It makes applying the
theorems slightly easier.

Now let us look at a couple of examples to demonstrate the ideas in Theorem
3.2.17.
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Example 3.2.18. Let us continue working with the group in Example 3.2.15,
namely G = Z/4Z. Proceeding as in that example, we let p = 17 be our cho-
sen prime, and H is the subgroup of (Z/17Z)× consisting of H = {1, 4, 13, 16}.
So K = Q(ζ17)H is our desired quartic extension. We have already seen the
set of primes which split completely in K, and it consists of those p such that
p mod m ∈ H. This corresponds to the case f = 1 in Theorem 3.2.17.

Let p be any unramified prime. Here, Gal(K/Q) ∼= Z/4Z, so σp|K (the Artin
map corresponding to p in Q(ζ17) restricted to K) must have order 1, 2 or 4. If
it has order one, then p splits completely (as it splits into 4

1
= 4 distinct prime

ideals each of residue field degree f = 1). If it has order 2, then p2 mod 17 ∈ H
but p mod 17 /∈ H. Therefore to find the primes for which σp|K has order two,
we need to look for elements a mod 17 such that a2 mod 17 ∈ H but a /∈ H. This
corresponds to the set H ′, where

H ′ = {2, 8, 9, 15}.

Thus if p ≡ 2, 8, 9, or 15 mod 17, then p2 ∈ H but p /∈ H, and so σp|K has order
2. Therefore p will split into a product of two distinct prime ideals, each with
residue field degree 4

2
= 2.

Finally, σp|K could have order 4, in which case p would remain prime in K (i.e.
remain inert) and would have residue field degree 4. This corresponds to primes
p such that p4 mod 17 ∈ H, with p2 mod 17 /∈ H and p mod 17 /∈ H (as in The-
orem 3.2.17). To get equivalence classes mod 17 for this case, we need to find
a modulo 17 for which a4 mod 17 ∈ H but a2 mod 17, a mod 17 /∈ H. As the
orders in G/H ∼= Z/4Z can only be 1, 2 or 4, we need all the equivalence classes
we have not used, and this is the set

H ′′ = {3, 5, 6, 7, 10, 11, 12, 14}.

Thus if p mod 17 ∈ H ′′, then p remains inert in K.

Remark 3.2.19. Observe that this classifies the behavior of all primes in the ex-
tension K.

Example 3.2.20. For this, let us use G = Z/2Z×Z/2Z as in Example 3.2.16. In
that example, we chose p1 = 5 and p2 = 13 to be our two primes, so n = p1p2 = 65.
Moreover, H1 ≤ (Z/5Z)× is the cyclic subgroup of order 2 and H2 ≤ (Z/13Z)× is
the subgroup of order 6. Therefore H1×H2 is a subgroup of (Z/5Z)×× (Z/13Z)×

of order 12, and under the isomorphism

(Z/65Z)× ∼= (Z/5Z)× × (Z/13Z)×

corresponds to the subgroup H ≤ (Z/65Z)× with elements

H = {1, 4, 9, 14, 16, 29, 36, 49, 51, 56, 61, 64}.
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Therefore K = Q(ζ65)H .

Now let p 6= 5, 13 be a prime (necessarily unramified as 5 and 13 are the only two

primes which ramify in K), and consider its Artin automorphism σp =
(

pZ
Q(ζ65)/Q

)
.

Now Gal(K/Q) ∼= Z/2Z×Z/2Z, and so σp|K must have order 1 or 2 (as elements
in Z/2Z× Z/2Z all have order 1 or 2). If its order is 1, then p splits completely,
and so p mod 65 ∈ H by Example 3.2.16. To find the primes for which σp|K has
order 2, all we have to do is note that since σp|K must have order 1 or 2, the
primes for which it has order 2 are the primes for which it does not have order 1
(or which ramify). Therefore, letting

H ′ = {2, 3, 6, 7, 8, 11, 12, 17, 18, 19, 21, 22, 23, 24, 27, 28, 31, 32, 33, 34, 37, 38,

41, 42, 43, 44, 46, 47, 48, 53, 54, 57, 58, 59, 62, 63},

we get p splits into 2 distinct prime ideals, each with residue degree 2, if p mod 65 ∈
H ′.

Remark 3.2.21. Note that this also implies no prime of Z remains inert in K. To
see another reason why, notice that if p is unramified and P is a prime of OK
above p, then the isomorphism

D(P/p) ∼= Gal(FP/Fp)

shows the decomposition group is cyclic. But as

D(P/p) ≤ Gal(K/Q) ∼= Z/2Z× Z/2Z,

it cannot be cyclic of order greater than 2, meaning the Artin automorphism
(which generates the decomposition group) cannot have order greater than 2.
This reasoning will appear again in the last section of the chapter.

3.3 Polynomials with Abelian Galois group

Let us recap the results so far. For a finite abelian group G, we have constructed
a totally real number field K such that Gal(K/Q) ∼= G. Moreover, we proved
there were infinitely many such extensions. For these extensions, we have consid-
ered the factorization of primes of Z, and have managed to classify which primes
ramify, split completely, or factor in some alternative manner.

However, there are still things that we could do. For example, we have not
actually exhibited polynomials with Galois group G or splitting field K. And
while we have seen that infinitely many primes of Z will split completely in K,
we have not considered whether a given prime of Z, say 2 or 5, splits in infinitely
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many of these totally real extensions with Galois group G. These are the ques-
tions we will answer in the remaining sections of this chapter.

In this section, we will first show how to write down a polynomial with split-
ting field K. Let us, once again, recall the notation. Let G be a finite abelian
group, and write

G = Z/n1Z× · · · × Z/nkZ,

with ni|ni+1. For each i, choose a prime pi with pi ≡ 1 mod 2ni, and let n =
p1 · · · pk. Also for each i, let Hi be the unique subgroup of (Z/piZ)× of order pi−1

ni
,

and then consider the subgroup

H1 × · · · ×Hk ≤ (Z/p1Z)× × · · · × (Z/pkZ)× .

Let H denote the corresponding subgroup of (Z/nZ)× under the isomorphism

(Z/nZ)× ∼= (Z/p1Z)× × · · · × (Z/pkZ)× .

Then our totally real number field K = Q(ζn)H has Galois group G.

If we had a way to explicitly describe the fixed field Q(ζn)H/Q, i.e. find a gen-
erator α such that Q(ζn)H = Q(α), then we could find a polynomial with this field
as its splitting field. We could, for example, let mα(x) ∈ Q[x] denote the minimal
polynomial of α over Q, in which case the splitting field of mα(x) would be K.
To see why, just observe that any splitting field (when regarded as a subfield of
C) would have to contain α, and since K = Q(α) is the smallest field contain-
ing Q and α and is also Galois over Q, this would necessarily be the splitting field.

So the goal is to find a generator for the fixed field. The key to the proof will be
the following lemma, which can be found in [4] and the associated link.

Lemma 3.3.1. Suppose n is squarefree. Then the primitive n-th roots of unity
form a Q-basis for Q(ζn)/Q.

Proof. If n is squarefree, then it is the product of distinct primes, n = p1 · · · pk.
We can use induction on the number of primes k. Suppose k = 1. Then n = p is
prime, and we know that

1, ζp, ζ
2
p , . . . , ζ

p−2
p

forms a basis for Q(ζp)/Q. This implies that the elements

ζp, ζ
2
p , . . . , ζ

p−2
p ,−1− ζp − . . .− ζp−2

p

also forms a basis. Since

ζp−1
p = −1− ζp − . . .− ζp−2

p ,
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this implies that the p − 1 primitive p-th roots of unity constitute a basis for
Q(ζp)/Q, and the statement follows.

Now suppose it is true for k − 1 primes. We want it true for k primes. If
n = p1 · · · pk, then write n = cp, where c = p1 · · · pk−1. By induction, the primi-
tive c-th roots of unity form a Q-basis for Q(ζc)/Q and and primitive pk-th roots
of unity form a basis for Q(ζpk)/Q. Now, by Proposition 3.1.6, Q(ζc)∩Q(ζpk) = Q,
and by Lemma 3.1.7, Q(ζc)Q(ζpk) = Q(ζn). Since the two extensions are disjoint
and the two bases are given by

{ζ ic : 1 ≤ i ≤ c, (i, c) = 1} and {ζjpk : 1 ≤ j ≤ pk, (j, pk) = 1},

a Q-basis for Q(ζn) = Q(ζc)Q(ζpk) is given by

{ζ icζjpk : 1 ≤ i ≤ c, 1 ≤ j ≤ pk, (i, c) = 1, (j, pk) = 1}.

Now ζc = ζ
n/c
n and ζpk = ζ

n/pk
n , and since

n

c
i+

n

pk
j = pki+ cj,

we can write this basis as

{ζpki+cjn : 1 ≤ i ≤ c, 1 ≤ j ≤ pk, (i, c) = 1, (j, pk) = 1}.

Notice that for these i and j, (n, pki + cj) = 1. To see why, notice first that
(pki, c) = 1 and (cj, pk) = 1 since (pk, c) = 1 and (i, c) = (j, pk) = 1. Therefore
(pki+ cj, c) = (pki+ cj, pk) = 1. But as c and pk are relatively prime and n = cpk,
this immediately implies (pki + cj, n) = 1. Therefore ζpki+cjn is a primitive n-th
root of unity.

Morover, for distinct pairs (i, j), we get distinct primitive n-th roots of unity. To
see this, suppose the pair (i1, j1) is different from (i2, j2) (meaning either i1 6= i2
or j1 6= j2), and that pki1 + cj1 ≡ pki2 + cj2 mod n (meaning ζpki1+cj1

n = ζpki2+cj2
n ).

Reducing modulo pk and using the fact that (c, pk) = 1 gives j1 ≡ j2 mod pk.
But 1 ≤ ji ≤ pk for i = 1, 2, which means j1 = j2. Similarly, reducing the equiv-
alence modulo c and the fact that 1 ≤ i1, i2 ≤ c gives i1 = i2, contradicting the
fact the the pairs (i1, j1) and (i2, j2) were distinct. Therefore we have a set of
ϕ(c)ϕ(pk) primitive n-th roots of unity which form a basis for Q(ζn)/Q. But as
ϕ(n) = ϕ(pk)ϕ(c), this implies all primitive n-th roots of unity are elements of
the basis. Therefore the inductive step is proved and so is the lemma.

Now we can prove the desired proposition.
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Proposition 3.3.2. Suppose ζn is a primitive n-th root of unity, where n is
squarefree, and consider the field Q(ζn). Let G = Gal(Q(ζn)/Q). Let H ≤ G
denote any subgroup, and let

α =
∑
σ∈H

σ(ζn).

Then the fixed field Q(ζn)H is the field Q(α).

Proof. Suppose [G : H] = k, and let H = eH, g2H, . . . , gkH denote the k cosets
of H in G, and write Hi = giH, with H = H1. Furthermore, let

αi =
∑
σi∈Hi

σi(ζn).

First observe that if τ ∈ H, then τ(αi) = αi, as τ merely permutes the terms in
the sum for αi (as elements of H will permute the elements of Hi, for each i).
Since τ ∈ H was arbitrary, this implies αi ∈ Q(ζn)H for all i.

Next, we claim the αi are Q-linearly independent. Recall that for all σ ∈ G,
σ(ζn) is another primitive n-th root of unity. Moreover, distinct elements of G
map ζn to distinct primitive n-th roots of unity, and as σ runs over all of G,
we get all primitive n-th roots of unity. Since n is assumed to be squarefree, by
Lemma 3.3.1 above, the primitive n-th roots of unity form a basis for Q(ζn)/Q,
so in particular they are linearly independent. So suppose there was a nontrivial
dependence relation

c1α1 + . . .+ ckαk = 0,

where the ci ∈ Q. Then observing that each primitive n-th root of unity appears
in exactly one of the sums αi, this would yield a nontrivial dependence relation
among the primitive n-th roots of unity, which is a contradiction. Therefore all
the ci = 0 and the αi are linearly independent. Since [Q(ζn)H : Q] = k, this
implies that the αi form a basis for Q(ζn)H/Q.

Finally, the observation α1 ∈ Q(ζn)H clearly means Q(α1) ⊆ Q(ζn)H . Since
G is abelian, Gal(Q(ζn)/Q(α1)) / G is a normal subgroup, so the Fundamental
Theorem of Galois Theory implies that Q(α1) is Galois over Q, and in particular
it is a normal extension. The fact that αi = gi(α1) for i ≥ 2 says exactly that
each of the αi are roots of the minimal polynomial m(x) ∈ Q[x] of α1 over Q.
But as Q(α1) is normal, this implies αi ∈ Q(α1) for all i. So Q(α1) contains each
basis element for Q(ζn)H , and hence Q(α1) = Q(ζn)H , which is what we wanted
to prove.

Let us apply this proposition to the two examples we have been examining
throughout this chapter, namely G = Z/4Z and G = Z/2Z× Z/2Z.

99



Example 3.3.3. G = Z/4Z: Our totally real extension is K = Q(ζ17)H , where
H ≤ (Z/17Z)× is the subgroup H = {1, 4, 13, 16} (see Example 3.2.15). Of
course, we could also identify H with a subgroup of Gal(Q(ζ17)/Q) by writing

H = {σk : k = 1, 4, 13, 16},

where σk : ζn 7→ ζkn. Proposition 3.3.2 tells us that if

α =
∑
σ∈H

σ(ζ17),

then K = Q(α). Using our description of H, we find

α = ζ17 + ζ4
17 + ζ13

17 + ζ16
17 .

The minimal polynomial of α over Q can be found via SAGE or Mathematica
and is

mα(x) = x4 + x3 − 6x2 − x+ 1.

By the arguments preceding Lemma 3.3.1, we find mα(x) has splitting field K
and Galois group G = Z/4Z.

Example 3.3.4. G = Z/2Z× Z/2Z: Here our extension is K = Q(ζ65)H , where
H ≤ (Z/65Z)× is the subgroup

H = {1, 4, 9, 14, 16, 29, 36, 49, 51, 56, 61, 64}.

Therefore the element α from Proposition 3.3.2 is

α =
∑
k∈H

ζk65.

Again using either SAGE or Mathematica, one can verify that the minimal poly-
nomial over Q is

mα(x) = x4 − x3 − 10x2 − 3x+ 9.

Therefore mα(x) has splitting field K and Galois group G = Z/2Z× Z/2Z.

Those who really wanted to check this result could use SAGE to calculate the
Galois group. For instance, the examples above could be checked as follows:

sage : K.<a> = NumberField ( xˆ4 +xˆ3−6∗xˆ2−x+1)
sage : G = K. g a l o i s g r o u p ( type = ‘ ‘ par i ’ ’ ) ; G
Galo i s group PARI group [ 4 , −1, 1 , ‘ ‘C(4 ) = 4 ’ ’ ] o f degree
4 o f the Number F i e ld in a with d e f i n i n g polynomial
xˆ4 + xˆ3 − 6∗xˆ2 − x + 1

sage : L.<b> = NumberField ( xˆ4 − xˆ3 − 10∗xˆ2 − 3∗x + 9)
sage : H = L . g a l o i s g r o u p ( type = ‘ ‘ par i ’ ’ ) ; H
Galo i s group PARI group [ 4 , 1 , 2 , ‘ ‘E(4 ) = 2 [ x ] 2 ’ ’ ] o f
degree 4 o f the Number F i e ld in b with d e f i n i n g polynomial
xˆ4 − xˆ3 − 10∗xˆ2 − 3∗x + 9
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Using this method and SAGE, we found polynomials with abelian Galois group
G for all abelian groups up to order 20, with the exception of one group. In ad-
dition, we calculated the ramified primes and the primes which split completely,
again with the help of SAGE. Of course, one could use this method to find poly-
nomials with bigger abelian Galois group. For complete tables, see Appendix
D.

3.4 Splitting of primes 2 and 5 in Z/3Z-extensions

3.4.1 Motivation

The final two sections of this chapter will be devoted to the following question.
Given two (finite) primes p and q of Z, does p split completely in infinitely many
totally real Z/qZ extensions? Of course, we will still use the totally real exten-
sions we have been investigating the last few sections. This particular section will
consider the cases p = 2, 5 and q = 3. The results require cubic reciprocity, so
the cubic character will be the first topic of this section.

We are considering the case G = Z/3Z. As always, first choose a prime p such
that p ≡ 1 mod 6, and then the desired totally real number field is K = Q(ζp)

H ,
where H is the unique subgroup of Gal(Q(ζp)/Q) of order p−1

3
. By Theorem 3.2.11

and the other notes in Section 3.2.3, the primes which split completely in K are
those primes q such that q mod p ∈ H.

By making the usual identification Gal(Q(ζp)/Q) ∼= (Z/pZ)×, the subgroup H
is

H =
{
a ∈ (Z/pZ)× : a(p−1)/3 ≡ 1 mod p

}
.

For 2 to split completely in K, Theorem 3.2.11 says 2(p−1)/3 ≡ 1 mod p. What
the next lemma shows is that this happens precisely when 2 is a cube modulo p.
Note that the proof is adapted from [14], Section 1.3.

Lemma 3.4.1. Let p be a prime such that p ≡ 1 mod 3. Then an element x ∈ F×p
is a cube if and only if x(p−1)/3 = 1.

Proof. Choose Ω to be an algebraic closure of Fp. For x ∈ F×p , we can certainly
choose y ∈ Ω with y3 = x (as Ω is an algebraic closure, the polynomial t3 − x ∈
Fp[t] has a root in Ω). Suppose first that y ∈ Fp (i.e. x is a cube), then as
|F×p | = p− 1, certainly

yp−1 = 1.

But
yp−1 = x(p−1)/3,
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so x(p−1)/3 = 1. Conversely, if x(p−1)/3 = 1, then yp−1 = 1. But this implies y ∈ Fp
as elements of Fp are the roots of the equation tp − t ∈ Fp[t]. Therefore x is a
cube modulo in Fp.

Therefore, to check whether 2 (or 5) splits completely in K, it is sufficient
to check whether 2 (or 5) is a cube modulo p (Z/pZ is isomorphic to Fp). This
should, at least, provide some insight as to why we want to introduce the cubic
character.

3.4.2 Cubic Character

The goal of this section is to state the cubic reciprocity law. The proof is not
presented as it is not part of the scope of this thesis. The proof can be found in
[15], and the definitions and theorems will mainly come from here. Most of the
required machinery has already been developed at various points in this thesis,
so the cubic character will come rather easily. The majority of the work is just
a matter of putting the various results together and applying it to one specific
number field.

The cubic character and cubic reciprocity law focus on the cyclotomic field K =
Q(ζ3). In an effort to stick to standard notation, write ω = ζ3, so ω is a primitive
cube root of unity and K = Q(ω). Of course, ω is a root of the polynomial
x2 +x+1 ∈ Q[x] (Eisenstein for x+1 instead of x), and so alternatively we could
write K = Q(

√
−3). However, we mainly use K = Q(ω). By Theorem 2.3.6, the

ring of integers OK = Z[ω].

The ring OK = Z[ω] is a Euclidean domain, with Euclidean function given by
the norm inherited from C (this does not always lead to a Euclidean function,
but it does in this case). Moreover, this norm agrees with the norm function on
the number field K, which was introduced in Chapter 2. Here

NormK/Q(a+ bω) = (a+ bω)(a+ bω2) = a2 − ab+ b2.

Since OK is Euclidean, it is a UFD.

Units: We need the units of OK . In this instance, it is more helpful to write
K = Q(

√
−3). Instead of writing elements of OK as a + bω, they are written as

a + b
√
−3, where a and b are allowed to be half-integers because OK = Z[ω] =

Z
[

1+
√
−3

2

]
. By Proposition 2.3.11, the units of OK are precisely those α ∈ OK

with NormK/Q(α) = ±1. In this case, NormK/Q(a+ b
√
−3) = a2 + 3b2. Since we

have to allow half-integers, let a′ = 2a, b′ = 2b, so that both a′, b′ ∈ Z. Then the
equation NormK/Q(α) = ±1 becomes

a′2 + 3b′2 = ±4,
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where a′, b′ ∈ Z. This clearly only has 6 solutions (a′, b′):

(±2, 0), (±1,±1).

Since a′ = 2a, b′ = 2b, these correspond to the elements

±1,
−1 +

√
−3

2
,
1−
√
−3

2
,
−1−

√
−3

2
,
1 +
√
−3

2
.

Recalling that ω = −1+
√
−3

2
,

O×K = {±1,±ω,±ω2},

and these are all the units of OK .

Factoring Primes: Now consider a prime p of Z, and factor pOK into a product
of prime ideals. By Theorem 2.3.58, the only prime which ramifies in K is 3.
The Dedekind-Kummer Theorem 2.3.49 will aid in the factorization. We need to
factor the minimal polynomial of ω, namely x2 +x+1 ∈ Q[x], modulo 3. We find

x2 + x+ 1 ≡ x2 − 2x+ 1 ≡ (x− 1)2 mod 3.

Therefore
3OK = (3,−1 + ω)2 = p2.

Hence e(p/3) = 2, and as K/Q is a Galois extension, Theorem 2.3.48 implies
f(p/3) = 1. Since OK is a PID (as it is Euclidean), p has a single generator.
Clearly 1 − ω ∈ p, and so (1 − ω) ⊆ p. By definition of the norm of an ideal,
NK/Q(p) = 31 = 3. However, by Proposition 2.3.41,

NK/Q((1− ω)) = |NormK/Q(1− ω)| = 3.

This implies that (1 − ω) = p as they both have the same norm, and hence the
same index in OK by Proposition 2.3.40. Therefore

(3) = (1− ω)2 = ((1− ω)2),

meaning 3 and (1− ω)2 differ by a unit, and it is readily checked that the unit is
−ω2.

The results of the last few sections help describe the primes which split and
stay inert. It is a good exercise for the reader to verify that the primes which
split in K are those such that p ≡ 1 mod 3 and the primes which are inert in K
are those p such that p ≡ 2 mod 3.

Primary Associates: Recall that in a ring R, elements r, s ∈ R are said to
be left-associates if there exists a unit u ∈ R such that r = us. As OK = Z[ω] is
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a commutative ring, left-associates can just be called associates. Ultimately, the
desired irreducible elements of OK will be those π such that π ≡ 2 mod 3. That
is, when writing π = a+ bω, a ≡ 2 mod 3 and b ≡ 0 mod 3.

Now, if π ∈ OK is irreducible, then P = (π) is a prime ideal (as π is a prime
element in this PID), and so P lies above some prime p of Z. Therefore π|p for
some (unique) rational prime p. We have the following lemma.

Lemma 3.4.2. Let p 6= 3 be a prime of Z. Then every divisor π of p has a unique
associate π′ such that π′ ≡ 2 mod 3.

Such an associate is called the primary associate of π, and a prime π ≡
2 mod 3 is called a primary prime. This lemma is not hard and the proof is just
a matter of checking each of the six associates of π, so we will not prove it.

However, what this lemma does show is that for every rational prime p 6= 3,
there must be a primary prime dividing p. Indeed, if p ≡ 2 mod 3, then p re-
mains prime in OK and hence is a primary prime dividing p. If p ≡ 1 mod 3, then
pOK factors into two distinct prime ideals, and hence we can find two irreducible
divisors of p, say π1 and π2. By Lemma 3.4.2, each of the πi has an associate
which is a primary prime in OK , and hence will be a primary prime dividing p.

What is of greater use to us is the method to find a primary prime dividing
a prime p 6= 3. If p ≡ 2 mod 3, then p is prime as p stays inert in K, and so
it is a primary prime. So suppose p ≡ 1 mod 3, and let π|p be a primary prime
dividing p, which must exist by the above arguments. Then as (π) is a prime
ideal dividing pOK and pOK splits into two distinct prime ideals, (π) must be
one of the primes above p. Hence

NK/Q((π)) = |NormK/Q(π)| = p.

We want to be able to write π = a + bω where a ≡ 2, b ≡ 0 mod 3. Using the
formula for NormK/Q(π), we find

a2 − ab+ b2 = p.

Multiplying both sides by 4 and completing the square shows

4p = (2a− b)2 + 3b2.

Let A = 2a − b and B = b/3, where the latter is possible since 3|b. Then this
becomes

4p = A2 + 27B2.

As a quick aside: from this it is easy to observe that A and B must have the same
parity (take equivalences modulo 2). This will be useful later.
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Since solutions a, b ∈ Z must exist, solutions A and B exist. Pick A so that
A ≡ 1 mod 3. To see that this is possible, first notice that A cannot be 0 modulo
3 since the left side of

4p = A2 + 27B2

is not divisible by 3. Then if (A,B) is a solution, then (−A,B) is a solution, and
one of A,−A ≡ 1 mod 3 since A 6≡ 0 mod 3. After finding such A and B, let

b = 3B, a =
A+ b

2
.

Then this is a primary prime dividing p. Note that this primary prime is not
unique, as there are two possibilities for B (as both (A,B) and (A,−B) could be
solutions).

Cubic Character: Suppose π ∈ OK is a primary prime, π 6= 1 − ω. Then
the ideal πOK is a prime ideal, and there is a unique prime p of Z lying below π.
For an element α ∈ OK , let N(α) (or Nα) be NK/Q((α)). Then if p ≡ 1 mod 3,
then

Nπ = p ≡ 1 mod 3,

and if p ≡ 2 mod 3, then π = p and

Nπ = p2 ≡ 1 mod 3.

In both cases, Nπ ≡ 1 mod 3. But OK/πOK is a finite field of dimension
f((π)/p) over Fp. So in particular, OK/πOK is a field of pf((π)/p) = Nπ elements,
and so (OK/πOK)× is cyclic of order Nπ − 1. Since 3|Nπ − 1, there are 3
elements of order dividing 3 in (OK/πOK)×. Three possible elements are 1 +
πOK , ω + πOK , ω2 + πOK . To show that these are precisely the three we want,
we need to make sure 1, ω, ω2 are inequivalent modulo π. But this is clear as
1 − ω, ω − ω2 = ω(1 − ω), 1 − ω2 = −ω2(1 − ω) are all associates of 1 − ω,
which is the irreducible element dividing 3 (see above), and hence these three
differences cannot be divisible by π. Therefore these are the three roots of unity
in (OK/πOK)×. If α ∈ (OK/πOK)×, then

αNπ−1 ≡ 1 mod π,

and therefore
α(Nπ−1)/3 ≡ 1, ω, or ω2 mod π.

So we can define our cubic character as follows.

Definition 3.4.3. Suppose π is a primary prime (and π 6= 1 − ω). Then the
cubic character modulo π,

χπ : (OK/πOK)× → {1 + πOK , ω + πOK , ω2 + πOK},
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is defined by
χπ(α) = α(Nπ−1)/3 mod π.

From the way it is defined, it is easy to see that χπ is a homomorphism. The
other statement we want to prove is that χπ(α) = 1 if and only if α is a cube
modulo π. This is what the next proposition gives us.

Proposition 3.4.4. χπ(α) = 1 if and only if α is a cube in (OK/πOK)×.

Proof. Since (OK/πOK)× is cyclic, choose a generator γ. So γ has order Nπ − 1
in (OK/πOK)×. Choose α ∈ (OK/πOK)× and write α = γc. Then

χπ(α) = 1⇐⇒ α(Nπ−1)/3 = 1⇐⇒ gc(Nπ−1)/3 ⇐⇒ c(Nπ − 1)/3|Nπ − 1⇐⇒ 3|c.

Therefore the character gives a value of one precisely when α is a cube modulo π
(it is the cube of γc/3).

And now we can state the law of cubic reciprocity.

Theorem 3.4.5. Let π and π′ be primary primes lying above different primes p
and p′, neither of which is 3. Then

χπ(π′) = χπ′(π).

3.4.3 Proof that 2 and 5 split in infinitely many Z/3Z ex-
tensions

Having stated the law of cubic reciprocity, we can now prove that 2 and 5 split
in infinitely many Z/3Z extensions. Recall the idea in Section 3.4.1. First, we
choose a prime p ≡ 1 mod 6, and then consider our totally real number field
K = Q(ζn)H , where H is the subgroup of (Z/pZ)× of order (p−1)/3. Throughout
this section, we make use of this selected prime p and the associated field K. We
noted, using the results from Section 3.2.3, that 2 (resp. 5) splits in K if and
only if 2 ∈ H (resp. 5 ∈ H). This, in turn, happens if and only if 2 (resp 5)
satisfied 2(p−1)/3 ≡ 1 mod p (and similarly for 5), which, by Lemma 3.4.1, occurs
precisely when 2 (resp 5) is a cube mod p. But now we have the tools necessary
to determine when this happens, namely the cubic character and the law of cubic
reciprocity.

Proposition 3.4.6. The prime 2 splits completely in K if and only if our chosen
prime p has the form p = a2 + 27b2 for some a, b ∈ Z.

Proof. Let L = Q(ω), so OL = Z[ω]. Since p ≡ 1 mod 3 (in fact, 1 mod 6), we
can find a primary prime π of OL dividing p using the method outlined in the
previous section. Namely, write 4p = A2 + 27B2 and choose a solution so that
A ≡ 1 mod 3, and then

π =
A+ 3B

2
+ 3Bω
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is a primary prime dividing p. Let k = A+3B
2

. First, observe that A and B must
have the same parity, which is seen by reducing both sides of 4p = A2 + 27B2

modulo 2. Second, note that we cannot have both k and B be even. To see this,
notice that Nπ = p, and so

|NormK/Q(π)| = Nπ = p =⇒ NormK/Q(π) = ±p.

But as
NormK/Q(π) = k2 − k(3B) + (3B2) = ±p,

if both k and B are even, reducing modulo 2 gives a contradiction (as p is neces-
sarily odd being 1 mod 6). Therefore k and B cannot both be even.

Since p splits completely and π|p, f((π)/p) = 1 and we have an isomorphism
OK/πOK ∼= Z/pZ. Hence checking whether 2 is a cube modulo p (when regarded
as elements of Z) is the same as checking whether 2 is a cube modulo π, when
regarded as elements of OK . So we want χπ(2) = 1. As both π and 2 are primary
primes and π 6= 2, cubic reciprocity says

χπ(2) = χ2(π) = χ2(k + 3Bω).

If B is even, then k is odd, and χ2(k + 3Bω) = χ2(1) = 1, which means 2 is a
cube modulo π. So now suppose B is odd. Then k may be either even or odd. If
k is even, then

χ2(π) = χ2(k + 3Bω)

= χ2(ω) (as k is even and B is odd)

= ω(N(2)−1)/3 (by definition of the cubic character)

= ω(4−1)/3

= ω,

which means 2 will not be a cube modulo π. Similarly, if k is odd, then

χ2(π) = χ2(k + 3Bω)

= χ2(1 + ω) (as k and B are odd)

= χ2(−ω2)

= χ2(ω2) (as −1 is certainly a cube modulo 2)

= χ2(ω)χ2(ω)

= ω2.

Therefore, in both cases, 2 will not be a cube modulo π, and hence not a cube
modulo p. Therefore 2 is a cube modulo p if and only if B is even. Since A and
B have the same parity, A must be even. So write A = 2a, B = 2b for integers
a, b. The condition 4p = A2 + 27B2 implies p = a2 + 27b2. Therefore 2 splits in K
if and only if p has the form p = a2 + 27b2 for a, b ∈ Z, which is what we wanted
to show.
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This proposition is particularly nice because it gives a necessary and sufficient
condition for 2 to split completely in K. Let us briefly illustrate this idea. Our
chosen prime must be 1 mod 6, and so the first few choices are 7, 13, 19, and 31.
If we consider the corresponding totally real Z/3Z-extensions K, this proposition
tells us that 2 will not split completely in the first three but will in the fourth, as
31 = 22 + 27 · 12, and the first three primes cannot be written in this way.

Before showing that there are infinitely many such primes, let us prove a sim-
ilar proposition for the prime 5.

Proposition 3.4.7. The prime 5 will split completely in K if, when writing
4p = A2 + 27B2, at least one of A,B ≡ 0 mod 5.

Remark 3.4.8. The reader will notice that this proposition is, in some sense,
weaker than Proposition 3.4.6 because it only provides a sufficient condition; it is
not an “if and only if”. It turns out that converse is true, but we will not prove
that.

Proof. Let L = Q(ω), so OL = Z[ω]. As in the proof of Proposition 3.4.6, we
write 4p = A2 + 27B2, where A ≡ 1 mod 3, and a primary prime dividing p is

π =
A+ 3B

2
+ 3Bω.

Write k = A+3B
2

. Again, we have an isomorphism OL/πOL ∼= Z/pZ, so that to
check whether 5 is a cube modulo p it is enough to see whether 5 is a cube modulo
π. Cubic reciprocity says that χπ(5) = χ5(π) = χ5(k + 3Bω).

If B ≡ 0 mod 5, then
χ5(k + 3Bω) = χ5(k).

Since k ∈ Z, we find χ5(k) = 1 since every element modulo 5 is a cube (i.e.
x 7→ x3 is an automorphism of Z/5Z).

In the case A ≡ 0 mod 5, slightly more work is needed. If B is also 0 mod 5,
then the previous case holds. So assume B is not divisible by 5. First, observe
that, modulo 5,

k ≡ 3A+ 9B

since the inverse of 2 modulo 5 is 3. Therefore we can say

χ5(k+ 3Bω) = χ5(3A+ 9B+ 3Bω) = χ5(3)χ5(A+ 3B+Bω) = χ5(A+ 3B+Bω)

as χ5(3) = 1 by the earlier argument. But A ≡ 0 mod 5, so

χ5(A+ 3B+Bω) = χ5(3B+Bω) = χ5(B(3 +ω)) = χ5(B)χ5(3 +ω) = χ5(3 +ω),
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as χ5(B) = 1 since, again, every element in Z/5Z is a cube. Next, we want to find
the unique primary associate of 3 + ω, which exists by Lemma 3.4.2. We observe
that −ω2(3 + ω) = 2 + 3ω, which is a primary associate. Therefore

χ5(3 + ω) = χ5(−ω2)−1χ5(2 + 3ω)

= (ω2(N(5)−1)/3)−1χ5(2 + 3ω) (definition of cubic character)

= (ω2(25−1)/3)−1χ5(2 + 3ω) (as the ideal (5) is prime in OK)

= ω2χ5(2 + 3ω).

Again using cubic reciprocity,

ω2χ5(2 + 3ω) = ω2χ2+3ω(5).

A simple calculation will show that

5− (2 + 3ω)(1 + 2ω2) = 1 + ω = −ω2,

meaning 5 ≡ −ω2 mod (2 + 3ω). Therefore

ω2χ2+3ω(5) = ω2χ2+3ω(−ω2)

= ω2χ2+3ω(ω2) (as χ2+3ω(−1) = 1)

= ω2(ω2(N(2+3ω)−1)/3) (by definition)

= ω2(ω2(7−1)/3)

= ω2 · ω
= 1,

which proves that 5 is a cube modulo p in this case as well. Therefore 5 is a cube
modulo p when one of A,B ≡ 0 mod 5.

To get that 2 and 5 split completely in infinitely many totally real Z/3Z-
extensions, we just need the following theorem.

Theorem 3.4.9. Suppose ax2 + bxy + cy2 is a quadratic form, where a, b, c ∈ Z
with gcd(a, b, c) = 1. Suppose the discriminant D = b2−4ac < 0, and let S denote
the set

S = {p prime : p = ax2 + bxy + cy2 for some x, y ∈ Z}.
Then the Dirichlet density δ(S) exists and is positive.

A proof of this theorem can be found in [8]. As an immediate consequence of
this, we get the proposition we want.

Proposition 3.4.10. Both 2 and 5 split in infinitely many Z/3Z extensions.

Remark 3.4.11. Just for clarification, we do not assert that they split simulta-
neously. The prime 2 will split in infinitely many and the prime 5 will split
completely in infinitely many extensions.
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Proof. Proposition 3.4.6 shows 2 splits completely in K precisely when the chosen
prime p = a2 +27b2 for a, b ∈ Z. By Theorem 3.4.9, there are infinitely many such
primes, which means there are infinitely many such extensions K in which 2 splits
completely. Since K is a totally real Z/3Z extension, this proves the proposition
for the prime 2.

For 5, Proposition 3.4.7 says that 5 will split completely in K if 4p = 25a2 + 27b2

or 4p = a2 + 255b2 (i.e. when either A or B is divisible by 5 in the decompo-
sition 4p = A2 + 27B2). If we restrict to when both a and b are even, we get
p = 25a′2 + 27b′2 or p = a′2 + 255b′2, where a′ = 2a and b′ = 2b. By Theorem
3.4.9, there are infinitely many such primes for each decomposition, leading to
infinitely many totally real Z/3Z extensions in which 5 splits completely.

3.5 Splitting of p in Z/qZ-extensions

The phenomenon encountered in the previous section is not specific to Z/3Z
extensions or to the two specific primes 2 and 5. For any primes p, q, the prime p
will split in infinitely many totally real Z/qZ extensions. We have all the results
needed to prove this.

Lemma 3.5.1. For any two totally real, linearly disjoint Z/qZ extensions in
which p is unramified and does not split completely, there exists a subfield of the
compositum in which it does split completely. Moreover, this extension is a totally
real Z/qZ extension of Q.

Proof. Suppose K1 and K2 the two extensions in the statement of the lemma (i.e.
p is unramified in K1 and K2 but does not split completely), and consider the
compositum K = K1K2. As K1 and K2 are linearly disjoint, Gal(K/Q) ∼= Z/qZ×
Z/qZ. Let P be a prime of OK lying above p, and consider the decomposition
group D = D(P/p). If |D| = 1, then p splits completely in K, and hence splits
completely in K1 and K2 by Lemma 3.2.2, a contradiction. Therefore |D| = q
or |D| = q2 as D ≤ Gal(K/Q). However, as p is unramified in K1 and K2, it is
unramified in K by Lemma 3.2.2, and hence we have an isomorphism

D ∼= Gal(FP/Fp),

where FP = OK/P and Fp = Z/pZ. In particular, D is cyclic, and so |D| 6= q2 as
there is clearly no cyclic subgroup of order q2 in Z/qZ×Z/qZ. Therefore |D| = q.
If we consider L = KD, this will be a totally real extension (totally real since K
is totally real), and p will split completely in L by Proposition 2.3.73. Moroever,
Gal(L/Q) ∼= Z/qZ as Gal(L/Q) is an abelian group of order q, and q is prime.

Proposition 3.5.2. For any two primes p and q, p splits in infinitely many
totally real Z/qZ-extensions.
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Proof. Let {ri} be the set of all primes≡ 1 mod 2q. Theorem 3.1.11 and Corollary
3.2.6 say that for each ri there is a totally real Z/qZ extension of Q, say Ki, in
which only ri ramifies. If p split completely in only finitely many of these Ki,
then there would clearly be infinitely many in which it did not split completely.
Since each Ki is a subfield of Q(ζri), Ki ∩Kj = Q by Lemma 3.1.6. Moreover, p
can ramify in at most one of these Ki because each of the primes ri is distinct.
Therefore, there are infinitely many Ki in which p is unramified and p does not
split completely. For any two of them, Lemma 3.5.1 says we can construct a
totally real Z/qZ extension in which p does split completely, and it is realized as
a subfield of the composite extension. We could therefore do this with all distinct
pairs of extensions in which p does not split completely to get infinitely many
new extensions in which it does.
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Chapter 4

Symmetric Groups

We now shift gears and move on to the second class of groups: the symmetric
groups Sn. We will need to develop more background material in order to present
the proof of the existence of a totally real number field with Galois group Sn.

4.1 Additional Background Material

4.1.1 p-adic Numbers

p-adic Valuation

At the heart of both the desired results are the p-adic numbers. Presumably,
at some point, the reader has seen the construction of R as a completion of Q.
Namely, we consider the usual metric on Q, given by the normal absolute value
on R,

|x| =
{
x if x ≥ 0
−x if x < 0

.

Then we form special sequences of rational numbers, called Cauchy sequences :

Definition 4.1.1. A sequence {xn} of rational numbers is called a Cauchy se-
quence if for all ε ∈ Q, ε > 0, there exists N such that for all m,n > N ,

|xn − xm| < ε.

One then obtains R by taking equivalence classes of Cauchy sequences of ra-
tional numbers, where two Cauchy sequences {an} and {bn} are equivalent if the
sequence {an − bn} converges to zero. Then one shows that R is complete and
the desired operations hold, which means the resulting complete field is actually R.

The reader will observe that definition 4.1.1 is heavily dependent on the met-
ric on Q given by the absolute value | · |. It is this metric which defines when two
numbers are “close together.” Changing the metric could change the resulting
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completion. But then two natural questions arise: are there any other metrics on
Q, and what do the resulting completions look like? The p-adics are formed by
considering different metrics on Q and then completing Q in the same manner as
we do to obtain R.

It turns out that there are infinitely many inequivalent metrics, or absolute val-
ues, we can place on Q. First, let us make the definition of absolute value precise.
This definition comes from [3].

Definition 4.1.2. An absolute value on Q is a function | · | : Q→ R≥0, such that

(i) |x| = 0 if and only if x = 0,

(ii) |xy| = |x||y| for all x, y ∈ Q,

(iii) |x+ y| ≤ |x|+ |y| for all x, y ∈ Q.

An absolute value which, in addition, satisfies the inequality

(iii’) |x+ y| ≤ max{|x|, |y|} for all x, y ∈ Q,

is known as a non-Archimedean absolute value.

Remark 4.1.3. At this point, it is worth noting that many of the definitions and
results we use can be generalized to arbitrary number fields, and in fact this is
the way they appear in many algebraic number theory texts. However, as we
will only be needing the completion of Q and not other fields, we will only be
presenting results for Q.

The reader will note that (iii’) clearly implies (iii), so (iii’) is a stronger con-
dition. Absolute values which do not satify (iii’) (but do satisfy (iii)) are called
Archimedean.

Any absolute value on Q gives rise to a metric function in the obvious way:
we let the distance between x, y ∈ Q be d(x, y) = |x− y|. From this, we can say
that two absolute values are equivalent if they induce the same metric topology
on Q. However, we will use the following definition, and the equivalence is proved
in [9].

Definition 4.1.4. Two absolute values |·|1 and |·|2 on Q are equivalent if |x|1 < 1
holds if and only if |x|2 < 1 (for any x ∈ Q).

One can prove that the only Archimedean absolute value on Q, up to equiva-
lence, is the metric given by the usual absolute value on Q. So now let us build
some non-Archimedean absolute values.

Fix a prime number p. For 0 6= x ∈ Q, write

x = pk
a

b
, p 6 |ab.
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That is, “factor out” all possible powers of p from x when written in lowest terms.
We then define a function ordp : Q\{0} → Z as ordp(x) = k. Depending on the
text, the reader may see ordp(0) =∞ as a special definition, and we will see why
momentarily. So, for example,

ord2(8) = 3, ord3

(
5

3

)
= −1, ord11

(
33

8

)
= 1.

Since the function ordp only takes values in Z, it is referred to as a discrete
valuation on Q. The following proposition is easy, but crucial.

Proposition 4.1.5. For x, y ∈ Q\{0}, ordp(x+ y) ≥ min{ordp(x), ordp(y)}.

Proof. Let n = ordp(x) and m = ordp(y), and suppose first that they are unequal.
Without loss of generality, assume m < n. Write

x = pn
a

b
, y = pm

c

d
,

where p does not divide a, b, c, d. Since m < n, we find

x+ y = pm
(
pn−ma

b
+
c

d

)
= pm

pn−mad+ bc

bd
.

As n − m > 0 and since p does not divide either b or c, p cannot divide the
numerator of this fraction. Similarly, the fact p 6 |b, d implies p does not divide the
denominator of this fraction. Hence ordp(x + y) = m = min{ordp(x), ordp(y)}.
So we get equality in this case. If n = m, then we see that, by the same logic,

x+ y = pm
ad+ bc

bd
.

Again, as p 6 |b, d, we find p does not divide the denominator. However p could
divide the numerator, which could only contribute more to ordp(x+y). Therefore

ordp(x+ y) ≥ m = min{ordp(x), ordp(y)}.

The statement is true in both cases, proving the proposition.

An example of when equality does not hold is

ord2(2 + 2) = ord2(4) = 2 > 1 = min{1, 1}.

Using this valuation, we can define the p-adic absolute value | · |p as follows.

Definition 4.1.6. Choose any 0 < c < 1, and let x ∈ Q. Then the p-adic
absolute value is defined as

|x|p =

{
0 if x = 0
cordp(x) if x 6= 0

.
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We noted above that sometimes texts define ordp(0) =∞. In Definition 4.1.6,
with this notation, |0|p = c∞ = 0, meaning there is no need to make the special
definition |0|p = 0.

We will be using c = 1
p
, which is the common choice for c. However, any two

choices of c (with 0 < c < 1) will provide equivalent absolute values on Q. Two
different primes, on the other hand, result in two inequivalent absolute values.
That | · |p is non-Archimedean follows immediately from the definition and Propo-
sition 4.1.5.

The key observation to make is, in the corresponding metric, two numbers are
close if their difference is divisible by a high power of p. For example,

|129− 1|2 = |128|2 =
1

2ord2(128)
=

1

27
= .0078125,

which means 1 and 129 are “close” 2-adically. This probably contradicts any
preconceived notion of distance the reader may have (such as the one learned in
elementary school).

p-adic Numbers and p-adic Integers

Armed with this p-adic metric, we can obtain the completion of Q with respect
to this metric. One could follow the exact same method as the one outlined in
the previous section to obtain R, but we introduce a more “algebraic” approach.
We will not prove many of the facts stated here, but proofs can be found in [9].
Fix a prime p. Let C denote the set of Cauchy sequences of elements of Q with
respect to the p-adic metric. Then C can be made into a ring with the following
operations:

{an}+ {bn} = {an + bn},
{an} · {bn} = {anbn}.

It can be shown that the two resulting sequences are indeed Cauchy sequences
(and hence in C). Both operations are clearly commutative, and if we define the
multiplicative identity as 1 = {1}, then C becomes a commutative ring with iden-
tity.

To obtain a field from C, we can quotient out by a maximal ideal. Before, we
considered two Cauchy sequences to be equivalent if their difference tended to
zero. So we can consider N , the sequences of C which have a limit of zero.

Proposition 4.1.7. C/N is a field.

Proof. The proof is straightforward so we will present it here. First, let us show
that N is an ideal. If {xn}, {yn} ∈ N , it is clear that {xn}+ {yn} ∈ N . Suppose
that {zn} ∈ C. We want

{xn} · {zn} ∈ N .
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We will let the reader verify that {|zn|p} is a Cauchy sequence in Q, and this
implies that the terms |zn|p are bounded. But then we find

lim
n→∞

|xnzn|p = lim
n→∞

|xn|p|zn|p = 0,

meaning {xn} · {zn} ∈ N . Hence N is an ideal of C. To show the quotient is a
field, it suffices to show every element of C not in N is invertible modulo N . So
suppose {xn} is in C but not in N . Let

l = lim
n→∞

|xn|p 6= 0.

Then as {|xn|p} is Cauchy, there exists N such that n > N implies |xn− l|p ≤ l/2,
so in particular for all n > N , xn 6= 0. Therefore only a finite number of the xn
are zero. Let {yn} be the sequence defined by

yn =

{
1 if xn = 0
x−1
n if xn 6= 0

.

Then it is easily verifed that {yn} is Cauchy and that {xn} · {yn} = 1 + {zn},
where {zn} ∈ N . Therefore C/N is a field.

The field C/N is denoted Qp, and called the p-adic numbers. One can show
that Qp is complete, and this is done in [9].

Now, the proof above used the fact that if {xn} is a Cauchy sequence in Q,
then {|xn|p} was a Cauchy sequence in Q. We can say more. Since | · |p is a
discrete metric (i.e. its possible values form a discrete set in R), a convergent
Cauchy sequence means that after a point all the values in the sequence are the
same. For this reason, we can make the following definition.

Definition 4.1.8. Suppose x ∈ Qp, and let {xn} be a Cauchy sequence (of
rationals) which represents x. Then we can define

|x|p = lim
n→∞

|xn|p.

Thus we can extend the p-adic absolute value on Q to all of Qp, and moreover
it makes sense to discuss nice topological terms like “neighborhoods” and “dense
sets.” As a first example, via constant sequences, we can embed Q into Qp. And
similarly to how Q is dense in R, it is also true Q is dense in Qp. Let us prove
that now, and a proof can be found in [7].

Proposition 4.1.9. The image of Q in Qp (under the natural inclusion) is dense
in Qp.
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Proof. Suppose x ∈ Qp and let {xn} denote a Cauchy sequence of rationals which
represents x. Let ε > 0. To show the image of Q is dense, we need to find a
constant sequence within ε of x. Choose ε′ < ε (the reason will be clear by the
end). Since {xn} is Cauchy, we can certainly find N such that n,m ≥ N implies
|xn−xm|p < ε′. We let y = xN and then consider the constant sequence {y}. The
claim is that this is the constant sequence we want. Clearly x− y is represented
by the sequence {xn − y}. Moroever, by definition,

|x− y|p = lim
n→∞

|xn − y|p.

However, for n ≥ N , |xn − y|p < ε′ by choice of y. Therefore

|x− y|p = lim
n→∞

|xn − y|p ≤ ε′ < ε,

as required. Since x ∈ Qp was arbitrary, the image of Q is dense in Qp.

Remark 4.1.10. At times we say Q is dense in Qp or Q is dense in R, but what
we mean is that the image of Q in these fields, under the natural inclusion by
constant sequences, is dense.

Next, we will examine a particular subring of Qp, given by

Zp = {α ∈ Qp : |α|p ≤ 1},

and called the ring of p-adic integers. This is, in fact, a ring because we have
the non-Archimedean metric | · |p. It is clear that the embedding of Z into Qp,
by constant sequences, will lie in Zp, as integers have no denominators. However,
the fact we will need is that Z is actually dense in Zp. The following proof comes
from [7].

Proposition 4.1.11. The image of Z in Zp (under the natural inclusion) is dense
in Zp.

Proof. Choose x ∈ Zp. Since the p-adic metric is discrete, it suffices to show that
for any n ≥ 1 (so that we stay in Zp), we can find an integer (i.e. a constant
sequence consisting of intgers) within 1

pn
of x. By Proposition 4.1.9, we can find

a rational number a/b ∈ Q, b 6= 0, such that∣∣∣x− a

b

∣∣∣
p
≤ 1

pn
< 1.

As
a

b
=
a

b
− x+ x,

using the non-Archimedean property of the metric we find∣∣∣a
b

∣∣∣
p
≤ max{|x|p, |x−

a

b
|p} ≤ 1.
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But this implies that a
b

belongs to the localized ring Z(p), which also gives p 6 |b.
But as (p, b) = 1, b will have an inverse modulo pn, so we find can b′ ∈ Z such
that bb′ ≡ 1 mod pn. With this, we find

pn|bb′ − 1 =⇒ pn|abb′ − a =⇒ pn|a
b
− ab′

as (b, pn) = (b, p) = 1. By definition of the p-adic metric, this yields∣∣∣a
b
− ab′

∣∣∣
p
≤ 1

pn
.

Clearly ab′ ∈ Z, and

|x− ab′|p ≤ max

{∣∣∣x− a

b

∣∣∣
p
,
∣∣∣a
b
− ab′

∣∣∣
p

}
≤ 1

pn
.

Since x ∈ Zp was arbitrary, this proves Z is dense in Zp.

Both Zp and the proposition will be important when we prove that all sym-
metric groups exist as Galois groups of totally real fields.

4.1.2 Approximation Theorem

In this section we prove important result crucial to the proof of the main theorem
of this chapter. As with many results in the previous two sections, the theorem
can be proved in greater generality (for arbitrary number fields), but we state and
prove the theorem only for Q, as this is the only number field we will need to use
it for.

Theorem 4.1.12. Suppose | · |1, | · |2, . . . , | · |n are non-trivial pairwise inequivalent
absolute values on Q, and let β1, . . . , βn be nonzero elements of Q. Then for any
ε > 0, there exists α ∈ Q such that |α− βj|j < ε for each j.

Proof. First, we claim there exist xi ∈ Q such that for every i,

|xi|i > 1, |xi|j < 1 for i 6= j.

Then we will construct α using the xi and the βi. To prove the claim, we use
induction on n. Suppose n = 2. Then as | · |1 and | · |2 are non-equivalent by as-
sumption, by definition we can find y, z ∈ Q such that |y|1 > 1 with |y|2 ≤ 1, and
|z|1 ≤ 1 with |z|2 > 1. Then if x1 = y

z
, then |x1|1 > 1 and |x1|2 < 1. Construct

x2 similarly.

For the inductive step, assume there exists x ∈ Q such that

|x|1 > 1 and |x|j < 1 for j = 2, 3, . . . , n− 1.

118



By the n = 2 case, there exists t ∈ Q such that |t|1 > 1 and |t|n < 1. Define

x1 =


x if |x|n < 1
xrt if |x|n = 1
xrt

1+xr
if |x|n > 1

where r is a number which will be determined shortly. Let us go through each
case.

(i) In the first case, |x1|1 > 1 and |x1|j < 1 for j = 2, . . . , n, which is what we
need.

(ii) In the second case, we certainly have |x1|1 > 1 (as |x|1 > 1 and |t|1 > 1)
and |x1|n < 1. If 2 ≤ j ≤ n−1, then as |x|j < 1 and t is some fixed element
of Q, we can choose r large enough so that |x1|j < 1. (Take r so that
0 < |x|rj < 1/|t|j.) With this r, x1 becomes an element such that |x1|1 > 1
and |x1|j < 1 for 2 ≤ j ≤ n.

(iii) Note that

|x1|j =
|x|rj |t|j
|1 + xr|j

=
|t|j

|x−r + 1|j
.

If j = 1, then

|x1|1 ≥
|t|1

|x|−r1 + 1
→ |t|1 > 1

as r → ∞. Therefore, for r sufficiently large, |x1|1 > 1. Also observe that
for all y ∈ Q, |1 + y|j ≥

∣∣|y|j − 1
∣∣ (break into cases |y|j ≥ 1 and |y|j < 1

and use |a− b|j ≥ |a|j − |b|j), which implies

|x1|j ≤
|t|j∣∣|x|−rj − 1

∣∣ .
If 2 ≤ j ≤ n− 1, then

|x1|j ≤
|t|j∣∣|x|−rj − 1

∣∣ → 0

as r →∞ since |x|j < 1. Lastly,

|x1|n ≤
|t|n∣∣|x|−rn − 1

∣∣ → |t|n < 1

as r →∞ since |x|n > 1. Therefore for r sufficiently large, we find |x1|1 > 1
and |x1|j < 1 for 2 ≤ j ≤ n, as required.
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In all three cases, provided r is large enough, we can find x1 such that |x1|1 > 1
and |x1|j < 1 for 2 ≤ j ≤ n. By symmetry, we can find xi such that

|xi|i > 1 and |xi|j < 1 for j 6= i.

To finish the proof, let

α =
∑
j

xsj
1 + xsj

βj,

where s is to be determined. By the triangle inequality,

|α− βi|i ≤
∣∣∣∣ βi
1 + xsi

∣∣∣∣
i

+
∑
j 6=i

∣∣∣∣ xsj
1 + xsj

βj

∣∣∣∣
i

.

The βi and xi are all fixed. But by logic entirely similar to the steps in the three
cases above, as s → ∞, each of the terms goes to 0. Therefore for s sufficiently
large, we can make all the |α−βi|i < ε (find s for each case and take largest such
s). This proves the theorem.

One could think of this approximation theorem as an extension of the Chinese
Remainder Theorem. If these absolute values are all p-adic (non-Archimedean)
absolute values on Q, then α and β being “close” is the same as saying

α ≡ β mod pn

for some sufficiently large n. So suppose the metric |·|i in the theorem corresponds
to the pi-adic metric for some prime pi, and choose ni such that 1

p
ni
i

< ε. Then if

the βi ∈ Z, then the approximation theorem says we can find α such that

α ≡ βi mod pni
i

for all i, which is what the Chinese Remainder Theorem gives. The power of this
theorem, however, lies in the fact that we can take βi ∈ Q, not just elements of Z.
Moreover, we can use the Archimedean absolute value on Q, not just the p-adic
ones. One also sees that the same proof works if we replace Q by an arbitrary
number field F , and so this theorem extends even further.

4.1.3 Alternate Method for Computing Galois Groups

The approximation theorem is certainly the major tool in getting the symmetric
group Sn to be the Galois group of a totally real number field. The theorem we
present in this section is the result used by the standard method for getting Sn to
be a Galois group of some extension of Q, not necessarily totally real. We will also
be using the theorem, and it is very helpful when trying to compute Galois groups.
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Suppose we had a polynomial f(x) ∈ Z[x]. Calculating the Galois group can
be difficult, especially if the polynomial is of high degree. The main idea behind
this theorem is that the factorizations modulo some prime p give some informa-
tion about the Galois group of the polynomial over Z (and hence over Q). The
theorem can be found in [11].

Theorem 4.1.13. Suppose f(x) ∈ Z[x] is a polynomial of degree n and p a prime
for which the reduction f̄(x) of f(x) modulo p has no multiple roots. Suppose f̄(x)
factors into irreducibles as

f̄ = f̄1(x) · · · f̄k(x),

where f̄i(x) ∈ Fp[x] is an irreducible polynomial of degree ni, say. Then regarded
as a subgroup of Sn, the group Gal(f) of f(x) over Q contains an element σ with
cycle type (n1, n2, · · · , nk).

Proof. Let K be a splitting field for f(x) over Q. The condition that the reduced
polynomial f̄(x) ∈ Fp[x] has no multiple roots means that p is unramified in K
by the Dedekind-Kummer Theorem (Theorem 2.3.49). Let P be a prime of OK
lying above p. Then letting FP = OK/P as usual, it is clear that FP will be the
splitting field for f̄(x) over Fp. Moreover, Gal(FP/Fp) transitively permutes the
roots (in FP) of the irreducible factors of f̄(x). But over finite fields, all Galois
groups are cyclic, and so Gal(f̄i) will be an element of order ni in Sni

(as Gal(f̄i)
can be regarded as a subgroup of Sni

), which is an ni-cycle. Since each of the
roots of the f̄i are distinct, it is clear that Gal(f̄) will contain a permutation of
cycle type (n1, . . . , nk) (a product of disjoint cycles of length n1, n2, . . . , nk). But
as p is unramified, by Remark 2.3.72 we have an isomorphism

D(P/p) ∼= Gal(FP/Fp).

Therefore D(P/p), when regarded as a subgroup of Sn, contains a permutation
σ of the same cycle type. But as D(P/p) ≤ Gal(f), we see Gal(f) also contains
σ.

Why this theorem is so nice is that we have explicit generating sets for, say,
Sn. For example, from group theory, we have the following.

Proposition 4.1.14. (i) For n ≥ 4, Sn is generated by a transposition and an
(n− 1)-cycle.

(ii) If p ≥ 3 is prime, then Sp is generated by a transposition and a p-cycle.

In particular, it is possible that by reducing the polynomial modulo appropri-
ate primes, we will get cycle types which generate Sn, such as a transposition and
an (n− 1)-cycle.
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Example 4.1.15. Consider f(x) = x5 + 5x4 − 20x3 − 40x2 + 5x + 1. Since it is
a quintic polynomial, the Galois group is isomorphic to a subgroup of S5, so we
consider Gal(f) to be this isomorphic subgroup. We show that Gal(f) ∼= S5 by
simply using Theorem 4.1.13. First, we can look at f(x) modulo 11 and find that
it is irreducible. (One could check this directly or use languages like Mathemat-
ica or SAGE to factor the polynomial.) This factorization yields two facts. For
one thing, it shows that the polynomial is irreducible over Z, and hence over Q
(Theorem A.2.1). The other fact is that Gal(f) contains a 5-cycle by Theorem
4.1.13.

Next, reduce f(x) modulo the prime 7 to get the factorization

f(x) = (x3 + 5x+ 5)(x2 + 5x+ 3) mod 7

which, by Theorem 4.1.13, implies that Gal(f) contains a permutation of cycle
type (3, 2). But cubing this element produces a transposition as disjoint cycles
commute, and so Gal(f) contains a transposition. Therefore, by Proposition
4.1.14(ii), Gal(f) ∼= S5, as Gal(f) contains a transposition and a 5-cycle.

On first glance, calculating the Galois group of the polynomial in the example
might seem intimidating. But this example establishes just how powerful Theorem
4.1.13 can be.

4.2 Realizing Sn as Galois group of totally real

number field

Now that all the background material is set, we can begin our march towards the
existence of a totally real number field with Galois group Sn. Just to give the
reader an idea, without the totally real restriction, the approach would be to pick
three primes, find three factorizations (modulo these three primes) which would
give us the necessary cycle types to generate Sn using Theorem 4.1.13, and use
the Chinese Remainder Theorem to find f(x) ∈ Z[x] which reduce to these three
factorizations modulo these primes. But the problem is there is absolutely no
guarantee that all the roots of the constructed f(x) will be real, which would be
necessary for a totally real splitting field.

This idea will certainly be important to our proof, but the approximation theo-
rem will be used to make sure all the roots of our polynomial are real. The proof
will also require results which allow us to describe the behavior of polynomials
after perturbing the coefficients slightly. This is what the following proposition
and subsequent corollary do.

Proposition 4.2.1. Let I ⊂ R be a bounded interval, and f(x) ∈ R[x] a poly-
nomial of degree n > 0. Then for all ε > 0, there exists δ > 0 (which depends
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on I and ε) such that if g(x) ∈ R[x] is a polynomial formed by perturbing the
coefficients of f(x) by at most δ, then |f(x)− g(x)| < ε on I.

Figure 4.1: Perturbing coefficients of polynomial by at most δ ensures new poly-
nomial stays within dashed red lines

Proof. Let g(x) ∈ R[x] be degree n and write g(x) = f(x) + c(x), where c(x) is a
polynomial of degree at most n, and let ε > 0. Write

c(x) =
n∑
i=0

cix
i,

and let C = max0≤i≤n |ci|. Now, since I is bounded, there exists M such that
|x| ≤M on I (just take M = supx∈I |x|). Notice that on I,

|f(x)− g(x)| = |c(x)|
= |cnxn + cn−1x

n−1 + . . .+ c1x+ c0|
≤ |cnxn|+ |cn−1x

n−1|+ . . .+ |c1x|+ |c0| (triangle inequality)

≤ |cn||x|n + . . .+ |c1||x|+ |c0|
≤ |cn|Mn + |cn−1|Mn−1 + . . .+ |c1|M + |c0| (by definition of M)

≤ CMn + CMn−1 + . . . CM + C (as each |ci| ≤ C)

≤ C(1 +M + . . .+Mn).

If C is such that
0 < C <

ε

1 +M + . . .+Mn
,

then the above shows |f(x)− g(x)| < ε on I. Since C = max0≤i≤n |ci|, if we take
δ = C, then the work above shows that perturbing the coefficients of f(x) by at
most δ ensures that we stay within ε of f(x) on I. Therefore the proposition is
proved.

Corollary 4.2.2. If f(x) ∈ R[x] is a polynomial of degree n > 0 with n distinct
roots in R, then there exists δ > 0 such that if g(x) ∈ R[x] is a polynomial of
degree n formed by changing the coefficients of f(x) by at most δ, then g(x) will
also have n real roots.
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Figure 4.2: A cubic polynomial which stays within red dashed lines will still have
three real roots

Proof. The diagram illustrates the basic idea of the proof.
Let α1, α2, . . . , αn ∈ R be the n roots of f(x), ordered so that αi < αi+1 for

all i. Rolle’s theorem from calculus says that between any two roots of f(x)
there must be a zero of the derivative. Consequently, the derivative of f(x) must
have n − 1 (distinct) real roots, say β1, β2, . . . , βn−1. Choose any η > 0 and let
I = [α1 − η, αn + η]. Finally, choose any ε such that

0 < ε < min{|f(α1 − η)|, |f(αn + η)|, |f(β1)|, . . . , |f(βn)|}.

Note such an ε must exist because each of the f(βi) 6= 0 since f(x) has no
multiple roots. Then using Proposition 4.2.1, there exists δ > 0 such that if g(x)
is a polynomial formed by perturbing the coefficients of f(x) by at most δ, then
|f(x)− g(x)| < ε on I. But by choice of ε, this means that each of the pairs

f(α1 − η) and g(α1 − η), f(αn + η) and g(αn + η), f(βi) and g(βi),

have the same sign. In particular, g(x) will have as many sign changes on I as
f(x) did, which was n, which means g(x) will also have n real roots (and in I).

With these two results in hand, we can prove our main theorem of the chapter.

Theorem 4.2.3. Sn occurs as the Galois group of a totally real number field.

Proof. Let p1, p2, p3 be three (distinct) primes with p3 > n−2. Let fp1(x) ∈ Fp1 [x]
be any irreducible polynomial of degree n, fp2(x) ∈ Fp2 [x] be a product of an irre-
ducible polynomial of degree n− 1 times any linear factor, and let fp3(x) ∈ Fp3 [x]
be the product of an irreducible quadratic factor and n− 2 distinct linear factors
(possible since p3 > n−2). Finally, let f∞(x) ∈ Q[x] be any polynomial of degree
n with n (distinct) real roots.

Let fpi(x) ∈ Zp[x] be any polynomials which reduce to fpi(x) modulo pi. Now for
i = 1, 2, 3, let εi > 0. Notice that if the εi are chosen so that εi < 1, then if we
modify the coefficients of fpi by at most εi (in the pi-adic metric), then the new
polynomial gpi(x) still resides in Zpi [x]. Moreover the coefficients are changing by
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a multiple of pi so that the reduction mod pi remains fpi(x). So select the εi so
that 0 < εi < 1. Since Z is dense in Zpi , change the coefficients of fpi(x) by at
most εi so that the coefficients are now in Z.

Finally, let δ be as in Corollary 4.2.2 applied to f∞(x) and let ε∞ = δ.

We will use the approximation theorem to construct a new polynomial. Define
ε = min{ε∞, ε1, ε2, ε3}. Suppose ci,j is the coefficient in fpi of xj and suppose c∞,j
is the coefficient of xj in f∞. The approximation theorem (Theorem 4.1.12) says
there exists aj ∈ Q such that

|aj − ci,j|pi < ε and |aj − c∞,j| < ε.

Do this for j = 0, 1, . . . , n− 1, and then define h(x) ∈ Q[x] as

h(x) = xn +
n−1∑
j=0

ajx
j.

By the arguments above, reduction of h(x) modulo pi will still be fpi(x), and as
ε ≤ ε∞, h(x) will also have n real roots. But the reduction of h(x) mod p1 shows
h(x) is irreducible. The reduction modulo p2 gives a permutation of cycle type
(n− 1, 1) in Gal(h) (i.e. an (n− 1)-cycle), and the reduction mod p3 produces a
permutation of type (2, 1, . . . , 1) in Gal(h) (i.e. a transposition). Therefore, by
Proposition 4.1.14, Gal(h) has Galois group Sn. So if we let K be a splitting field
for h(x) over Q, we see Gal(K/Q) ∼= Sn and K is totally real (as all the roots of
h(x) are real).

4.3 Explicit Polynomials: Symmetric Group

In this section, we produce polynomials with Galois group Sn and n real roots
for 2 ≤ n ≤ 8 (meaning its splitting field is totally real and has Galois group
Sn). In each example, it can be checked using SAGE or Mathematica that the
polynomials do, in fact, have n real roots, so we will not go through those details
here.

n = 2: This is the simplest case to consider, and we take the polynomial x2 +x−1.
As this polynomial has two real irrational roots, its Galois group is S2.

n = 3: Take f(x) = x3 + 3x2− 6x− 4. Then as the reduction of f(x) mod 5 is irre-
ducible, f(x) is irreducible over Q and Gal(f) contains a 3-cycle (Theorem
4.1.13). Moreover, the factorization modulo 7 is

f(x) = (x2 + 1)(x+ 3) mod 7,

and so Gal(f) contains a transposition. Theorem 4.1.14 then implies Gal(f) =
S3.
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n = 4: f(x) = x4 + 4x3 − 12x2 − 16x + 1. As its image modulo 3 is irreducible,
f(x) is irreducible. Modulo 11,

f(x) = (x3 + 5x2 + 4x+ 10)(x+ 10),

and so Gal(f) contains a 3-cycle. Finally,

f(x) = (x2 + 19x+ 14)(x+ 21)(x+ 22),

and hence Theorem 4.1.13 implies that Gal(f) contains a transposition. By
Theorem 4.1.14, Gal(f) = S4.

n = 5: f(x) = x5 + 5x4−20x3−40x2 + 5x+ 1. Example 4.1.15 shows Gal(f) = S5.

n = 6: f(x) = x6 + 6x5 − 30x4 − 80x3 + 15x2 + 6x − 1. It is irreducible mod 11,
meaning f(x) is irreducible over Q. We also find

f(x) = (x+ 4)(x5 + 2x4 + 8x3 + 3x2 + 3x+ 17) mod 23,

f(x) = (x3 + 14x2 + 19x+ 23)(x2 + 29x+ 20)(x+ 5) mod 31.

The first factorization shows that Gal(f) contains a 5-cycle. As the cube
of a permutation of type (3, 2, 1) is a transposition, and thus Gal(f) also
possesses a transposition. Therefore Gal(f) = S6.

n = 7: f(x) = x7 + 7x6 − 84x5 − 140x5 + 560x3 + 336x2 − 448x + 64. We leave it
to the reader to verify that f(x) is irreducible modulo 19, which shows that
f(x) is irreducible over Q and Gal(f) contains a 7-cycle. We also let the
reader check that the reduction of f(x) modulo 3 and Theorem 4.1.13 imply
that Gal(f) contains a transposition. Therefore Gal(f) = S7 by Theorem
4.1.14.

n = 8: This one will also be mostly left to the reader to check. Let

f(x) = x8 + 8x7 − 112x6 − 224x5 + 1120x4 + 896x3 − 1792x2 + 512x+ 1.

Then f(x) is irreducible mod 71, and so it is irreducible over Q. Reducing
mod 3 produces a 7-cycle, and reducing mod 5 produces a (5, 2, 1) cycle. By
taking raising this element to the fifth power, we produce a transposition.
Therefore Gal(f) = S8.

These examples truly exhibit the usefulness of Theorem 4.1.13. Without this
theorem, calculating these Galois groups would prove more complicated. But
clearly, with the theorem in hand, the calculation was simplified. This process,
of course, requires that we find the right primes to use, and there is no guarantee
that we will find the cycle types we need. But if you are lucky enough to find
them, then the proof follows quite easily.
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Chapter 5

Other Groups

In this chapter, we discuss the dihedral groups and groups of odd order. We will
outline a method to get D2p as a Galois group of a totally real number field (where
p is a prime). As the methods involved would take a considerable amount of time
and space to develop properly and thoroughly, we will omit most of the proofs.

5.1 Dihedral Groups

5.1.1 Class Group

We have seen (and used many times) that there is unique factorization of ide-
als of OK into prime ideals. This was, in a certain sense, a consolation prize,
since OK is not always a UFD. As a simple example, take K = Q(

√
−5). Then

OK = Z[
√
−5], which is a standard example of a ring which is not a UFD.

One could say that the class group measures how badly OK fails to be a PID.
But since all prime ideals are maximal in OK , it is a fact from ring theory that
OK is a PID precisely when it is a UFD. Therefore the class group measures how
badly OK fails to be a UFD as well. It is an important topic in algebraic number
theory, and generalizations of this group are the subject of class field theory.

We first extend the notion of ideals of OK to what are known as fractional ideals.
If K is a number field, then we can regard K as an OK-module in the obvious
way.

Definition 5.1.1. A fractional ideal of OK is a (nonzero) finitely generated OK-
submodule of K.

Remark 5.1.2. Notice that ideals of OK can be thought of as OK-submodules
of OK , and so this definition of fractional ideals should not seem completely
mysterious.
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So, for example, if α ∈ K, then αOK is a fractional ideal of OK . Notice that
αOK is not an ideal of OK if α /∈ OK . Fractional ideals which are also ideals of
OK are called integral ideals.

The goal is to make the set of fractional ideals of OK , denoted IK , a group
under multiplication. The whole ring, OK , is clearly going to act as the identity
element. But what we need are inverses, which is precisely why we use fractional
ideals instead of integral ideals.

Definition 5.1.3. If M is a fractional ideal of OK , then define

M−1 = {x ∈ K : xM ⊆ OK}.

Even with this definition, two things need to be proved. First, it is not imme-
diately obvious that M−1 is actually a fractional ideal. Second, we would need
MM−1 = OK , so that M−1 is the inverse of M.

As a simple example of an inverse, if α ∈ K, then the reader can show that
if M = αOK , then M−1 = α−1OK , and in fact MM−1 = OK .

Proposition 5.1.4. If M is a fractional ideal, then M−1 is a fractional ideal.

Proof. Clearly M−1 is an OK-submodule of K (work through the definition). We
just need to show that it is finitely generated. So choose any 0 6= m ∈M. Then
mM−1 ⊆ OK (by definition of M−1), which implies M−1 ⊆ m−1OK , which is
a finitely generated OK-module. Since OK is Noetherian (as it is a Dedekind
ring; Theorem 2.3.15), we find M−1 is also finitely generated. Therefore M−1 is
a fractional ideal.

That every fractional ideal M has inverse M−1 follows from the following
lemma and theorem.

Lemma 5.1.5. If A is an integral ideal, then A is invertible with inverse A−1.

Theorem 5.1.6. If A is a fractional ideal of OK, then A can be uniquely expressed
as a product

A = pa11 · · · pann ,
where the pi are distinct prime ideals and the ai ∈ Z\{0}.

From these two results, it is clear that A−1 is in fact the inverse of A. Notice,
also, that the theorem serves as an extension of Theorem 2.2.30, which gave the
unique factorization of integral ideals into prime ideals.

However, it is now clear that IK is a group, which is also clearly abelian. More-
over, we can consider PK , the set of principal fractional ideals (i.e. generated by
a single element). It is obvious that PK is a subgroup of IK , and as IK is abelian,
PK is a normal subgroup. Therefore, the following definition makes sense.
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Definition 5.1.7. The class group CK is the quotient

CK = IK/PK .

It is immediate from the definition that CK is the trivial group precisely when
IK = PK , or when every fractional ideal is principal. If this is true, then clearly
every integral ideal is principal, meaning OK is a PID. However, if OK is a PID,
then Theorem 5.1.6 implies that every fractional ideal will be principal as well,
which implies CK is the trivial group. Therefore CK is trivial if and only if OK
is a PID.

We denote the size of CK by hK , called the class number. Perhaps surprisingly,
we have the following theorem.

Theorem 5.1.8. If K is a number field, then hK <∞.

The class number is, in its own right, a very interesting and mysterious num-
ber, and its value for different fields is a topic of interest for number theorists.

5.1.2 Hilbert Class Field

As a quick aside, the proof of the finiteness of the class number uses the following
theorem.

Theorem 5.1.9. Suppose K is a number field of degree n. Let s denote the
number of pairs of complex embeddings of K. If A is a fractional ideal of OK,
then there is an (integral) ideal B of OK such that B ∈ [A] and

N(B) ≤ n!

nn

(
4

π

)s√
|∆K |.

The right hand side of the inequality is known as the Minkowski bound, and
it helps when calculating the class group because it limits the number of ideals
to check. As a consequence of this theorem, we can prove Theorem 2.3.32.

Proof. (of Theorem 2.3.32) Since ideals of OK has norm at least 1, the inequality
in Theorem 5.1.9 gives

|∆K | ≥
nn

n!

(π
4

)s
≥ nn

n!

(π
4

)n/2
.

We want to show that the right hand side is at least 2 for n ≥ 2. To do this, let

an =
nn

n!

(π
4

)n/2
.

Then
an+1

an
=

√
π

4

(
1 +

1

n

)n
> 1
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for n > 0, which implies an+1 > an. However, a2 > 1, and therefore |∆K | > 1 for
n ≥ 2. Hence at least one prime of Z divides the discriminant, and this implies
that at least one prime of Z ramifies in K.

This provides a nice segue into the next topic, which is the Hilbert class
field. There are no unramified extensions of Q, however there can be unramified
extensions of other fields. The Hilbert class field is an example of an unramified
extension. Properly defining the class field would take too long, so we will use
the following theorem as if it were our definition.

Theorem 5.1.10. Let K be a number field. The Hilbert class field K(1) of K is an
abelian, unramified extension of K which contains every other abelian, unramified
extension of K. Moreover, K(1) is Galois over K, and Gal(K(1)/K) ∼= CK, the
class group of K.

It takes real work to prove that such a class field should even exist, and the
proof can be found in the appropriate sections of [9]. While the theorem says K(1)

is Galois over K, it would be even nicer if it were Galois over Q. This happens
when K is Galois over Q.

Proposition 5.1.11. Suppose F is a number field and K a Galois extension of
F . Then K(1) is Galois over F .

This is what will allow us to realize D2p as a Galois group of a totally real
field.

5.1.3 D2p, p prime

Suppose K = Q(
√
d), where d > 0 is squarefree. Suppose K has class number p

for some odd prime p, so that CK is cyclic of order p (as all groups of prime order
are cyclic). Then K(1) is Galois over K by Theorem 5.1.10, and Gal(K(1)/K) is
cyclic of order p. Moreover, K(1) is Galois over Q by Proposition 5.1.11, and as

[K(1) : Q] = [K(1) : K][K : Q] = 2p,

we find Gal(K(1)/Q) is a group of order 2p. We want to determine the structure
of this group. Consider the following proposition.

Proposition 5.1.12. If G is a finite group of order 2p, where p is an odd prime,
then G is either cyclic or dihedral.

Proof. By Theorem 3.1.1, G has elements of order 2 and p, say τ and σ, respec-
tively. Let H = 〈τ〉 and K = 〈σ〉. Then K has index 2 in G, and is therefore
normal. Since elements of H have order 1 or 2 and elements of K have order 1 or
p, we find H ∩K = {e} (i.e. the only element of order 1 in both), and therefore
G = HK, meaning G is generated by σ and τ .
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Since K is normal, τστ−1 = σk for some k ∈ {0, 1, . . . , p − 1}. Since τ 2 = e,
we see

σ = τ 2στ−2

= ττστ−1τ−1

= τσkτ−1

= (τστ−1)k

= σk
2

.

Since σ has order p, this implies p|k2 − 1 or k2 ≡ 1 mod p. Therefore k ≡ 1
or k ≡ −1 modulo p. In the first case, τστ−1 = σ, which means G is abelian.
Moreover, the element στ has order 2p, so G is cyclic. In the latter case, G is
dihedral.

What we want to show is that Gal(K(1)/Q) is necessarily non-abelian, in which
case the proposition implies Gal(K(1)/Q) is isomorphic to D2p.

Proposition 5.1.13. In the situation above, Gal(K(1)/Q) is non-abelian.

Proof. Recall K = Q(
√
d), where d > 0, and K(1) is the Hilbert class field

of K. Suppose Gal(K(1)/Q) is abelian. By Proposition 5.1.12, this would im-
ply Gal(K(1)/Q) is cyclic of order 2p, which means there is a unique subgroup
H ≤ Gal(K(1)/Q) of order 2. By the Fundamental Theorem of Galois Theory
(Theorem A.3.10), this implies there is a unique subfield L ⊂ K(1) of index 2, i.e.
[K(1) : L] = 2.

Now, as K(1)/K is unramified, the primes of Z which ramify in K(1) are pre-
cisely those which ramify in K. Let q be such a prime. Then if q is a prime of OK
lying above q, we must have pOK = q2 (Theorem 2.3.48), meaning e(q/q) = 2. If
Q is a prime of OK(1) lying above p, then as ramification indices are multiplicative
(Proposition 2.3.43), e(Q/q) = 2. Therefore the inertia group I(Q/q) has order
two, and so the fixed field of I(Q/q) is L (as L is the unique subfield of index
2). By Proposition 2.3.74, e((Q ∩ OL)/q) = 1. But this argument holds true for
every prime Q lying above q in K(1). Therefore q is unramified in L. Moreover,
this argument holds true for every prime q which ramifies in K. As primes of Z
which do not ramify in K will not ramify in L (as they do not ramify in K(1)), we
find that L becomes an everywhere unramified extension of Q, which contradicts
Theorem 2.3.32. Therefore Gal(K(1)/Q) is non-abelian.

Corollary 5.1.14. In the same situation as above, Gal(K(1)/Q) ∼= D2p.

Proof. This is immediate from Proposition 5.1.12.

Corollary 5.1.15. If K = Q(
√
d), with d > 0, has class number p for some odd

prime p, then K(1)/Q is a totally real field with Galois group D2p.
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Proof. We have shown everything except that K(1) is totally real. Clearly K is
totally real. The extension K(1)/Q is Galois, and so the embeddings of K(1) are
given by the elements of the Galois group (at least when considering K(1) as a
subfield of C). If K(1) were not totally real, then complex conjugation would
be one embedding of K(1) into C, and hence an automorphism of order 2 in
Gal(K(1)/K) (complex conjugation would fix K). But we know Gal(K(1)/K) has
order p, which is odd, and so Lagrange’s theorems implies there is no element of
order 2 as 2 6 |p. Therefore K(1) is totally real.

Therefore we have found a totally real extension with Galois group D2p. How-
ever, all this work is dependent on finding a real quadratic field with class number
p, and the existence of such fields is not known for all primes p. However, using
SAGE, it is possible to find examples of various d such that the class number of
Q(
√
d) is prime. In appendix E we provide a few such d for all primes up to 53,

with the exception of 31 and 47.

5.2 Groups of Odd Order

In this section we prove that all groups of odd order occur as Galois groups of
totally real number fields. The term ”prove” is used lightly as we rely on two
theorems with difficult proofs, which we will not present. One we encountered in
the introduction, namely the theorem by Shafarevich which said that all solvable
groups occur as Galois groups over Q. The other theorem we need is known as
the Feit-Thompson Theorem, found in [18].

Theorem 5.2.1. If G is a finite group of odd order, then G is solvable.

Utilizing the power of these two theorems, the result we want is immediate.

Proposition 5.2.2. If G is a group of odd order, then G occurs as the Galois
group of a totally real field.

Proof. By Theorem 5.2.1 and Theorem 1.0.1, G occurs as the Galois group of
some number field K. That K must be totally real follows by a similar argument
as in the proof of Corollary 5.1.15. Namely, as K is Galois, then when regarding
K as a subfield of C, embeddings of K are given by elements of the Galois group.
If K were not totally real, then complex conjugation would be an embedding
of K into C, and hence an element of Gal(K/Q), which is of odd order. This
contradicts Lagrange’s theorem. Therefore K must be totally real.
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Appendix A

Fields and Galois Theory

The purpose of this chapter is to serve as a quick reminder of (or very brief intro-
duction to) Field Theory and Galois Theory, including the Fundamental Theorem
and the Galois theory of composite extensions. Basic definitions and theorems
will be recalled, mostly without proof. The source for most of the statements of
these theorems is [17], but any standard text on fields and Galois Theory will
have them as well. Basic understanding of groups and rings will be assumed.

A.1 Fields and Field Extensions

A field can be described as a commutative ring F in which every nonzero element
is a unit (i.e. F× = F −{0}). Because of this, a field only has two ideals {0} and
F , because every nonzero ideal must contain the element 1 ∈ F , and hence will be
all of F . The characteristic of a field is the smallest integer p such that p · 1F = 0
(and if no such p exists the characteristic is defined to be 0). Also, if the character-
istic is finite (i.e. nonzero), then by using the fact that a field has no zero divisors,
it is very straightforward to prove that the characteristic must be a prime number.

A standard example of a field which will be central to this thesis is Q, the rational
numbers, which has characteristic 0. An example of a field of characteristic p is
Z/pZ, the integers modulo p (written additively). We leave it as an exercise for
the reader to verify that it is actually is a field. It has characteristic p because
clearly p · 1 = 0 mod p and no smaller integer accomplishes this.

This thesis continually utilizes field extensions, which we now define.

Definition A.1.1. If K is a field which contains a subfield F , then K/F is a
field extension.

A simple example is the extension Q(
√

2)/Q, where

Q(
√

2) = {a+ b
√

2 : a, b ∈ Q}.
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A good exercise is to show that this is actually a field. But it is certainly an
extension of Q as it contains Q as a subfield. The definition is very straightforward
and is also very intuitive, but there is another way to view field extensions. Recall
the definition of field homomorphism:

Definition A.1.2. ϕ : F → F ′ is a field homomorphism if for all x, y ∈ F ,

1. ϕ(x+ y) = ϕ(x) + ϕ(y), and

2. ϕ(x ·F y) = ϕ(x) ·F ′ ϕ(y).

Note that if ϕ is not the zero map, then these two requirements also force
ϕ(1) = 1 and ϕ(0) = 0. Field homomorphisms can also give rise to field exten-
siona. For example, consider the homomorphism i : F → K, where F and K
are fields. Indeed, all (nonzero) field homomorphisms must be injective. This is
because field homomorphisms are also ring homomorphisms, so the kernel must
be an ideal of F . But the only ideals of a field are the zero ideal and F . Since
i(1) = 1, the kernel cannot be F , and so the kernel is {0} and hence the homo-
morphism is injective. The first isomorphism theorem says the image of F under
i will be isomorphic to F and a subfield of K. So the “containment” which is
inherent in the idea of field extensions can be a direct containment, or given in a
slightly more indirect manner by a homomorphism.

Observe that the bigger field K is a vector space over the smaller field F , which
is simple enough to verify provided the scalar multiplication rule is defined. Since
elements of F are also elements of K (viewed either directly or through a homo-
morphism), the element α ∈ F acts on x ∈ K as α ·x, where the multiplication is
that of the field K. So we do indeed have a vector space. We say that the degree
of the extension K/F , denoted [K : F ], is the vector space dimension of K over
F .

Theorem A.1.3 (Tower Law). Suppose K/L and M/K are two field extensions.
Then M/K is also an extension of fields and

[M : K] = [M : L][L : K].

The proof follows immediately from a consideration of bases of K/L and M/K,
and combining them in the natural way to get a basis for M/K.

Definition A.1.4. (i) Suppose L/K is a field extension. An alement α ∈ L
is algebraic over K if there exists a polynomial f ∈ K[x] (not the zero
polyomial) such that f(α) = 0.

(ii) If α ∈ L is algebraic over K, its minimal polynomial is the (unique) monic
polynomial mα(x) ∈ K[x] of lowest degree such that mα(α) = 0.
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For example, take K = Q and L = R. It is a famous theorem proved by
Lindemann that π ∈ L is not algebraic (also called transcendental). However,√

2 ∈ L is algebraic since it is a solution of the polynomial x2 − 2 ∈ Q[x].

All of the extensions in this thesis are finite. It is not hard to show that if
L/K is a finite extension, then every α ∈ L is algebraic. Namely, if n = [L : K],
then the elements {1, α, . . . , αn} must have a K-dependence relation among them,
being a set of n+ 1 elements of L.

One way to build extension fields is by adjoining certain elements. In the ex-
ample Q(

√
2)/Q, the element

√
2, which is not in Q, is somehow added to Q

and a field is built from it. To make this concept precise, consider the following
definition.

Definition A.1.5. Suppose L/K is a field extension and S ⊂ L is any subset.
Then K(S) is defined to be the smallest subfield of L which contains both K and
S. Namely,

K(S) =
⋂

S⊆F⊆L

F,

the intersection of all subfields of L containing S. If S = {x1, . . . , xn}, then write
K(S) = K(x1, x2, . . . , xn).

Let K be a field, L/K a field extension, and α ∈ L an element which is
algebraic over K. Consider the map

K[x]
φ→ K(α)

x 7→ α.

The reader can verify that this is a surjective ring homomorphism (a field is
naturally a ring) and that the kernel is (mα(x)), where mα(x) ∈ K[x] is the
minimal polynomial of α over K. The first isomorphism theorem asserts

K[x]/(mα(x)) ∼= K(α).

Notice that mα(x) is an irreducible element of a PID K[x], so it generates a maxi-
mal ideal and therefore the quotient is indeed a field. Therefore this isomorphism
makes sense. A consequence of this isomorphism is that

[K(α) : K] = degmα(x).

A.2 Testing Irreducibility of Polynomials

Before moving on, it will be useful to recall some simple tools for testing the
irreducibility of polynomials in Q[x]. First, Gauss’ lemma says that a polynomial
if f ∈ Z[x] is irreducible, then it is also irreducible in Q[x]. We also have:
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Theorem A.2.1. Suppose f ∈ Z[x] is a monic polynomial and p ∈ Z a prime
number. If the image of f in Z/pZ[x] (given by reduction of coefficients modulo
p) is irreducible in Z/pZ[x], then f is irreducible in Z[x].

Testing irreducibility modulo a prime p, in theory, seems like it should be an
easier problem, since there are only finitely many possibilities for factors of f .
In Chapters 2 and 4 of the main portion of the thesis, we show that factoring
polynomials modulo primes provides more interesting information as well. The
last useful theorem for irreducibility is the following.

Theorem A.2.2 (Eisenstein). Suppose f(x) = anx
n+an−1x

n−1 + . . .+a1x+a0 ∈
Z[x] and p a prime such that p|ai for 0 ≤ i < n, p 6 |an, and p2 6 |a0, then f is
irreducible in Z[x], and hence Q[x] by Gauss’ lemma.

In fact, most (if not all) of the polynomials discussed in this thesis are monic
(i.e. lead coefficient of one), so an = 1 and we do not have to worry about the
condition p 6 |an. An example of an Eisenstein polynomial is x5 − 4x + 2 with
prime p = 2.

A.3 Galois Theory

Let K be a field, and f(x) ∈ K[x] a polynomial. The idea now is to somehow
associate a field, which will be an extension of K, to f(x). In addition, to each
field we would like to assign a group (the Galois group). The right field to “assign”
to f(x) turns out to be the smallest field containing all the roots of f(x). This
should at least somewhat motivate the following definition.

Definition A.3.1. Let f(x) ∈ K[x] be a polynomial of degree n.

(i) The polynomial f(x) splits over K if there exist c, α1, . . . , αn ∈ K (with the
αi not necessarily distinct) such that

f(x) = c(x− α1)(x− α2) · · · (x− αn).

(ii) An extension L/K is a splitting field of f(x) if f(x) splits in L and if f(x)
splits in an intermediate field M such that K ⊆M ⊆ L, then L = M .

Note that this definition of a splitting field requires not only that f(x) splits in
its splitting field, but it must be the smallest field in which the polynomial splits,
in that f(x) does not split in any proper subfield. To see why this is important,
consider f(x) = x2 − 2 ∈ Q[x]. Let L/Q be the extension

L = Q(21/4) = {a+ b21/4 + c21/2 + d23/4 : a, b, c, d ∈ Q}.

Again, it is an exercise to verify the field axioms for L. Then f(x) will split in
L because L contains the two roots of f , namely ±

√
2. However, it is not the
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splitting field because f(x) also splits in M = Q(
√

2), and M ⊂ L is a proper
containment. As it turns out M is the splitting field, because [M : Q] = 2, and if
there were a smaller field in which f split it would have to have degree one, i.e.
be Q, which is not the case.

It is a theorem that every polynomial has a splitting field, and this field is unique
up to isomorphism. Moreover, the theorem says that the degree of the splitting
field of f(x) ∈ K[x] divides n!, where n = deg f(x) ∈ K[x]. This tells us an equiv-
alent definition would be that the splitting field is the field given by adjoining all
the roots of f(x) to K. This is the field to associate to a given polynomial.

Definition A.3.2. An extension L/K is normal if every irreducible polynomial
f(x) ∈ K[x] which has a root in L splits completely in L.

At first glance, this may appear to be a very strong condition, since this
requires that if L contains a root of any irreducible f(x) then it contains all the
roots of f . However, this following theorem provides a nice characterization of
normal extensions.

Theorem A.3.3. A finite extension L/K is normal if and only if it is the splitting
field of some polynomial f(x) ∈ K[x].

In particular, all splitting fields discussed in this thesis are normal extensions.
As an example, this theorem implies that the extension Q(

√
2) is normal because

it is the splitting field of x2 − 2 ∈ Q[x]. An example of an extension which is not
normal is

L = Q(21/3) = {a+ b21/3 + c22/3 : a, b, c ∈ Q}

since the polynomial x3 − 2 ∈ Q[x], irreducible by Eisenstein’s criterion with
p = 2, has a root in L but does not split completely in L, as the other two roots
are complex.

Definition A.3.4. Let f(x) ∈ K[x] be a polynomial of degree n and let L/K a
splitting field of f(x).

(i) If f(x) is irreducible over K, then f(x) is separable if it has n distinct roots
in L.

(ii) If f(x) is reducible, then f(x) is separable if all its irreducible factors are
separable.

(iii) If M/K is any extension and α ∈ M , then α is separable over K if it is
algebraic over K and its minimal polynomial over K is separable.

(iv) The extension M/K is separable if every α ∈M is separable.

The following theorem is also useful.
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Theorem A.3.5. If L/K is a finite extension of fields and K has characteristic
zero, then L is separable over K.

Another useful fact is that f(x) ∈ K[x] has a multiple root α if and only if
α is a root of both f(x) and f ′(x), where f ′(x) is the formal derivative of f(x),
obtained by using the power rule for polynomials learned in calculus. In fact, one
can use this fact to prove Theorem A.3.5.

There are inseparable extensions. For example, let K = Fp[t], the polynomial
ring over the field of p elements, and consider f(x) = xp− t ∈ K[x]. The claim is
that f(x) is not separable. The reader can show that f(x) is in fact irreducible
over K[x]. Assuming this, let α ∈ L be a root of f(x) in some extension L/K.
Then since K has characteristic p, over L,

xp − t = (x− α)p

as
(a+ b)p = ap + bp

in characteristic p fields. So the root α has multiplicity p, meaning f(x) is not
separable.

The reader can also check that if L/K is separable, then so is any intermedi-
ate extension. With all these definitions in hand, we can being discussing Galois
theory.

Definition A.3.6. If L/K is a field extension, then the Galois group of L/K,
denoted Gal(L/K), is the group of automorphisms of L which fix K pointwise.
That is,

Gal(L/K) = {σ ∈ Aut(L) : σ|K = idK}.

It is easily verified that this is indeed a group under composition. There is
also the following fact.

textbfFact: If σ ∈ Gal(L/K), then σ takes α ∈ L to another root of the minimal
polynomial of α.

Proof. Let mα(x) ∈ K[x] be the minimal polynomial of α, and say mα(x) =
xn + an−1x

n−1 + . . .+ a1x+ a0. Then

αn + an−1α
n−1 + . . .+ a1α + a0 = 0.

Since σ is a field homomorphism and fixes K pointwise,

σ(α)n + an−1σ(α)n−1 + . . .+ a1σ(α) + a0 = σ(0) = 0.

But this says exactly that σ(α) is another root of mα(x), and hence also has
minimal polynomial mα(x).
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It can also be shown that |Gal(L/K)| ≤ [L : K]. However, the most interesting
case for this thesis is where there is equality. First a couple of definitions.

Definition A.3.7. If H is a subgroup of Aut(L), where L/K is a field extension,
then we define the fixed field of H to be

LH = {α ∈ L : σ(α) = α for all σ ∈ H}.

Again, one can verify that this is a subfield of L.

Definition A.3.8. L/K is said to be a Galois extension if

LGal(L/K) = K.

So for example, Q(21/3)/Q is not a Galois extension. To see this, first notice
that the only element in the Galois group is the trivial automorphism (the identity
map), since any automorphism σ must take 21/3 to another root of the minimal
polynomial, which is x3 − 2. However, the other two roots are complex, and
in particular not in the field Q(21/3). So σ(21/3) = 21/3, and since this element
generates the field, σ is just the identity map. Therefore

Q(21/3)Gal(Q(21/3)/Q) = Q(21/3) 6= Q.

It turns out that in Galois extensions, |Gal(L/K)| = [L : K].

The next theorem provides arguably the quickest way to check whether a given
extension is Galois.

Theorem A.3.9. A finite extension L/K is Galois if and only if it is normal
and separable.

This theorem allows us to say, for example, that Q(
√

2)/Q is Galois and
Q(21/3)/Q is not, as it is not normal. Also, if the base field is Q as it is for most
of this thesis, every finite extension is separable, so Galois extensions are precisely
the splitting fields of polynomials.

Before moving on to the fundamental theorem, a few remarks about the Galois
group. If f(x) ∈ K[x], then the Galois group of a polynomial Gal(f) is defined
to be the Galois group of the splitting field of f(x). Moreover, if f(x) has de-
gree n, then since the Galois group merely permutes the roots of f(x), we obtain
an embedding of Gal(f) into Sn. Lastly, if f(x) is irreducible, then the Galois
group is a transitive subgroup of Sn. The proofs of these facts can be found in [17].

The following theorem is known as the Fundamental Theorem of Galois theory.

Theorem A.3.10. Suppose L/K is a finite Galois extension with G = Gal(L/K).
Then
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(i) There is an inclusion-reversing bijection, the “Galois correspondence,” be-
tween subgroups H of G and intermediate field extensions K ⊆ M ⊆ L
given by

H → LH

Gal(L/M)←M

with [L : M ] = |Gal(L/M)| and [L : LH ] = |H|.

(ii) If M is an intermediate extension, then M/K is a Galois extension if and
only if Gal(L/M) / Gal(L/K), in which case Gal(M/K) ∼= G/Gal(L/M).

It is important to note that the finiteness condition on the degree of the
extension is critical. There is a similar statement about infinite Galois extensions,
but it is not presented here.

Example A.3.11. Consider the polynomial f(x) = x3 − 2 ∈ Q[x]. It is easily
verified that the splitting field of this polynomial is L = Q(ω, 3

√
2), where ω is a

cube root of unity, since any splitting field must contain both ω and 3
√

2. The size
of the Galois group Gal(L/K) is [L : K], which we now calculate. First observe
that the minimal polynomial of ω is x2 + x + 1 ∈ Q[x], which is irreducible over
Q as it has no roots in Q. We have the following diagram:

L = Q(ω, 3
√

2)

ppppppppppp

<<<<<<<<<<<<<<<<<<<

Q( 3
√

2)

3

???????????????????

Q(ω)

2
ppppppppppppp

Q

In particular, 3|[L : Q] and 2|[L : Q], meaning 6|[L : Q]. However, as stated
in the discussion on splitting fields, [L : Q]|3! = 6, so 6|[L : K]|6. Hence
[L : Q] = 6, and |Gal(L/Q)| = 6. As f(x) is a cubic polynomial, Gal(L/Q)
is a subgroup of S3, which has order 6, meaning Gal(L/Q) must be all of S3.
Therefore Gal(L/Q) ∼= S3. Elements of Gal(L/Q) are realized in the following
way. Automorphisms in Gal(L/Q) are uniquely determined by their action on ω
and 3
√

2, and any automorphism must send these elements to other roots of their
respective minimal polynomials. Let τ ∈ Gal(L/Q) be the element which takes
ω 7→ ω2 and leaves 3

√
2 fixed. Then let σ ∈ Gal(L/Q) be the elemt which maps

3
√

2 7→ ω 3
√

2 and leaves ω fixed. Both σ and τ can be regarded as elements of S3

by enumerating the roots r1 = 3
√

2, r2 = ω 3
√

2 and r3 = ω2 3
√

2 of f(x) in L. The
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element τ fixes r1 and interchanges r2 and r3, so τ corresponds to the transposi-
tion (2, 3) ∈ S3. Similarly, the element σ sends r1 to r2, maps r2 to r3, and lastly
takes r3 to r1, so σ is realized as the 3-cycle (1, 2, 3). Since S3 is generated by a
transposition and a 3-cycle, σ and τ generate Gal(L/Q).

Now to illustrate the fundamental theorem, notice there are four nontrivial proper
subgroups of S3: there is A3, which is the subgroup generated by the 3-cycle σ,
and the three subgroups of order 2 generated by the 3 distinct transpositions
τ, τσ, τσ2. So consider the first subgroup A3, or the subgroup generated by σ,
and let M1 be the corresponding subfield of L. Then M1 = L〈σ〉. It is clear from
the definition of σ that elements of Q(ω) will be fixed by σ. Therefore Q(ω) ⊆M1.
However, the fundamental theorem also tells us that [L : M1] = | 〈σ〉 | = 3, and
we know from the diagram above that [L : Q(ω)] = 6/2 = 3, so by comparing
dimensions M1 = Q(ω). In a very similar manner, one can verify that the fixed
field of 〈τ〉 is Q( 3

√
2), the fixed field of 〈τσ〉 is Q(ω 3

√
2) and the fixed field of 〈τσ2〉

is Q(ω2 3
√

2). Displaying this in diagram form, we have the following lattices:

L

�����������������

LLLLLLLLLLL

VVVVVVVVVVVVVVVVVVVVVVV

Q( 3
√

2) Q(ω 3
√

2)

������������������
Q(ω2 3

√
2)

rrrrrrrrrrrrrrrrrrrrrrrrrrrr

Q(ω)

IIIIIIIIII

Q

{e}

�����������������

KKKKKKKKKK

TTTTTTTTTTTTTTTTTTTT

〈τ〉 〈τσ〉

�����������������
〈τσ2〉

uuuuuuuuuuuuuuuuuuuuuuuu

〈σ〉

JJJJJJJJJJ

Gal(L/Q)

A.4 Composite Extensions

The source for this section will be [19]. Recall the definition of the compositum
of fields.
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Definition A.4.1. Suppose K1 and K2 are subfields of L, where L is a field
extension over a ground field F . Then the compositum of K1 and K2, denoted
K1K2, is the smallest subfield of L which contains both K1 and K2.

Remark A.4.2. The composite extension does exist, as one could take the inter-
section of all subfields of L which contain both K1 and K2. Namely,

K1K2 =
⋂

K1,K2⊆K⊆L

K.

The field diagram for the composite extension looks like this:

L

K1K2

xxxxxxxx

FFFFFFFF

K1

GGGGGGGGG K2

wwwwwwwww

F

Example A.4.3. Consider K1 = Q(
√

2) and K2 = Q(
√

3), where both are
regarded as subfields of C/Q (or R/Q). Then K1K2 is the smallest field which
contains K1 and K2. The claim is that K1K2 = Q(

√
2,
√

3). Clearly K1K2 ⊆
Q(
√

2,
√

3), as Q(
√

2,
√

3) contains both K1 and K2. Conversely, the compositum
must contain

√
2 and

√
3. By definition, Q(

√
2,
√

3) is the smallest field over Q
which contains both of these elements, and therefore Q(

√
2,
√

3) ⊆ K1K2. Hence
we have equality.

A natural question to ask is when is K1K2 Galois over, say K1? The answer
to that question is provided by the following theorem.

Theorem A.4.4. Suppose K2 is a finite Galois extension of K1 ∩ K2. Then
K1K2 is a (finite) Galois extension of K1 and there is an isomorphism

Gal(K1K2/K1) ∼= Gal(K2/K1 ∩K2),

where σ 7→ σ|K2.

Notice that the hypothesis of the theorem make no mention of K1 as an
extension of K1 ∩ K2. As a simple consquence of this, we get the following
corollary.

Corollary A.4.5. If K2 is a (finite) Galois extension of K1 ∩K2, then

(a) [K1K2 : K1] = [K2 : K1 ∩K2],
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(b) [K1K2 : K2] = [K1 : K1 ∩K2],

(c) [K1K2 : K1 ∩K2] = [K1 : K1 ∩K2][K2 : K1 ∩K2].

Proof. Item (a) follows from the theorem since |Gal(K1K2/K1)| = [K1K2 : K1]
and |Gal(K2/K1 ∩K2)| = [K2 : K1 ∩K2]. Now notice that

[K1K2 : K2][K2 : K1 ∩K2] = [K1K2 : K1 ∩K2] = [K1K2 : K1][K1 : K1 ∩K2].

Using (a) with the right equality gives (c). Then using the left equality with (c)
yields (b).

Recall that K1 and K2 are called disjoint if K1 ∩ K2 = F . In this case, we
have:

Corollary A.4.6. K1 and K2 are disjoint extensions if and only if [K1K2 : F ] =
[K1 : F ][K2 : F ].

Proof. The “only if” direction follows immediately from the previous corollary.
For the “if” direction, notice that

[K1 : F ][K2 : F ] = [K1 : K1 ∩K2][K1 ∩K2 : F ][K2 : K1 ∩K2][K1 ∩K2 : F ]

= [K1K2 : K1 ∩K2][K1 ∩K2 : F ]2 (using (c) of previous corollary)

= [K1K2 : F ][K1 ∩K2 : F ].

Therefore, to get the equality

[K1 : F ][K2 : F ] = [K1K2 : F ],

we must have [K1 ∩K2 : F ] = 1, meaning K1 ∩K2 = F . Therefore K1 and K2

are disjoint.

The last theorem needed is Theorem A.4.4 in the case of disjoint extensions.

Theorem A.4.7. If K1 and K2 are disjoint extensions, then there is an isomor-
phism

Gal(K1K2/F ) ∼= Gal(K1/F )×Gal(K2/F ),

where the isomorphism is given by σ 7→ (σ|K1 , σ|K2).

Of course, we would like to also find an equivalent theorem for the composite
of more than two fields. For example, suppose we wanted

Gal(K1K2K3/F ) ∼= Gal(K1/F )×Gal(K2/F )×Gal(K3/F ).

Just having the Ki pairwise disjoint will not suffice. Think back to linear algebra.
If we had V is a finite dimensional vector space and V1, . . . , Vk subspaces of V ,
then in order to say that

V = V1 ⊕ · · · ⊕ Vk,
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one condition which had to be satisfied was

Vi ∩
∑
j 6=i

Vj = {0}

for all i. In this setting, just having Vi ∩ Vj = {0} for j 6= i was not enough.
Similarly, the condition we need is not pairwise disjointness, but rather

Ki ∩
∏
j 6=i

Kj = F

for all i, where F is still the ground field. So the generalization of the previous
theorem is:

Theorem A.4.8. Suppose Ki/F are all subfields of L/F , 1 ≤ i ≤ n, and each
Ki is Galois over F . If

Ki ∩
∏
j 6=i

Kj = F

for all 1 ≤ i ≤ n, then

Gal(K1 · · ·Kn/F ) ∼= Gal(K1/F )×Gal(K2/F )× · · · ×Gal(Kn/F ).

Example A.4.9. Consider the example presented earlier, namely K1 = Q(
√

2)
and K2 = Q(

√
3). We found K1K2 = Q(

√
2,
√

3). A good exercise for the reader
is to verify that Gal(K1/Q) ∼= Gal(K2/Q) ∼= Z/2Z. Notice that K1 ∩ K2 = Q.
To see why, notice that Q ⊆ K1 ∩ K2 ⊆ K1. But since [K1 : Q] = 2, either
K1 ∩K2 = Q or K1 ∩K2 = K1. The latter would imply that K1 ⊆ K2, which is
a clear contradiction as the reader can easily show that

√
2 /∈ Q(

√
3). Therefore

K1 and K2 are disjoint extensions and the theorem says

Gal(Q(
√

2,
√

3)/Q) ∼= Z/2Z× Z/2Z.

The theory of composite extensions is used extensively in Chapter 3.
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Appendix B

Galois Theory of Finite Fields

Even though number fields are finite extensions of Q, which has characteristic
0, many theorems and results make use of finite fields. Again, we do not wish
to prove every result, so we will mainly be stating theorems (from [5] and [17]).
However, we do prove a couple of results related to the Galois groups of finite
fields.

B.1 Existence and Uniqueness

Recall first that a finite field must have prime characteristic, as all characteristic
zero fields are necessarily infinite. So let F be a finite field of characteristic
p. Recall that the prime subfield of F is the intersection of all subfields of F.
Alternatively, it is the subfield generated by the element 1 ∈ F . In characteristic
p, the prime subfield of F is isomorphic to Fp, the field of p elements. Since F is
finite, it is a finite extension over its prime subfield. If the degree of the extension
[F : Fp] = r, then as F is a vector space of dimension r over Fp, it has pr elements.
Moreover, as is proved in [5], F is the splitting field of the polynomial

f(x) = xp
r − x ∈ Fp[x],

which is the key step in the proof of following theorem.

Theorem B.1.1. If n is a positive integer and p is a prime number, then there
exists a finite field of cardinality pn, and it is unique up to isomorphism.

B.2 Normal and Separable

Of course, as is the case throughout this thesis, we want to study field extensions.
In this case, consider F/Fq, where F is a finite extension of the finite field Fq, the
field of q elements. As seen above, q = pr for p = char(Fq) and some r ≥ 1. As it
turns out, if [F : Fq] = d, then |F| = qd, and moreover F is the splitting field of

f(x) = xq
d − x ∈ Fq[x],
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which means F is a normal extension of Fq. Therefore every finite extension of a
finite field is normal, which is certainly a useful fact. If these extensions were also
separable, then every finite extension of a finite field would be Galois, and thus
the Galois theory discussed in appendix A could be applied to this situation.

The following proposition gives us the desired fact. See [5], Section 13.5, for
a proof.

Proposition B.2.1. Every irreducible polynomial over a finite field F is separa-
ble. Moreover, a polynomial in F[x] is separable if and only if it is the product of
distinct irreducible polynomials in F[x].

To see why this makes every extension separable, suppose F/Fq is a finite
extension of finite fields, where q = pr as before. Take α ∈ F. Then the minimal
polynomial mα(x) ∈ Fq[x] over Fq is irreducible, and by the proposition it is
therefore separable. By definition, this implies F/Fq is separable. Thus we get
the following.

Proposition B.2.2. If E/F is a finite extension of finite fields, then E/F is
Galois.

B.3 Galois group

Again, let F/Fq be a finite extension of finite fields, where, as before, q = pr for
some r and p = char(Fq). If we let [F : Fq] = d, then |F| = qd. The previous
proposition showed that F/Fq is a Galois extension. Now we want to determine
Gal(F/Fq).

Consider the map
ϕ : F→ F, α 7→ αq.

First, let us show that ϕ is a field homomorphism. Clearly ϕ(1) = 1, ϕ(0) = 0,
and ϕ(αβ) = ϕ(α)ϕ(β) for α, β ∈ F. Thus we only need to show that addition is
preserved.

Consider (α + β)p for α, β ∈ F . Remember that F has characteristic p. Con-
sider the binomial coefficient

(
p
i

)
, for 1 ≤ i ≤ p− 1. This is precisely(
p

i

)
=

p!

i!(p− i)!
.

Since i, p − i < p, no factor in the denominator can cancel the factor of p in the

numerator, and hence p
∣∣∣(pi) for 1 ≤ i ≤ p−1. As we are in a commutative setting,

the binomial theorem holds, and since we are in characteristic p,

(α + β)p = αp + βp.
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An easy inductive argument shows that

(α + β)p
r

= αp
r

+ βp
r

,

which says precisely that
(α + β)q = αq + βq.

Therefore ϕ is in fact a field homomorphism. Since it is not the zero map, it is
injective. But an injective map from a finite set to itself is surjective. Therefore
ϕ is an automorphism of F.

But now consider F×q , the multiplicative group of Fq. This has order q − 1,
and so by Lagrange’s theorem, aq−1 = 1 for all a ∈ F×q . But this clearly implies
aq = a for all a ∈ Fq (as 0 is the only element not in F×q ). Therefore ϕ fixes Fq
elementwise, which implies ϕ ∈ Gal(F/Fq).

Next we calculate the order of ϕ. By the same reasoning used above with Fq,
αq

d
= α for all α ∈ F. Therefore ϕd = e, the identity element in Gal(F/Fq).

However, ϕ cannot have order smaller than d, since then this would mean

αq
i

= α,

for some i < d and all α ∈ F. This is a contradiction since this would imply there
are qd roots of the polynomial

xq
i − x ∈ Fq[x],

which has degree strictly less than qd. Therefore ϕ has order d and so generates
Gal(F/Fq). This proves the following theorem.

Theorem B.3.1. If F/Fq is a finite extension of finite fields, where q = pr and
p = char(Fq), then |Gal(F/Fq)| = [F : Fq], and the group is generated by the
Frobenius automorphism

ϕ : F→ F, α 7→ αq.
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Appendix C

Cyclotomic Fields

Like with the previous two appendices, we will not prove every detail here.

Consider the polynomial f(x) = xn − 1 ∈ Q[x], and let K denote a splitting
field over Q. Over C, the roots of this polynomial are the n-th roots of unity, i.e.
α ∈ C such that αn = 1. Choose ζn to be a primitive n-th root of unity, meaning
ζnn = 1 but ζmn 6= 1 for 0 < m < n. For example, one could take ζn = e2πi/n. Then
it is easy to see that ζkn are roots of f(x) for 0 ≤ k < n, which means f(x) has all
its roots in K = Q(ζn). Since any splitting field, regarded as a subfield of C, must
contain ζn, K is the splitting field for f(x) over Q. We refer to K as a cyclotomic
field. This also means K/Q is Galois, as it is normal, being the splitting field of a
polynomial, and separable, as all finite extensions of characteristic zero fields are
separable by Theorem A.3.5.

Notice that not every power of ζn need be a primitive n-th root of unity. For
example, the fourth roots of unity are {i,−1,−i, 1}. Though it is a fourth root
of unity, −1 is a primitive second root of unity as (−1)2 = 1. The primitive
fourth roots of unity are ±i. So an primitive n-th root of unity is one where it
is not a d-th root of unity for any proper divisor d|n. We can ask how many
powers of ζn, say ζkn with 0 < k < n, are primitive n-th roots of unity? We leave
it to the reader to verify that ζkn will be a primitive n-th root of unity if and
only if (k, n) = 1. Therefore the number of primitive n-th roots of unity is ϕ(n),
where ϕ(n) is the number of natural numbers ≤ n which are relatively prime to n.

Next, we would like the degree [Q(ζn) : Q].

Theorem C.0.2. If ζn is a primitive n-th root of unity, then [Q(ζn) : Q] = ϕ(n).

Since we know the degree cyclotomic extensions and that they are Galois, we
can try and determine the structure of the Galois group.

Theorem C.0.3. Suppose K = Q(ζn), where ζn is a primitive n-th root of unity.
Then Gal(K/Q) ∼= (Z/nZ)×.

149



Sketch of proof. Any automorphism of K is determined uniquely by where it
sends ζn. Moreover, it must send ζn to another primitive n-th root of unity.
Since the other primitive roots are also roots of the minimal polynomial of ζn
over Q, there are ϕ(n) choices to choose from. Moreover, they are given by

ζkn, 1 ≤ k ≤ n, (k, n) = 1.

So we can define a homomorphism

φ : Gal(K/Q)→ (Z/nZ)× ,

where σ : ζn 7→ ζ
φ(σ)
n . One checks that it is injective homomorphism. Since the

sizes of both the domain and target space are equal, φ is a surjection, and hence
an isomoprhism.

For those who desire a more thorough development of cyclotomic fields, see
[5], section 13.6.
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Appendix D

Explicit Polynomials: Abelian
Case

In this appendix, for abelian groups G of order up to 20, we present polynomials
whose splitting field is totally real and with Galois group isomorphic to G. Using
the methods presented in chapter 3 of the thesis, we were able to implement a
simple program in SAGE which output the desired polynomial. In addition, we
also used SAGE to find the primes which ramified and split completely in these
extensions (namely, the splitting fields for the polynomials given in the first table).

We could not use the method to compute the polynomial with Galois group

G = Z/2Z× Z/2Z× Z/2Z× Z/2Z,

and this was due to the inability of SAGE to compute the polynomial in reasonable
time. However, the methods presented in Chapter 3 still apply to this group. If
one actually wanted a polynomial with Galois group G, it can be checked that

f(x) = (x2 − 2)(x2 − 3)(x2 − 5)(x2 − 7)

has the required Galois group, and since all its roots are real its splitting field K
is a totally real number field with Galois group G.

The first table gives the polynomials for each group, and the second table de-
scribes the factoring of primes in the splitting fields for the polynomials in the
first table.
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Explicit Polynomials for Abelian Groups of Small Order
n Group Polynomial
2 Z/2Z x2 + x− 1
3 Z/3Z x3 + x2 − 2x− 1
4 Z/2Z× Z/2Z x4 − x3 − 10x2 − 3x + 9

Z/4Z x4 + x3 − 6x2 − x + 1
5 Z/5Z x5 + x4 − 4x3 − 3x2 + 3x + 1
6 Z/6Z x6 + x5 − 5x4 − 4x3 + 6x2 + 3x− 1
7 Z/7Z x7 + x6 − 12x5 − 7x4 + 28x3 + 14x2 − 9x + 1
8 Z/2Z× Z/2Z× Z/2Z x8 + x7 − 94x6 + 79x5 + 1933x4 − 948x3 − 13536x2 − 1728x + 20736

Z/2Z× Z/4Z x8 − x7 − 19x6 − 2x5 + 46x4 − 2x3 − 19x2 − x + 1
Z/8Z x8 + x7 − 7x6 − 6x5 + 15x4 + 10x3 − 10x2 − 4x + 1

9 Z/3Z× Z/3Z x9 − x8 − 22x7 + x6 + 91x5 − 11x4 − 71x3 − 10x2 + 8x + 1
Z/9Z x9 + x8 − 8x7 − 7x6 + 21x5 + 15x4 − 20x3 − 10x2 + 5x + 1

10 Z/10Z x10 + x9 − 18x8 − 13x7 + 91x6 + 47x5 − 143x4 − 7x3 + 72x2 − 23x + 1
11 Z/11Z x11 + x10 − 10x9 − 9x8 + 36x7 + 28x6 − 56x5 − 35x4 + 35x3 + 15x2 − 6x− 1
12 Z/2Z× Z/6Z x12 − x11 − 16x10 + 11x9 + 79x8 − 29x7 − 145x6 + 25x5 + 107x4

−2x3 − 27x2 − 3x + 1
Z/12Z x12 + x11 − 33x10 − 70x9 + 288x8 + 929x7 − 298x6 − 3421x5 − 2921x4

+1195x3 + 1718x2 − 162x− 211
13 Z/13Z x13 + x12 − 24x11 − 19x10 + 190x9 + 116x8 − 601x7 − 246x6 + 738x5

+215x4 − 291x3 − 68x2 + 10x + 1
14 Z/14Z x14 + x13 − 13x12 − 12x11 + 66x10 + 55x9 − 165x8 − 120x7 + 210x6 + 126x5

−126x4 − 56x3 + 28x2 + 7x− 1
15 Z/15Z x15 + x14 − 14x13 − 13x12 + 78x11 + 66x10 − 220x9 − 165x8 + 330x7 + 210x6

−252x5 − 126x4 + 84x3 + 28x2 − 8x− 1
16 Z/2Z× Z/2Z× Z/4Z x16 + x15 − 136x14 + 77x13 + 4633x12 − 1600x11 − 58282x10 − 2090x9

+271696x8 + 6270x7 − 524538x6 + 43200x5 + 375273x4 − 18711x3

−99144x2 − 2187x + 6561
Z/4Z× Z/4Z x16 − x15 − 201x14 − 332x13 + 7406x12 + 9254x11 − 77575x10

−62969x9 + 268627x8 + 186178x7 − 293220x6 − 150432x5 + 125056x4

+35264x3 − 18624x2 − 1152x + 256
Z/2Z× Z/8Z x16 − x15 − 22x14 + 17x13 + 172x12 − 92x11 − 601x10 + 196x9 + 1014x8

−189x7 − 844x6 + 74x5 + 325x4 − 46x2 − 4x + 1
Z/16Z x16 + x15 − 45x14 − 98x13 + 650x12 + 2183x11 − 2576x10 − 17205x9 − 9748x8

+44003x7 + 63779x6 − 18576x5 − 86644x4 − 43324x3

+15475x2 + 17690x + 3721
17 Z/17Z x17 + x16 − 48x15 − 105x14 + 763x13 + 2579x12 − 3653x11 − 23311x10

−11031x9 + 74838x8 + 107759x7 − 50288x6 − 198615x5 − 102976x4

+58507x3 + 75722x2 + 25763x + 2837
18 Z/3Z× Z/6Z x18 − x17 − 27x16 + 22x15 + 269x14 − 180x13 − 1259x12 + 711x11 + 2914x10

−1420x9 − 3300x8 + 1287x7 + 1831x6 − 522x5 − 466x4 + 89x3 + 45x2 − 6x− 1
Z/18Z x18 + x17 − 17x16 − 16x15 + 120x14 + 105x13 − 455x12 − 364x11 + 1001x10

+715x9 − 1287x8 − 792x7 + 924x6 + 462x5 − 330x4 − 120x3 + 45x2 + 9x− 1
19 Z/19Z x19 + x18 − 90x17 − 57x16 + 3044x15 + 1124x14 − 51184x13 − 4822x12

+474003x11 − 90110x10 − 2465084x9 + 1153239x8 + 6854098x7 − 5023125x6

−8711114x5 + 8950277x4 + 2600136x3 − 5125792x2 + 1553447x− 117649
20 Z/2Z× Z/10Z x20 − x19 − 55x18 + 34x17 + 1000x16 − 387x15 − 7986x14 + 831x13 + 31642x12

+5609x11 − 64009x10 − 26399x9 + 61072x8 + 35181x7 − 21732x6

−13143x5 + 3700x4 + 1628x3 − 313x2 − 23x + 1
Z/20Z x20 + x19 − 19x18 − 18x17 + 153x16 + 136x15 − 680x14 − 560x13

+1820x12 + 1365x11 − 3003x10 − 2002x9 + 3003x8 + 1716x7

−1716x6 − 792x5 + 495x4 + 165x3 − 55x2 − 10x + 1
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Factoring Primes in Extensions
Factoring Primes

n Group Ramified Split Completely
2 Z/2Z 5 p ≡ 1, 4 mod 5
3 Z/3Z 7 p ≡ 1, 6 mod 7
4 Z/2Z× Z/2Z 5, 13 p ≡ 1, 4, 9, 14, 16, 29, 36, 49, 51, 56, 61, 64 mod 65

Z/4Z 17 p ≡ 1, 4, 13, 16 mod 17
5 Z/5Z 11 p ≡ 1, 10 mod 11
6 Z/6Z 13 p ≡ 1, 12 mod 13
7 Z/7Z 29 p ≡ 1, 12, 17, 28 mod 29
8 Z/2Z× Z/2Z× Z/2Z 5, 13, 17 p ≡ 1, 4, 9, 16, 36, 49, 64, 66, 69, 81, 94, 101, 121, 134, 144, 166, 179,

186, 191, 196, 246, 251, 256, 259, 264, 274, 276, 321, 324, 339, 341, 361,
376, 389, 399, 404, 406, 426, 441, 446, 451, 484, 491, 506, 511, 519, 529,
536, 569, 576, 586, 594, 599, 614, 621, 654, 659, 664, 679, 699, 701,
706, 716, 729, 744, 764, 766, 781, 784, 829, 831, 841, 846, 849, 854, 859,
909, 914, 919, 926, 939, 961, 971, 984, 1004, 1011, 1024, 1036, 1039,
1041, 1056, 1069, 1089, 1096, 1101, 1104 mod 1105

Z/2Z× Z/4Z 5, 17 p ≡ 1, 4, 16, 21, 64, 69, 81, 84 mod 85
Z/8Z 17 p ≡ 1, 16 mod 17

9 Z/3Z× Z/3Z 7, 13 p ≡ 1, 8, 27, 34, 57, 64, 83, 90 mod 91
Z/9Z 19 p ≡ 1, 18 mod 19

10 Z/10Z 41 p ≡ 1, 9, 32, 40 mod 41
11 Z/11Z 23 p ≡ 1, 22 mod 23
12 Z/2Z× Z/6Z 5, 13 p ≡ 1, 14, 51, 64 mod 65

Z/12Z 73 p ≡ 1, 8, 9, 64, 65, 72 mod 73
13 Z/13Z 53 p ≡ 1, 23, 30, 52 mod 53
14 Z/14Z 29 p ≡ 1, 28 mod 29
15 Z/15Z 31 p ≡ 1, 30 mod 31
16 Z/2Z× Z/2Z× Z/4Z 5, 13, 17 p ≡ 1, 4, 16, 64, 69, 81, 101, 166, 186, 191, 251, 256, 259, 276, 324,

339, 341, 361, 404, 426, 441, 446, 506, 511, 594, 599, 659, 664,
679, 701, 744, 764, 766, 781, 829, 846, 849, 854, 914, 919, 939, 1004,
1024, 1036, 1041, 1089, 1101, 1104 mod 1105

Z/4Z× Z/4Z 17, 41 p ≡ 1, 4, 16, 18, 64, 72, 81, 86, 98, 154, 174, 242, 256, 271,
288, 305, 310, 324, 327, 344, 353, 370, 373, 387, 392, 409, 426,
441, 455, 523, 543, 599, 611, 616, 625, 633, 679, 681, 693, 696 mod 697

Z/2Z× Z/8Z 5, 17 p ≡ 1, 16, 69, 84 mod 85
Z/16Z 97 p ≡ 1, 35, 36, 61, 62, 96 mod 97

17 Z/17Z 103 p ≡ 1, 46, 47, 56, 57, 102 mod 103
18 Z/3Z× Z/6Z 7, 13 p ≡ 1, 27, 64, 90 mod 91

Z/18Z 37 p ≡ 1, 36 mod 37
19 Z/19Z 191 p ≡ 1, 7, 39, 49, 82, 109, 142, 152, 184, 190 mod 191
20 Z/2Z× Z/10Z 5, 41 p ≡ 1, 9, 81, 91, 114, 124, 196, 204 mod 205

Z/20Z 41 p ≡ 1, 40 mod 41
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Appendix E

Examples: Dihedral Groups

In Chapter 5 we proved (with some details omitted) that if K = Q(
√
d) is a real

quadratic field (i.e. d > 0) with class number p, an odd prime, then the Hilbert
class field of K, namely K(1), is a totally real Galois extension of Q with Galois
group Gal(K(1)/Q) ∼= D2p.

Using SAGE, we were able to compute the class number of K for d up to 73000.
In the table below, we list the primes p which appeared, as well a few of the cor-
responding d for which Q(

√
d) has class number p. However, as examined cases

up to d = 73000, in some cases listing all occurrences would be impractical. The
“. . .” indicates there were more on the list.

p d
3 79, 142, 223, 229, 254, 257, 321, 326, . . .
5 491, 439, 499, 727, 817, 982, . . .
7 577, 1009, 1087, 1294, 1601, 1761, . . .
11 1297, 4009, 5182, 6081, 8059, 10401, . . .
13 4759, 8101, 8441, 8647, 11491, . . .
17 7054, 11257, 14639, 18223, 29681, . . .
19 15409, 18229, 31333, 33487, 37507, . . .
23 23593, 30801, 30977, 44097, 61669, 65707, 66343, 67409
29 49281, 49531, 56857, 61339, 72901
31 none found up to d = 73000
37 24337, 53359, 55561
41 55966
43 14401
47 none found up to d = 73000
53 69694
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