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Abstract

We outline a Hodge-deRham theory of K-forms ( for k=0,1,2) on two fractals: the Sierpinski
Carpet(SC) and a new fractal that we call the Magic Carpet(MC), obtained by a construction similar
to that of SC modified by sewing up the edges whenever a square is removed. Our method is to
approximate the fractals by a sequence of graphs, use a standard Hodge-deRham theory on each
graph, and then pass to the limit. While we are not able to prove the existence of the limits, we
give overwhelming experimental evidence of their existence, and we compute approximations to
basic objects of the theory, such as eigenvalues and eigenforms of the Laplacian in each dimension,
and harmonic 1-forms dual to generators of 1-dimensional homology cycles. On MC we observe a
Poincare type duality between the Laplacian on 0-forms and 2-forms. On the other hand, on SC the
Laplacian on 2-forms appears to be an operator with continuous (as opposed to discrete) spectrum.
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1 Introduction
There have been several approaches to developing an analogue of the Hodge-deRham theory of
k-forms on the Sierpinski gasket (SG) and other post-critically finite (pcf) fractals ([ACSY], [C],
[CGIS1,2], [CS], [GI1, 2, 3], [H], [IRT]). In this paper we extend the approach in [ACSY] to the
Sierpinski carpet (SC) and a related fractal that we call the magic carpet (MC). These fractals are
not finitely ramified, and this creates technical difficulties in proving that the conjectured theo-
retical framework is valid. On the other hand, the structure of “2-dimensional” cells intersecting
along “1-dimensional” edges allows for a nontrivial theory of 2-forms. Our results are largely
experimental, but they lead to a conjectured theory that is more coherent than for SG.

The approach in [ACSY] is to approximate the fractal by graphs, define k-forms and the asso-
ciated d, δ , ∆ operators on them, and then pass to the limit. In the case of SC there is a natural
choice of graphs. Figure 1.1 shows the graphs on levels 0, 1, and 2.

Figure 1.1: The graphs approximating SC on levels 0,1, and 2.

SC is defined by the self-similar identity:

SC =
∞⋃

j=1

Fj(SC) (1.1)

where Fj is the similarity map of contraction ratio 1/3 from the unit square to each of the eight
of the nine subsquares (all except the center square) after tic-tac-toe subdivision. We define the
sequence of graphs

Γm =
∞⋃

j=1

Fj(Γm−1) (1.2)

with the appropriate identification of vertices in Fj(Γm−1) and Fk(Γm−1). Note that a hole in SC on
level m does not become visible on the graph until level m+1, but it will influence the definition
of 2-cells. We denote by E(m)

0 the vertices of Γm. A 0-form on level m is just a real-valued function

f (m)
0 (e(m)

0 ) defined on e(m)
0 ∈ E(m)

0 . We denote the vector space of 0-forms by Λ
(m)
0 . The edges E(m)

1

of Γm exist in opposite orientations e(m)
1 and −e(m)

1 , and a 1-form (element of Λ
(m)
1 ) is a function

on E(m)
1 satisfying
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f (m)
1 (−e(m)

1 ) =− f (m)
1 (e(m)

1 ). (1.3)

By convention we take vertical edges oriented upward and horizontal edges oriented to the right.
We denote by Em

2 the squares in Γm that bound a cell Fω(SC), where ω = (ω1, ...,ωm) is a word
of length m, ω j = 1,2, ...,8 and Fω = Fω1 ◦Fω2 ◦ ... ◦Fωm . Thus an element em

2 of Em
2 consists of

the subgraph of Γm consisting of the four vertices {Fω(e0
0) : e0

0 ∈ E(0)
0 }. In particular, there are

8 elements of E(1)
2 , even thought the central square is a subgraph of the same type. In general

#E(m)
2 = 8m, and we will denote squares by the word ω that generates them. A 2-form is defined

to be a function f (m)
2 (ω) on E(m)

2 .
The boundary of a square consists of the four edges in counterclockwise orientation. With our

orientation convention the bottom and right edges will have a plus sign and the top and left edges
will have minus sign. We build a signum function to do the bookkeeping: if e(m)

1 ⊆ e(m)
2 then

sgn(e(m)
1 ,e(m)

2 ) =

{
+1 top or right
−1 bottom or left

(1.4)

It is convenient to define sgn(e(m)
1 ,e(m)

2 ) = 0 if e(m)
1 is not a boundary edge of e(m)

2 . Similarly, if
e(m)

1 is an edge containing the vertex e(m)
0 , define

sgn(e(m)
0 ,e(m)

1 ) =

{
+1 e(m)

0 is top or right

−1 e(m)
0 is bottom or left

(1.5)

and sgn(e(m)
0 ,e(m)

1 ) = 0 if e(m)
0 is not and endpoint of e(m)

1 . It is easy to check the consistency
condition

∑
e(m)

1 ∈E(m)
1

sgn(e(m)
0 ,e(m)

1 )sgn(e(m)
1 ,e(m)

2 ) = 0 (1.6)

for any fixed e(m)
0 and e(m)

2 , since for e(m)
0 ∈ e(m)

2 there are only two nonzero summands, one +1 and
the other -1.

We may define the deRham complex

0→ Λ
(m)
0

d(m)
0−−→ Λ

(m)
1

d(m)
1−−→ Λ

(m)
2 → 0 (1.7)

with the operators

d(m)
0 f (m)

0 (e(m)
1 ) = ∑

e(m)
0 ∈E(m)

0

sgn(e(m)
0 ,e(m)

1 ) f (m)
0 (e(m)

0 ) (1.8)

(only two nonzero terms) and

3



d(m)
1 f (m)

1 (e(m)
2 ) = ∑

e(m)
1 ∈E(m)

1

sgn(e(m)
1 ,e(m)

2 ) f (m)
1 (e(m)

1 ) (1.9)

(only four nonzero terms). The relation

d(m)
1 ◦d(m)

0 ≡ 0 (1.10)

is an immediate consequence of (1.6).
To describe the δ operators and the dual deRham complex we need to choose inner products

on the spaces Λ
(m)
0 , Λ

(m)
1 , Λ

(m)
2 , or what is the same thing, to choose weights on E(m)

0 , E(m)
1 , E(m)

2 .

The most direct choice is to weight each square e(m)
2 equally, say

µ2(e
(m)
2 ) =

1
8m , (1.11)

making µ2 a probability measure on E(m)
2 . Note that we might decide to renormalize by multiplying

by a constant, depending on m, when we examine the question of the limiting behavior as m→ ∞.
For the weighting on edges we may imagine that each square passes on a quarter of its weight to
each boundary edge. Some edges bound one square and some bound two squares, so we choose

µ1(e
(m)
1 ) =


1

4∗8m if e(m)
1 bounds one square

1
2∗8m if e(m)

1 bounds two squares
(1.12)

For vertices we may again imagine the weight of each square being split evenly among its vertices.
Now a vertex may belong to 1, 2, 3, or 4 squares, so

µ0(e
(m)
0 ) =

k
4∗8m (1.13)

if e(m)
0 lies in k squares.
The dual deRham complex

0← Λ
(m)
0

δ
(m)
1←−− Λ

(m)
1

δ
(m)
2←−− Λ

(m)
2 ← 0 (1.14)

is defined abstractly by δ
(m)
1 = d(m)∗

0 and δ
(m)
2 = d(m)∗

1 where the adjoints are defined in terms of
the inner products induced by the weights, or concretely as

δ
(m)
1 f (m)

1 (e(m)
0 ) = ∑

e(m)
1 ∈E(m)

1

µ1(e1)

µ0(e0)
sgn(e(m)

0 ,e(m)
1 ) f (m)

1 (e(m)
1 ), (1.15)

δ
(m)
2 f (m)

2 (e(m)
1 ) = ∑

e(m)
2 ∈E(m)

2

µ2(e2)

µ1(e1)
sgn(e(m)

1 ,e(m)
2 ) f (m)

2 (e(m)
2 ). (1.16)
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There are one or two nonzero terms in (1.16) depending on whether e(m)
1 bounds one or two squares.

In (1.15) there may be 2, 3, or 4 nonzero terms, depending on the number of edges that meet at the
vertex e(m)

0 . The condition

δ
(m)
1 ◦δ

(m)
2 = 0 (1.17)

is the dual of (1.10).
We may then define the Laplacian

−∆
(m)
0 = δ

(m)
1 d(m)

0

−∆
(m)
1 = δ

(m)
2 d(m)

1 +d(m)
0 δ

(m)
1

−∆
(m)
2 = d(m)

1 δ
(m)
2

(1.18)

as usual. These are nonnegative self-adjoint operators on the associated L2 spaces, and so have a
discrete nonnegative spectrum. We will be examining the spectrum (and associated eigenfunctions)
carefully to try to understand what could be said in the limit as m→ ∞. Also of particular interest
are the harmonic 1-forms H

(m)
1 , solutions of −∆

(m)
1 h(m)

1 = 0. As usual theses can be characterized
by the two equations

d(m)
1 h(m)

1 = 0 δ
(m)
1 h(m)

1 = 0, (1.19)

and can be put into cohomology/homology duality with the homology generating cycles in Γm.
The Hodge decomposition

Λ
(m)
1 = d(m)

0 Λ
(m)
0 ⊕δ

(m)
2 Λ

(m)
2 ⊕H

(m)
1 (1.20)

shows that the eigenfunctions of−∆
(m)
1 with λ 6= 0 are either d(m)

0 f (m)
0 for f (m)

0 an eigenfunction of

−∆
(m)
0 , or δ

(m)
2 f (m)

2 for f (m)
2 an eigenfunction of−∆

(m)
2 with the same eigenvalue. Thus the nonzero

spectrum of −∆
(m)
1 is just the union of the −∆

(m)
0 and −∆

(m)
2 spectrum.

The irregular nature of the adjacency of squares in Γm, with the associated variability of the
weights in (1.12) and (1.13), leads to a number of complications in the behavior of−∆

(m)
2 . To over-

come these complications we have invented the fractal MC, that is obtained from SC by making
identifications to eliminate boundaries. On the outer boundary of SC we identify the opposite pairs
of edges with the same orientation, turning the full square containing SC into a torus. Each time
we delete a small square in the construction of SC we identify the opposite edges of the deleted
square with the same orientation. We may think of MC as a limit of closed surfaces of genus
g = 1+(1+ 8+ ...+ 8m−1), because each time we delete and “sew up” we add on a handle to
the torus. This surface carries a flat metric with singularities at the corners of each deleted square
(all four corners are identified). It is straightforward to see that the limit exists as a metric space.
Whether or not the analytic structures (energy, Laplacian, Brownian motion) on SC can be trans-
ferred to MC remains to be investigated. Our results give overwhelming evidence that this is the
case.
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We pass from the graphs Γm approximating SC to graphs Γ̃m approximating MC by making the
same identifications of vertices and edges. The graph Γ̃1 is shown in Figure 1.2.

S1 S2 S3

S4 S5

S6 S7 S8

e1 e2 e3

e7 e8 e9

e12 e8 e13

e1 e2 e3

e4 e5 e6 e4

e10 e11 e11 e10

e14 e15 e16 e14

V1 V2 V3 V1

V1 V2 V3 V1

V4 V5 V5 V4

V6 V5 V5 V6

Figure 1.2: Γ̃1 with 6 vertices labeled v j, 16 edges labeled e j, and 8 squares labeled s j.

Each square has exactly 4 neighbors (not necessarily distinct) with each edge separating 2 squares.
For example, in Figure 1.2, we see that s2 has neighbors s1, s3, and s7 twice, as e2 and e8 both
separate s2 and s7. There are two types of vertices, that we call nonsingular and singular. The
nonsingular vertices (all except v5 in Figure 1.2) belong to exactly 4 distinct squares and 4 distinct
edges (two incoming and two outgoing according to our orientation choice). For example, v1
belongs to squares s1, s3, s6 and s8 and has incoming edges e3 and e14 and outgoing edges e1 and
e4. Singular vertices belong to 12 squares (with double counting) and 12 edges (some of which
may be loops). In Figure 1.2 there is only one singular vertex v5. It belongs to squares s1, s3, s6,
and s8 counted once and s2, s4, s5, and s7 counted twice. In Figure 1.3 we show a neighborhood of
this vertex in Γ̃2, with the incident squares and edges shown.

Figure 1.3: A neighborhood in Γ̃2 of vertex v5 from Figure 1.2.

The definition of the deRham complex for the graphs Γ̃m approximating MC is exactly the
same as for Γm approximating SC. The difference is in the dual deRham complex, because the

weights are different. We take µ̃2(e
(m)
2 ) =

1
8m as before, but now µ̃1(e

(m)
1 ) =

1
2∗8m because every

edge bounds two squares. Finally

6



µ̃0(e
(m)
0 ) =


1

8m if e(m)
0 is nonsingular

3
8m if e(m)

0 is singular
(1.21)

because e(m)
0 belongs to 4 squares in the first case and 12 squares in the second case. After that the

definitions are the same using the new weights.
Explicitly, we have

− ∆̃
(m)
2 f (m)

2 (e(m)
2 ) = 2( ∑

e(m)′
2 ∼e(m)

2

f (m)
2 (e(m)

2 )− f (m)
2 (e(m)′

2 )) (1.22)

(exactly 4 terms in the sum), the factor 2 coming from
µ̃2(e

(m)
2 )

µ̃1(e
(m)
1 )

. Except for the factor 2 this is

exactly the graph Laplacian on the 4-regular graph whose vertices are the squares in Ẽ(m)
2 and

whose edge relation is e(m)′
2 ∼ e(m)

2 if they have an edge in common (double count if there are two
edges in common).

The explicit expression for −∆
(m)
0 is almost as simple:

− ∆̃
(m)
0 f (m)

0 (e(m)
0 ) =


1
2 ∑

e(m)′
0 ∼e(m)

0

( f (m)
0 (e(m)

0 )− f (m)
0 (e(m)′

0 )) if e(m)
0 is nonsingular

1
6 ∑

e(m)′
0 ∼e(m)

0

( f (m)
0 (e(m)

0 )− f (m)
0 (e(m)′

0 )) if e(m)
0 is singular

(1.23)

Note that there are 4 summands in the first case and 12 summands in the second case (some may
be zero if there is a loop connecting e(m)

0 to itself in the singular case). We expect that the spectra
of these two Laplacians will be closely related, aside from the multiplicative factor of 4. We may
define Hodge star operators from Λ

(m)
0 to Λ

(m)
2 and from Λ

(m)
2 to Λ

(m)
0 by

∗ f (m)
0 (e(m)

2 ) =
1
4 ∑

e(m)
0 ⊆e(m)

2

f (m)
0 (e(m)

0 ) (1.24)

and

∗ f (m)
2 (e(m)

0 ) =


1
4 ∑

e(m)
2 ⊇e(m)

0

f (m)
2 (e(m)

2 ) if e(m)
0 is nonsingular

1
12 ∑

e(m)
2 ⊇e(m)

0

f (m)
2 (e(m)

2 ) if e(m)
0 is singular

(1.25)

Note that we do not have the inverse relation that ∗∗ is equal to the identity in either order. Nor is
it true that the star operators conjugate the two Laplacians. However, they are approximately valid,
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so we can hope that in the appropriate limit there will be a complete duality between 0-forms and
2-forms with identical Laplacians. Nothing remotely like this valid for SC.

It is also easy to describe explicitly the equations for harmonic 1-forms. The condition d(m)
1 h(m)

1 (e(m)
2 )=

0 is simply the condition that the sum of the values h(m)
1 (e(m)

1 ) over the four edges of the square
is zero (with appropriate signs). Similarly the condition δ

(m)
1 h(m)

1 (e(m)
0 ) = 0 means the sum over

the incoming edges equals the sum over the outgoing edges at e(m)
0 . Those equations have two

redundancies, since the sums ∑
e(m)

2 ∈E(m)
2

d(m)
1 f (m)

1 (e(m)
2 ) and ∑

e(m)
0 ∈E(m)

0

δ
(m)
1 f (m)

1 (e(m)
0 ) are automatically

zero for any 1-form f (m)
1 . Thus in Λ̃

(1)
1 there is a 4-dimensional space of harmonic 1-forms, and

in general the dimension is 2g, which is exactly the rank of the homology group for a surface of
genus g. It is easy to identify the homology generating cycles as the edges that are identified.

The remainder of this paper is organized as follows: In sections 2, 3, 4 we give the results of
our computations on SC for 0-forms, 1-forms, and 2-forms. In section 5 we give the results for
0-forms and 2-forms on MC. In section 6 we give the results for 1-forms on MC. We conclude
with a discussion in section 7 of all the results and their implications. The website [W] gives much
more data than we have been able to include in this paper, and also contains all the programs used
to generate the data.
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2 0-Forms on the Sierpinski Carpet
The 0-forms on SC will simply be continuous functions on SC, and we can restrict them to the
vertices of Γm to obtain 0-forms on Γm. The Laplacian −∆

(m)
0 is exactly the graph Laplacian of Γm

with weights on vertices and edges given by (1.12) and (1.13). Thus

−∆
(m)
0 f (m)

0 (x) = ∑
y∼x

c(x,y)( f (x)− f (y)) (2.1)

with coefficients show in Figure 2.1

Figure 2.1: Coefficients in (2.1)

The sequence of renormalized Laplacians

{−rm
∆
(m)
0 } (2.2)

for r ≈ 10.01 converges to the Laplacian on functions ([BB], [KZ], [BBKT] ,[BHS] ,[BKS] ).
In Table 2.1 we give the beginning of the spectrum {λ (m)

j } for m = 2, 3, 4 and the ratios

λ
(3)
j /λ

(2)
j and λ

(4)
j /λ

(3)
j . The results are in close agreement with the computations in [BHS] and

[BKS], and suggest the convergence of (2.2).

m=2 multiplicity m=3 multiplicity m=4 multiplicity λj
(3)
/λj

(2)
λj
(4)
/λj

(3)

0.0000 1 0.0000 1 0.0000 1 NaN NaN

0.0414 2 0.0041 2 0.0004 2 0.1001 0.0999

0.1069 1 0.0109 1 0.0011 1 0.1024 0.1002

0.2006 1 0.0204 1 0.0020 1 0.1017 0.0999

0.2635 2 0.0272 2 0.0027 2 0.1031 0.1002

0.2720 1 0.0284 1 0.0028 1 0.1044 0.1003

0.3927 2 0.0414 2 0.0041 2 0.1053 0.1001

0.4260 1 0.0449 1 0.0045 1 0.1055 0.1002

0.4490 1 0.0472 1 0.0047 1 0.1051 0.1001

0.5276 1 0.0560 1 0.0056 1 0.1062 0.1004

0.6375 2 0.0673 2 0.0067 2 0.1055 0.1002

0.6700 1 0.0696 1 0.0069 1 0.1038 0.0997

0.8405 2 0.0976 2 0.0099 2 0.1161 0.1014

0.8713 1 0.1009 1 0.0102 1 0.1158 0.1008

0.9102 1 0.1069 1 0.0109 1 0.1175 0.1024

0.9336 1 0.1103 1 0.0112 1 0.1181 0.1019

1.1125 1 0.1327 2 0.0135 1 0.1193 0.1015

1.1148 2 0.1541 2 0.0157 2 0.1382 0.1021

1.2242 2 0.1651 1 0.0169 1 0.1349 0.1021

1.2847 1 0.1725 1 0.0178 1 0.1343 0.1032

1.3587 1 0.1851 1 0.0189 1 0.1362 0.1023

1.4613 1 0.2006 1 0.0204 1 0.1373 0.1017

1.5000 1 0.2038 2 0.0209 2 0.1359 0.1026

1.5524 2 0.2207 1 0.0227 1 0.1422 0.1028

1.6510 2 0.2524 1 0.0260 1 0.1529 0.1030

1.6942 1 0.2602 1 0.0269 1 0.1536 0.1033

1.7047 1 0.2635 2 0.0272 2 0.1546 0.1031

1.7779 1 0.2686 1 0.0277 1 0.1511 0.1032

1.7868 2 0.2720 1 0.0284 1 0.1522 0.1044

1.8282 1 0.2817 2 0.0293 2 0.1541 0.1039

1.8503 1 0.2888 1 0.0299 1 0.1561 0.1036

1.8734 1 0.3033 1 0.0312 1 0.1619 0.1029

1.9565 1 0.3927 2 0.0414 2 0.2007 0.1053

1.9655 1 0.3948 1 0.0414 1 0.2008 0.1049

2.0000 12 0.3949 1 0.0416 1 0.1975 0.1053

2.0345 1 0.3971 1 0.0417 2 0.1952 0.1049

2.0435 1 0.4001 2 0.0424 1 0.1958 0.1059

2.1266 1 0.4048 1 0.0428 1 0.1904 0.1058

2.1497 1 0.4086 1 0.0431 2 0.1901 0.1056

2.1718 1 0.4114 2 0.0449 1 0.1894 0.1092

2.2132 2 0.4260 1 0.0472 1 0.1925 0.1107

2.2221 1 0.4490 1 0.0495 1 0.2021 0.1103

2.2953 1 0.4697 1 0.0496 1 0.2046 0.1057

2.3058 1 0.4731 1 0.0515 2 0.2052 0.1088

2.3490 2 0.4888 2 0.0560 1 0.2081 0.1146

Table 2.1: Eigenvalues of −∆
(m)
0 for m = 2, 3, 4 and ratios.
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The convergence of (2.2) would imply that lim
m→∞

rm
λ
(m)
j = λ j gives the spectrum of the limit

Laplacian −∆0 on 0-forms on SC. In particular the values {rmλ
(m)
j } for small values of j (de-

pending on m) would give a reasonable approximation of some lower portion of the spectrum
of −∆0. To visualize this portion of the spectrum we compute the eigenvalue counting func-
tion N(t) = #{λ j ≤ t} ≈ #{rmλ

(m)
j ≤ t} and the Weyl ratio W (t) = N(t)

tα . In Figure we display
the graphs of the Weyl ratio using the m = 1,2,3,4 approximations, with value α determined
from the data to get a function that is approximately constant. As explained in [BKS], we expect
α = log8

logr ≈ 0.9026, which is close to the experimentally determined values. This is explained by

the phenomenon called miniaturization as described in [BHS]. Every eigenfunction u(m)
j of ∆

(m)
0

reappears in miniaturized form u(m+1)
k of ∆

(m+1)
0 with the same eigenvalue λ

(m+1)
k = λ

(m)
j , so in

terms of ∆
(m)
0 we have rm+1λ

(m+1)
k = r(rmλ

(m)
j ). We can in fact see this in Table 2.1. In passing

from level m to level m+ 1, the number of eigenvalues is multiplied by 8, so we expect to have
N(rt) ≈ 8N(t), and this explains why α = log8

logr is the predicted power growth factor of N(t). We
also expect to see an approximate multiplicative periodicity in W (t), namely W (rt) ≈W (t). It is
difficult to observe this in our data, however. We also mention that miniaturization is valid for all
k-forms (k =0, 1, 2) on SC and MC. This is most interesting for 0-forms and 2-forms on MC as
discussed in Section 5.

In Figure 2.2 we show graphs of selected eigenfunctions on levels 2, 3, 4. We only display
those whose eigenspaces have multiplicity one. The convergence is visually evident. To quantify
the rate of convergence we give the values of ‖ f (m)

j |
E(m−1)

0

− f (m−1)
j ‖2

2 in Table 2.2. Here the L2

norm on E(m−1)
0 is defined by

‖ f‖2
2 = ∑

e(m−1)
0 ∈E(m−1)

0

µ0(e
(m−1)
0 )| f (e(m−1)

0 )|2 (2.3)

and we normalize the eigenfunctions so that ‖ f (m−1)
j ‖2

2 and ‖ f (m)
j |

E(m−1)
0

‖2 = 1. In Figure 2.5 we

show the graph of the weyl ratio of eigenvalues of the 0 forms on different levels.
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Figure 2.2: graph of eigenfunction of 4th eigenvalue on 0 forms of level 2,3 and 4
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Figure 2.3: graph of eigenfunction of 5th eigenvalue on 0 forms of level 2,3 and 4

0

5

10

0

5

10
−0.4

−0.2

0

0.2

0.4

0
10

20
30

0

10

20

30
−0.05

0

0.05

0.1

0.15

0

50

0

50

100
−2

0

2

4

Figure 2.4: graph of eigenfunction of 8th eigenvalue on 0 forms of level 2,3 and 4
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 # of 
eigenvalue 

Eigenvalue 
m=2 

Eigenvalue 
m=3 

Eigenvalue 
m=4 

level 3 to 
level2 

level 4 to 
level3 

1 0.0000 0.0000 0.0000 0.0000 0.0000 
4 0.1069 0.0109 0.0011 0.0001 0.0000 
5 0.2006 0.0204 0.0020 0.0006 0.0001 
8 0.2720 0.0284 0.0028 0.0003 0.0001 
11 0.4260 0.0449 0.0045 0.0009 0.0001 
12 0.4490 0.0472 0.0047 0.0013 0.0001 
13 0.5276 0.0560 0.0056 0.0025 0.0001 
16 0.6700 0.0696 0.0069 0.0161 0.0004 
19 0.8713 0.1009 0.0102 0.8818 0.0004 
20 0.9102 0.1069 0.0109 0.8755 0.0001 
21 0.9336 0.1103 0.0112 0.9226 0.0003 

 

Table 2.2: values of ‖ f (m)
j |

E(m−1)
0

− f (m−1)
j ‖2

2, from level 3 to level 2 and level 4 to level 3 for

eigenspaces of multiplicity one
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3 1-Forms on the Sierpinski Carpet

The 1-forms on Γm are functions on the edges of Γm, with f (m)
1 (−e(m)

1 ) = − f (m)
1 (e(m)

1 ) if −e(m)
1

denotes the edge e(m)
1 with opposite orientation. If L denotes any oriented path made up of edges,

we may integrate f (m)
1 over L by summing:∫

L
d f (m)

1 = ∑
e(m)

1 ⊆L

f (m)
1 (e(m)

1 ). (3.1)

In particular, if f (m)
1 = d f (m)

0 then ∫
L

d f (m)
0 = f (m)

0 (b)− f (m)
0 (a) (3.2)

where b and a denote the endpoints of L.
The Hodge decomposition splits this space Λ

(m)
1 of 1-forms into three orthogonal pieces.

Λ
(m)
1 = d(m)

0 Λ
(m)
0 ⊕δ

(m)
2 Λ

(m)
2 ⊕H

(m)
1 (3.3)

The map d(m)
0 : Λ

(m)
0 → Λ

(m)
1 has the 1-dimensional kernel consisting of constants, and the map

δ
(m)
2 : Λ

(m)
2 → Λ

(m)
1 has zero kernel. A dimension count shows

dimH
(m)

1 = 1+8+ ...+8m−1 =
8m−1

7
(3.4)

The Laplacian −∆
(m)
1 respects the decomposition, with

−∆
(m)
1 (d(m)

0 f (m)
0 ) = d(m)

0 (−∆
(m)
0 f (m)

0 ) = d(m)
0 δ

(m)
1 (d(m)

0 f (m)
0 )

−∆
(m)
1 (δ

(m)
2 f (m)

2 ) = δ
(m)
2 (−∆

(m)
2 f (m)

1 ) = δ
(m)
2 d(m)

1 (δ
(m)
2 f (m)

2 )

−∆
(m)
1 |

H
(m)

1
= 0

(3.5)

Although we may write −∆
(m)
1 = d(m)

0 δ
(m)
1 + δ

(m)
2 d(m)

1 , in fact (3.5) is more informative. In par-

ticular it shows that the spectrum of −∆
(m)
1 is just a union of the nonzero eigenvalues of −∆

(m)
0

and the eigenvalues of −∆
(m)
2 , together with 0 with multiplicity given by (3.4). As such, it has no

independent interest, and we will not present a table of its values. Also, when we discuss later the
question of renormalizing in order to pass to the limit as m→ ∞, we will want to use a different
factor for the two terms.

The main object of interest is the space H
(m)

1 of harmonic 1-forms. We note that the dimension
given by (3.4) is exactly equal to the number of homology generating cycles, one for each square
deleted in the construction of SC up to level m. Thus the integrals∫

γ j

h(m)
1 (3.6)
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as γ j varies over the cycles and h(m)
1 varies over a basis of H

(m)
1 give a cohomology/homology

pairing.

Conjecture 3.1. For each m, the matrix (3.6) is invertible.

If this conjecture is valid (we have verified it for m≤ 4) then we may define a canonical basis h(m)
k

of H
(m)

1 by the conditions ∫
γ j

h(m)
k = δ jk (3.7)

We are particularly interested in the consistency among these harmonic 1-forms as m varies.
The cycles at level m contain all the cycles from previous levels and, in addition, the 8(m−1) cycles
around the level m deleted squares. Thus we can order the cycles consistently from level to level.
Also, a 1-from f (m)

1 in Λ(m) can be restricted to a 1-form in Λ(m−1) by defining

R f (m)
1 (e(m−1)

1 ) =
∫

e(m−1)
1

f (m)
1 , (3.8)

in other words summing the values of f (m)
1 on the three level m edges that make up e(m−1)

1 . Thus
we may compare the Λ

(m−1)
1 1-forms h(m−1)

k and Rh(m)
k for values of k where γk is a level m− 1

cycle. If these are close, we may hope to define a harmonic 1-form on SC by lim
m→∞

h(m)
k . Note that

Rh(m)
k will not be a harmonic 1-form in H

(m−1)
1 . It is easy to see that the equation d(m)

1 h(m)
k = 0 and

the fact that (3.6) is zero for all the level m cycles implies (by addition) d(m−1)
1 Rh(m)

k = 0. However,

there is no reason to believe that δ
(m−1)
1 Rh(m)

k should be zero.
In Figure 3.1 to Figure 3.3 we graphically display the numerical data we computed for some

of the functions h(m)
k with k = 1 and their restrictions. (We rounded the decimal expansions and

multiplied by 104 so that all values are integers.) The condition d1h(m)
k (e(m)

2 ) = 0 says that the sum

of h(m)
k on the 4 edges of the square (with appropriate ± signs) vanishes, or equivalently, the sum

on the bottom and right edge equals the sum on top and left edge. A similar condition gives (3.7).
The condition δ1h(m)

k (e(m)
0 ) = 0 says that the weighted sum of h(m)

k on the incoming edges at the

vertex e(m)
0 equals the weighted sum on the outgoing edges, with weights given in Figure 2.1.

To quantify the rate of convergence, we give in Table 3.1 the values of ‖h(m−1)
k −Rh(m)

k ‖2, where

we use an L2 norm on E(m−1)
1 .

Another observation is that the size of h(m)
k tends to fall off as the edge moves away from the

cycle γk as is seen in Figure 3.3. This is not a very rapid decay, however.
Since 1-forms are functions on edges, it appears difficult to display the data graphically. How-

ever, there is another point of view, of independent interest, that would enable us to “see” harmonic
1-forms graphically. Note that if f (m)

0 is a harmonic function, then d0 f (m)
0 is a harmonic 1-form.

This is not interesting globally, since the only harmonic functions are constant. But it is interesting
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−76 −227 −280 −396 −545 −396 −280 −227 −76

−76 −76 −27 −58 −75 75 58 27 76 76

−76 −275 −249 −379 −694 −379 −249 −275 −76

−227 −275 −275 −188 −85 85 188 275 275 227

−27 −275 −336 −483 −863 −483 −336 −275 −27

−280 −249 −336 −336 9 −9 336 336 249 280

−58 −188 −336 −827 −845 −827 −336 −188 −58

−396 −379 −483 −827 827 483 379 396

−75 −85 9 9 −85 −75

−545 −694 −863 −845 845 863 694 545

75 85 −9 −9 85 75

−396 −379 −483 −827 827 483 379 396

58 188 336 827 845 827 336 188 58

−280 −249 −336 −336 9 −9 336 336 249 280

27 275 336 483 863 483 336 275 27

−227 −275 −275 −188 −85 85 188 275 275 227

76 275 249 379 694 379 249 275 76

−76 −76 −27 −58 −75 75 58 27 76 76

76 227 280 396 545 396 280 227 76

h
1
(2)

−582 −1336 −582

−582 −582 582 582

−582 −2500 −582

−1336 −2500 2500 1336

582 2500 582

−582 −582 582 582

582 1336 582

Rh
1
(2)

Figure 3.1: values of h(2)1 and the restriction of h(2)1 to Ẽ(1)
1
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−87 −222 −281 −402 −519 −402 −281 −222 −87

−87 −87 −10 −61 −108 108 61 10 87 87

−87 −298 −229 −356 −734 −356 −229 −298 −87

−222 −298 −298 −170 −71 71 170 298 298 222

−10 −298 −357 −455 −876 −455 −357 −298 −10

−281 −229 −357 −357 60 −60 357 357 229 281

−61 −170 −357 −872 −757 −872 −357 −170 −61

−402 −356 −455 −872 872 455 356 402

−108 −71 60 60 −71 −108

−519 −734 −876 −757 757 876 734 519

108 71 −60 −60 71 108

−402 −356 −455 −872 872 455 356 402

61 170 357 872 757 872 357 170 61

−281 −229 −357 −357 60 −60 357 357 229 281

10 298 357 455 876 455 357 298 10

−222 −298 −298 −170 −71 71 170 298 298 222

87 298 229 356 734 356 229 298 87

−87 −87 −10 −61 −108 108 61 10 87 87

87 222 281 402 519 402 281 222 87

Rh
1
(3)

−589 −1322 −589

−589 −589 589 589

−589 −2500 −589

−1322 −2500 2500 1322

589 2500 589

−589 −589 589 589

589 1322 589

RRh
1
(3)

Figure 3.2: values of Rh(3)1 and the restriction of Rh(3)1 to Ẽ(1)
1
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−88 −221 −280 −402 −517 −402 −280 −221 −88

−88 −88 −7 −62 −112 112 62 7 88 88

−88 −302 −225 −352 −740 −352 −225 −302 −88

−221 −302 −302 −168 −69 69 168 302 302 221

−7 −302 −360 −451 −879 −451 −360 −302 −7

−280 −225 −360 −360 67 −67 360 360 225 280

−62 −168 −360 −877 −745 −877 −360 −168 −62

−402 −352 −451 −877 877 451 352 402

−112 −69 67 67 −69 −112

−517 −740 −879 −745 745 879 740 517

112 69 −67 −67 69 112

−402 −352 −451 −877 877 451 352 402

62 168 360 877 745 877 360 168 62

−280 −225 −360 −360 67 −67 360 360 225 280

7 302 360 451 879 451 360 302 7

−221 −302 −302 −168 −69 69 168 302 302 221

88 302 225 352 740 352 225 302 88

−88 −88 −7 −62 −112 112 62 7 88 88

88 221 280 402 517 402 280 221 88

RRh
1
(4)

−590 −1321 −590

−590 −590 590 590

−590 −2500 −590

−1321 −2500 2500 1321

590 2500 590

−590 −590 590 590

590 1321 590

RRRh
1
(4)

Figure 3.3: values of RRh(4)1 and the restriction of RRh(4)1 to Ẽ(1)
1
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k ||h(2)
k-Rh(1)

k|| ||h(3)
k-Rh(2)

k|| ||h(4)
k-Rh(3)

k|| 

1     0.0303     0.0197     0.0140 

2      0.0292     0.0206 

3      0.0383     0.0224 

4      0.0292     0.0206 

5      0.0383     0.0224 

6      0.0383     0.0224 

7      0.0292     0.0206 

8      0.0383     0.0224 

9      0.0197     0.0206 

10       0.0292 

11       0.0382 

12       0.0343 

13       0.0343 

14       0.0386 

15       0.0343 

16       0.0343 

17       0.0382 

18       0.0292 

19       0.0382 

20       0.0334 

 

Table 3.1: Values of ‖h(m−1)
k −Rh(m)

k ‖2
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locally, and we can obtain harmonic 1-forms by gluing together 1-forms d0 f (m)
0 for different func-

tions f (m)
0 that are locally harmonic. We consider harmonic mappings taking values in the circle

R/Z. Such a mapping is represented locally by a harmonic function f (m)
0 , but when we piece the

local representations globally the values may change by an additive integer constant. The addi-
tive constant will not change d0 f (m)

0 , so this will be a global harmonic 1-form. Again, adding a

global constant to f (m)
0 will have no effect on d0 f (m)

0 . Thus, for each basis element h(m)
k we can

construct a harmonic mapping f (m)
k by setting it equal to 0 at the lower left corner of SG, and then

integrating using (3.2) to successively extend its values to vertices at the end of an edge where the
value at the other endpoint has been determined. For each of the cycles γk we can find “cut line”
so that the function f (m)

k is single valued away from the cut line, and only satisfies the equation

δ
(m)
1 d(m)

0 f (m)
k (e(m)

0 ) = 0 at the vertices e(m)
0 along the cut line if we use different values across the

cut line.
Another fundamental question is the behavior of the restriction of a harmonic 1-form to a line

segment. Suppose that L is a horizontal or vertical line segment of length one in SC (of course
shorter line segments are also of interest, but the answers are expected to be the same). We regard
h(m)

k on L as a signed measure on L via (3.1). Do we obtain a measure in the limit as m→∞? If so,
is it absolutely continuous with respect to Lebesgue measure on L? In terms of the restriction of
the harmonic mapping f (m)

k to L (we choose L to avoid the cut line), these questions become: is it
of bounded variation, and if so is it an absolutely continuous function? Of course we can’t answer
these questions about the limit, but we can get a good sense by observing the approximations. In
Figure 3.4 we graph the restrictions of h(m)

k to L in some cases as m varies. For a quantitative
approach to the first question we compute the total variation of the approximations. The results are
show in Table 3.2. Note that in this figure and all subsequent graphs of restrictions of 1-forms to
lines, we are displaying the graphs of running totals starting at the left end of the interval. Thus
in the limit we would hope to get a function of bounded variation (or perhaps even an absolutely
continuous function) whose derivative is a measure on the line.

It is more difficult to give quantitative measurements of absolute continuity, so instead we look
at the slightly stronger condition that the Radon-Nikodyn derivative belong to Lp for some p > 1.
If µ is a measure on L and

3m(p−1)
∑

e(m)
1 ⊆L

|µ(e(m)
1 )|p (3.9)

is uniformly bounded as m→ ∞ for some fixed p > 1, then µ is absolutely continuous. In Table
3.3 we give the values of (3.9) for different choices of p for the same harmonic 1-forms considered
before.

Of course the same questions are of interest for 1-forms that are eigenfunctions of the Lapla-
cian. In Figures 3.5 and 3.6 and Table 3.4 we give the analogous results for d(m)

0 f (m)
0 and δ

(m)
2 f (m)

2

where f (m)
0 and f (m)

2 are eigenforms for the Laplacians −∆
(m)
0 and −∆

(m)
2 .
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                        #of           
                       Eigenvalues                   
# of lines 

 1           2           3            4           5          6           7            8           9 

1 0.2500 0.4538 0.1457 0.0462 0.6024 0.1062 0.4538 0.1457 0.0462  

2 0.2651 0.5175 0.1578 0.0492 0.6202 0.1128 0.5175 0.1578 0.0492  

3 0.3104 0.3180 0.1966 0.0587 0.3575 0.1323 0.3180 0.1966 0.0587  

4 0.3664 0.2101 0.2588 0.0717 0.2879 0.1570 0.2101 0.2588 0.0717  

5 0.0336 0.0716 0.3279 0.0347 0.0206 0.0223 0.0716 0.3279 0.0347  

6 0.0336 0.0347 0.3279 0.0716 0.0223 0.0206 0.0347 0.3279 0.0716  

7 0.3664 0.0717 0.2588 0.2101 0.1570 0.2879 0.0717 0.2588 0.2101  

8 0.3104 0.0587 0.1966 0.3180 0.1323 0.3575 0.0587 0.1966 0.3180  

9 0.2651 0.0492 0.1578 0.5175 0.1128 0.6202 0.0492 0.1578 0.5175  

10 0.2500 0.0462 0.1457 0.4538 0.1062 0.6024 0.0462 0.1457 0.4538 

 

 

                        #of           
                Eigenvalues                   

# of lines 

1           2           3           4           5           6           7           8           9 

1 0.2500 0.4522 0.1442 0.0478 0.6035 0.1082 0.4522 0.1442 0.0478  

2 0.2522 0.4616 0.1459 0.0483 0.6059 0.1092 0.4616 0.1459 0.0483  

3 0.2590 0.4896 0.1509 0.0496 0.6131 0.1121 0.4896 0.1509 0.0496  

4 0.2673 0.5244 0.1574 0.0514 0.6219 0.1158 0.5244 0.1574 0.0514  

5 0.1049 0.0805 0.0581 0.0199 0.1124 0.0453 0.0805 0.0581 0.0199  

6 0.1180 0.0411 0.0643 0.0223 0.0409 0.0510 0.0411 0.0643 0.0223  

7 0.3116 0.3444 0.1937 0.0607 0.4011 0.1352 0.3444 0.1937 0.0607  

8 0.3275 0.2885 0.2097 0.0643 0.3528 0.1423 0.2885 0.2097 0.0643  

9 0.3512 0.2452 0.2342 0.0696 0.3136 0.1528 0.2452 0.2342 0.0696  

10 0.3678 0.2188 0.2582 0.0741 0.2917 0.1603 0.2188 0.2582 0.0741  

11 0.0730 0.1184 0.2079 0.0274 0.0198 0.0357 0.1184 0.2079 0.0274  

12 0.0568 0.0856 0.2781 0.0300 0.0255 0.0292 0.0856 0.2781 0.0300  

13 0.0816 0.0695 0.3578 0.0370 0.0407 0.0369 0.0695 0.3578 0.0370  

14 0.0216 0.0131 0.0406 0.0093 0.0103 0.0096 0.0131 0.0406 0.0093  

15 0.0216 0.0093 0.0406 0.0131 0.0096 0.0103 0.0093 0.0406 0.0131  

16 0.0816 0.0370 0.3578 0.0695 0.0369 0.0407 0.0370 0.3578 0.0695  

17 0.0568 0.0300 0.2781 0.0856 0.0292 0.0255 0.0300 0.2781 0.0856  

18 0.0730 0.0274 0.2079 0.1184 0.0357 0.0198 0.0274 0.2079 0.1184  

19 0.3678 0.0741 0.2582 0.2188 0.1603 0.2917 0.0741 0.2582 0.2188  

20 0.3512 0.0696 0.2342 0.2452 0.1528 0.3136 0.0696 0.2342 0.2452  

21 0.3275 0.0643 0.2097 0.2885 0.1423 0.3528 0.0643 0.2097 0.2885  

22 0.3116 0.0607 0.1937 0.3444 0.1352 0.4011 0.0607 0.1937 0.3444  

23 0.1180 0.0223 0.0643 0.0411 0.0510 0.0409 0.0223 0.0643 0.0411  

24 0.1049 0.0199 0.0581 0.0805 0.0453 0.1124 0.0199 0.0581 0.0805  

25 0.2673 0.0514 0.1574 0.5244 0.1158 0.6219 0.0514 0.1574 0.5244  

26 0.2590 0.0496 0.1509 0.4896 0.1121 0.6131 0.0496 0.1509 0.4896  

27 0.2522 0.0483 0.1459 0.4616 0.1092 0.6059 0.0483 0.1459 0.4616  

28 0.2500 0.0478 0.1442 0.4522 0.1082 0.6035 0.0478 0.1442 0.4522 

Table 3.2: Total variation of SC harmonic one forms along horizontal lines at level 2 and level 3
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Figure 3.4: restrictions of h(m)
k to L with m = 2,3
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Figure 3.5: restrictions of d(m)
0 f (m)

0 to L

23



Figure 3.6: restrictions of δ
(m)
2 f (m)

2 to L

24



variation sc 1 forms d0 del2.pdf

 

 

 

                        #of           
                       Eigenvalues                   
# of lines 

 10                11           12            12           14            15            16            17            18            19 

1     0.8041    0.2188    0.7729    0.5680    0.9606    0.5493    0.7267    0.1068    0.8167    0.6692 

2     0.8184    0.2302    0.7316    0.5900    0.9189    0.4506    0.6788    0.1634    0.8605    0.6824 

3     0.8483    0.2627    0.5853    0.6066    0.7599    0.1986    0.5717    0.1634    0.8605    0.6100 

4     0.8718    0.3591    0.4019    0.7008    0.6070    0.2545    0.3988    0.1068    0.8167    0.4781 

5     0.1709    0.0878    0.0884    0.3246    0.1296    0.0539    0.2776    0.1089    0.5736    0.1031 

6     0.1709    0.0878    0.0884    0.3246    0.1296    0.0539    0.2776    0.1089    0.5736    0.1031 

7     0.8718    0.3591    0.4019    0.7008    0.6070    0.2545    0.3988    0.1068    0.8167    0.4781 

8     0.8483    0.2627    0.5853    0.6066    0.7599    0.1986    0.5717    0.1634    0.8605    0.6100 

9     0.8184    0.2302    0.7316    0.5900    0.9189    0.4506    0.6788    0.1634    0.8605    0.6824 

10     0.8041    0.2188    0.7729    0.5680    0.9606    0.5493    0.7267    0.1068    0.8167    0.6692 

                        #of           
                       Eigenvalues                   
# of lines 

     74            75           76             77           78            79           80            81             82           83 

1     0.5240    0.8101    0.8845    0.6348    0.6227    1.0821    0.8203    0.9040    0.6347    0.7826 

2     0.5259    0.8131    0.8797    0.6424    0.6114    1.0804    0.8129    0.9201    0.6460    0.7851 

3     0.5309    0.8208    0.8617    0.6624    0.5824    1.0682    0.7885    0.9536    0.6696    0.8067 

4     0.5372    0.8292    0.8365    0.7002    0.5666    1.0514    0.7581    0.9801    0.6882    0.8026 

5     0.2043    0.3101    0.2966    0.2693    0.1679    0.3844    0.2792    0.1921    0.1461    0.1640 

6     0.2126    0.3220    0.2596    0.2897    0.1027    0.3636    0.2497    0.1921    0.1461    0.1516 

7     0.5646    0.8611    0.6774    0.6747    0.3633    0.8976    0.6912    0.9801    0.6882    0.7291 

8     0.5660    0.8686    0.6221    0.7207    0.2651    0.8444    0.6060    0.9536    0.6696    0.6753 

9     0.5718    0.8783    0.5310    0.7727    0.2717    0.7743    0.5176    0.9201    0.6460    0.6061 

10     0.5807    0.8835    0.4588    0.8178    0.2900    0.7177    0.4484    0.9040    0.6347    0.5454 

11     0.1610    0.2259    0.1234    0.4039    0.0905    0.3324    0.3351    0.6134    0.4307    0.1830 

12     0.1741    0.1800    0.1495    0.3488    0.0664    0.2100    0.3132    0.6358    0.4464    0.1518 

13     0.2489    0.1886    0.2347    0.3241    0.0696    0.1372    0.3040    0.6534    0.4588    0.1998 

14     0.0635    0.0490    0.0593    0.0656    0.0138    0.0291    0.0593    0.1281    0.0974    0.0476 

15     0.0635    0.0490    0.0593    0.0656    0.0138    0.0291    0.0593    0.1281    0.0974    0.0476 

16     0.2489    0.1886    0.2347    0.3241    0.0696    0.1372    0.3040    0.6534    0.4588    0.1998 

17     0.1741    0.1800    0.1495    0.3488    0.0664    0.2100    0.3132    0.6358    0.4464    0.1518 

18     0.1610    0.2259    0.1234    0.4039    0.0905    0.3324    0.3351    0.6134    0.4307    0.1830 

19     0.5807    0.8835    0.4588    0.8178    0.2900    0.7177    0.4484    0.9040    0.6347    0.5454 

20     0.5718    0.8783    0.5310    0.7727    0.2717    0.7743    0.5176    0.9201    0.6460    0.6061 

21     0.5660    0.8686    0.6221    0.7207    0.2651    0.8444    0.6060    0.9536    0.6696    0.6753 

22     0.5646    0.8611    0.6774    0.6747    0.3633    0.8976    0.6912    0.9801    0.6882    0.7291 

23     0.2126    0.3220    0.2596    0.2897    0.1027    0.3636    0.2497    0.1921    0.1461    0.1516 

24     0.2043    0.3101    0.2966    0.2693    0.1679    0.3844    0.2792    0.1921    0.1461    0.1640 

25     0.5372    0.8292    0.8365    0.7002    0.5666    1.0514    0.7581    0.9801    0.6882    0.8026 

26     0.5309    0.8208    0.8617    0.6624    0.5824    1.0682    0.7885    0.9536    0.6696    0.8067 

27     0.5259    0.8131    0.8797    0.6424    0.6114    1.0804    0.8129    0.9201    0.6460    0.7851 

28     0.5240    0.8101    0.8845    0.6348    0.6227    1.0821    0.8203    0.9040    0.6347    0.7826 

Table 3.3: Total variation of d(m)
0 f (m)

0 and δ
(m)
2 f (m)

2 along horizontal lines at level 2 and level 3
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4 2-Forms on the Sierpinski Carpet
In principle, we should think of 2-forms on SC simply as measures. In the Γm approximation
we have 8m squares in E(m)

2 , and our 2-forms f (m)
2 assign values to these squares, which may be

identified with the m-cells in SC that lie in these squares. It is not clear a priori what class of
measures we should consider; the simplest choice is the set of measures absolutely continuous
with respect to the standard self-similar measure µ .

The Laplacian −∆
(m)
2 on Λ

(m)
2 is quite different from other Laplacians considered here or else-

where. In fact, it is the sum of a difference operator and diagonal operator. For a fixed square
e(m)

2 ∈ E(m)
2 we have

d(m)
1 δ

(m)
2 f (m)

2 (e(m)
2 ) = ∑

e(m)
1 ⊆e(m)

2

sgn(e(m)
1 ,e(m)

2 )δ
(m)
2 f (m)

2 (e(m)
1 ) (4.1)

where the sum is over the four edges of the square. However, δ
(m)
2 f (m)

2 (e(m)
2 ) depends on the nature

of the edge e(m)
1 , which may bound one or two squares:

δ
(m)
2 f (m)

2 (e(m)
1 )=

{
4sgn(e(m)

1 , ẽ(m)
2 ) f (m)

2 (ẽ(m)
2 ) if e(m)

1 bounds only ẽ(m)
2

2
(

sgn(e(m)
1 , ẽ(m)

2 ) f (m)
2 (ẽ(m)

2 )+ sgn(e(m)
1 , ˜̃e(m)

2 ) f (m)
2 ( ˜̃e(m)

2 )
)

if e(m)
1 bounds ẽ(m)

2 and ˜̃e(m)
2

(4.2)
Let N(e(m)

2 ) denote the number of squares adjacent to e(m)
2 in Γm (2, 3, or 4). Then

−∆
(m)
2 f (m)

2 (e(m)
2 ) = d(m)

1 δ
(m)
2 f (m)

2 (e(m)
2 )

= 4
(

4−N(e(m)
2 )
)

f (m)
2 (e(m)

2 )+2 ∑
ẽ(m)

2 ∼e(m)
2

(
f (m)
2 (e(m)

2 )− f (m)
2 (ẽ(m)

2 )
)

(4.3)

Note that

−D(m)
2 f (m)

2 (e(m)
2 ) = ∑

ẽ(m)
2 ∼e(m)

2

(
f (m)
2 (e(m)

2 )− f (m)
2 (ẽ(m)

2 )
)

(4.4)

is exactly the graph Laplacian for the cell graph on level m of SC. This Laplacian was first studied
in [KZ], and it was proved in [BBKT] that when appropriately normalized it converges to the
essentially unique self-similar Laplacian on SC. This was used as the basis for extensive numerical
investigations in [BKS]. In other words, if f (m)

2 (e(m)
2 ) =

∫
e(m)

2
f0dµ for some function f0 in the

domain of the Laplacian on SC, then lim
m→∞

rmD(m)
2 f (m)

2 = c(∆ f0)dµ for r ≈ 10.01.
However, according to (4.3) we have

−∆
(m)
2 = M(m)−D(m)

2 , (4.5)
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where M(m) is the operator of multiplication by the function φm given by

φm = 4
(

4−N(e(m)
2 )
)

(4.6)

Note that φm takes on values 0, 4, 8. If we were to renormalize M(m) by multiplying by rm the
result would surely diverge. In other words, if there is any hope of obtaining a limit for a class of
measures, it would have to be lim

m→∞
(−∆

(m)
2 ) without renormalization. Of course the sequence of

functions {φm} does not converge, so it seems unlikely that we could make sense of lim
m→∞

(M(m)).

Thus, although M(m) is clearly the major contributor to the sum (4.5), both operators must play a
role if the limit is to exist.

We compute the distribution of the three values of N(e(m)
2 ) as e(m)

2 varies over the 8m squares
of level m. Let n(m)

3 and n(m)
4 denote the number of squares with N value 3 and 4, and n(m)

2a and n(m)
2b

denote the number with N = 2, with neighbors on opposite sides (n(m)
2a ) or adjacent sides (n(m)

2b ). In

fact n(m)
2b = 4 since this case only occurs at the four corners of SC. If e(m−1)

2 is in one of those cases
we may compute the N values on the 8 subsquares as shown in Figure 4.1

3 2a 3

3 3

3 2a 3

2a

3 2a 2b

3 2a

4 3 3

2b

4 3 3

3 2a

4 3 3

3

4 3 4

3 3

4 3 4

4

Figure 4.1: Values of N on subsquares. The neighboring edges are marked by a double line.

This gives us the recursion relation
n(m)

2a

n(m)
2b

n(m)
3

n(m)
4

= A


n(m−1)

2a

n(m−1)
2b

n(m−1)
3

n(m−1)
4

 for A =


2 2 1 0
0 1 0 0
6 4 5 4
0 1 2 4

 (4.7)

and so 
n(m)

2a

n(m)
2b

n(m)
3

n(m)
4

= Am−1


4
4
0
0

 (4.8)
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We also note that (1111) is a left eigenvector of A with eigenvalue 8 (in other words column sums
are 8), and this implies

n(m)
2a +n(m)

2b +n(m)
3 +n(m)

4 = 8m (4.9)

as required. We also observe that


1
0
6
3

 is the right eigenvector with eigenvalue 8, so asymptotically


n(m)

2a

n(m)
2b

n(m)
3

n(m)
4

∼ 8m


.1
0
.6
.3

 as m→ ∞. (4.10)

Thus the operator M(m) has eigenvalues 0, 4, 8 with multiplicities approximately
3

10
8m,

6
10

8m,
1
10

8m.

The spectrum of the operator −∆
(m)
2 is quite different. Table 4.1 shows the entire spectrum for

m = 1, 2 and the beginning of the spectrum for m = 3, 4.
In Figure 4.2 we give a graphical display of these spectra. In Figure 4.3 we show the graphs of
some of the early eigenfuction on levels 2, 3, 4.

The data suggests that there may be a limit

−∆
(m)
2 = lim

m→∞
(−∆

(m)
2 ) (4.11)

for a class of measures, perhaps L2(dµ). The limit operator would be a bounded, self-adjoint
operator that is bounded away from zero, hence invertible. The spectrum would be continuous (or
a mix of discrete and continuous) with support on a Cantor set.

We can give some explanations as to why we might expect the following types of limits:

δ1 = lim
m→∞

(
8
3

)m

δ
(m)
2 (4.12)

d1 = lim
m→∞

(
3
8

)m

d(m)
1 (4.13)

which are consistent with (4.11). Suppose f2 = f dµ for a reasonable function f , and define
f (m)
2 (e(m)

2 ) =
∫

e(m)
2

f dµ . Then f (m)
2 (e(m)

2 ) is on the order of 8−m. In the definition of δ
(m)
2 f (m)

2

in (4.2) we note that when e(m)
1 bounds only one square, δ

(m)
2 f (m)

2 (e(m)
1 ) is also on the order of 8−m,

so multiplying by
(

8
3

)m

gives a value on the order of 3−m, which is reasonable for a measure

on a line segment L containing e(m)
1 . On the other hand, if e(m)

1 bounds two squares, then the sgn

28



m=1       m=2      m=3      m=4  
2.0000 0.9248 0.5101 0.4505  
2.2929 0.9497 0.5102 0.4505  
2.2929 0.9497 0.5102 0.4505  
3.0000 0.9789 0.5104 0.4505  
3.0000 1.3068 0.5290 0.4511  
3.7071 1.3506 0.5291 0.4511  
3.7071 1.3506 0.5291 0.4511  
4.0000 1.3989 0.5292 0.4511  
              1.5764 0.6251 0.4604  
              1.6355 0.6254 0.4604  
              1.6355 0.6254 0.4604  
              1.7134 0.6257 0.4604  
              1.8573 0.6554 0.4614  
              1.9559 0.6557 0.4614  
              1.9559 0.6557 0.4614  
              2.0000 0.6561 0.4614  
              2.0593 0.9248 0.5101  
              2.0593 0.9280 0.5102  
              2.0786 0.9280 0.5102  
              2.1187 0.9332 0.5102  
              2.1910 0.9395 0.5102  
              2.2301 0.9443 0.5102  
              2.2929 0.9450 0.5102  
              2.2929 0.9450 0.5102  
              2.3272 0.9497 0.5102  
              2.3272 0.9497 0.5102  
              2.3990 0.9527 0.5103  
              2.4422 0.9544 0.5103  
              2.5000 0.9623 0.5103  
              2.5000 0.9690 0.5103  
              2.5391 0.9690 0.5103  
              2.5391 0.9755 0.5104  

              2.6441 0.9789 0.5127  
              2.6441 0.9908 0.5127  
              2.6673 0.9908 0.5127  
              2.7042 1.0021 0.5128  
              2.7046 1.0093 0.5139  
              2.8809 1.0102 0.5139  
              2.8809 1.0102 0.5139  
              3.0000 1.0116 0.5139  
              3.0000 1.0184 0.5155  
              3.0652 1.0247 0.5156  
              3.0652 1.0247 0.5156  
              3.1920 1.0273 0.5156  
              3.2063 1.0350 0.5156  
              3.3090 1.0414 0.5157  
              3.3173 1.0414 0.5157  
              3.3173 1.0500 0.5157  
              3.5193 1.0947 0.5197  
              3.5193 1.1037 0.5198  
              3.5473 1.1037 0.5198  
              3.5750 1.1110 0.5198  
              3.6632 1.2398 0.5238  
              3.6744 1.2400 0.5238  
              3.7071 1.2400 0.5238  
              3.7071 1.2403 0.5238  
              3.7832 1.2717 0.5284  
              3.7889 1.2736 0.5284  
              3.7889 1.2736 0.5284  
              3.8464 1.2761 0.5284  
              3.9110 1.3068 0.5290  
              3.9671 1.3134 0.5290  
              3.9671 1.3134 0.5290  
              4.0000 1.3226 0.5290

Table 4.1: Eigenvalues of −∆
(m)
2 form =1, 2, 3, 4

29



0 1 2 3 4 5
0

5

10

15

20

t

N
(t

)

2 form Weyl ratio on level 1 alpha=1.43

0 1 2 3 4 5
0

10

20

30

40

50

t

N
(t

)

2 form Weyl ratio on level 2 alpha=1.43

0 1 2 3 4 5
0

50

100

150

200

250

300

350

t

N
(t

)

2 form Weyl ratio on level 3 alpha=1.43

0 1 2 3 4 5
0

500

1000

1500

2000

t

N
(t

)

2 form Weyl ratio on level 4 alpha=1.43

Figure 4.2: Weyl ratio for spectra of SC 2 forms with α=1.43
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     #     m=2     m=3   m=4   3to2   4to3 
    1.0000    0.9248    0.5101    0.4505    0.0726    0.0196 

    4.0000    0.9789    0.5104    0.4505    0.0532    0.0190 

    5.0000    1.3068    0.5290    0.4511    0.1251    0.0114 

    8.0000    1.3989    0.5292    0.4511    0.0670    0.0106 

    9.0000    1.5764    0.6251    0.4604    0.1709    0.0334 

   12.0000    1.7134    0.6257    0.4604    0.1591    0.0317 

   13.0000    1.8573    0.6554    0.4614    0.2796    0.0243 

Table 4.2: values of ‖ f (m)
j |

E(m−1)
2

− f (m−1)
j ‖2

2, from level 3 to level 2 and level 4 to level 3 for

eigenspaces of multiplicity one
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Figure 4.3: graphs of early eigenfunctions of SC 2 forms on level 2, 3, 4
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function has opposite signs so
(

8
3

)m

δ
(m)
2 f (m)

2 (e(m)
1 ) is close to zero. If we assume the function f

is continuous then the limit in (4.12) will give a measure on L equal to 4 f |Ldt on the portion of L
with squares on only one side, and zero on the portion of L with squares on both sides.

Next suppose the f1 is a measure on each line L in SC that has

| f1(e
(m)
1 )| ≤ c3−m. (4.14)

Fix a square e(m)
2 on level n, and write it as a union of 8m−n squares on level m. We want to define

d1 f1(e
(n)
2 ) = lim

m→∞

(
3
8

)m

∑
e(m)

2 ⊆e(n)2

d(m)
1 f (m)

1 (e(m)
2 ). (4.15)

Does this make sense? Because of the cancellation from the sgn function on opposite sides of an
edge, ∑

e(m)
2 ⊆e(n)2

d(m)
1 f (m)

1 (e(m)
2 ) is just the measure of the boundary of e(n)2 decomposed to level m.

This boundary is the union of the 4 edges e(n)1 on the outside of the square, the 4 edges around the
inner deleted square on level n+1, and in general the 4∗8k−1 edges around the 8k deleted squares
on level n+ k, for k ≤ m−n.( see Figure 4.4 for m = n+2)

Figure 4.4: Edges in sum for m = n+2

Using the estimate (4.14) we have
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∣∣∣∣∣∣
(

3
8

)m

∑
e(m)

2 ⊆e(n)2

d(m)
1 f (m)

1 (e(m)
2 )

∣∣∣∣∣∣≤ 4c
(

3
8

)m( 1
3n +

8
3n+1 +

82

3n+2 + ...+
8m

3m

)
≤ c.

Thus the terms on the right side of (4.15) are uniformly bounded, so it is not unreasonable to hope
that the limit exists.
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5 0-Forms and 2-Forms on the Magic Carpet

The vertices Ẽ(m)
0 of Γ̃m split into singular Ẽ(m)

0s and nonsingular vertices Ẽ(m)
0n . Let Vm = #Ẽ(m)

0 ,

Sm = #Ẽ(m)
0s , and Nm = #Ẽ(m)

0n . Then Sm = 1+ 8+ 82 + ...+ 8m−1 =
8m−1

7
, since each time we

remove a square and identify its boundaries we create a single singular vertex. To compute the
other two counts, we note that each of the 8m squares has 4 vertices, and singular vertices arise in
12 different ways, while nonsingular vertices arise in 4 different ways. Thus

12Sm +4Nm = 8m (5.1)

Solving for Nm we obtain Nm =
4∗8m +3

7
and Vm =

5∗8m +2
7

. Asymptotically, one-fifth of all
vertices are singular.

The Laplacian −∆̃
(m)
0 given by (1.23) has Vm eigenvalues, starting at λ0 = 0 corresponding to

the constants. In Table 5.1 we give the beginning of the spectrum for m = 1,2,3,4 along with the
ratios from levels 3 to 2 and 4 to 3.

We note that the ratios are around r = 6...., so we expect

− ∆̃0 = lim
m→∞

rm
(
−∆̃

(m)
0

)
(5.2)

to define a Laplacian on MC. At present there is no proof that MC has a Laplacian, so our data is
strong experimental evidence that−∆̃0 exists. What is striking is that r < 8, in contrast to the factor
of ≈ 10.01 for SC. Since the measure renormalization factor is 8m for both carpets, we conclude
that the energy renormalization factor for MC would have to be less than one. In Euclidean spaces
or manifolds, this happens in dimensions greater than two. Note that the unrenormalized energy
on level m would be

Ẽ(m)( f0) =
1

2∗8m ∑
e(m)

1 ∈Ẽ(m)
1

|d0 f0(e
(m)
1 )|2, (5.3)

so Ẽ (m) = rmẼ(m) means that the graph energy ∑
e(m)

1 ∈Ẽ(m)
1

|d0 f0(e
(m)
1 )|2 is multiplied by

( r
8

)m
before

taking the limit.
In Figure 5.1 we show the graphs of selected eigenfunctions on levels 2, 3, 4. Again we quantify

the rate of convergence as in the case of SC by giving in Table 5.2 the values of ‖ f (m)
j |

Ẽ(m−1)
0

−

f (m−1)
j ‖2

2.

We give similar data for the spectrum of −∆̃
(m)
2 defined by (1.22). In order to make the com-

parison with Table 5.1 clear, we give Table 5.3 the eigenvalues of −∆̃
(m)
2 multiplied by 0.3221 and

ratios. In Table 5.4 we show quantitative rates of convergence. In Figure 5.2 we show graphs of
eigenfunctions. In Figure 5.3 we show graphs of ∗ f (m)

0 when f (m)
0 is an eigenfunction in Figure
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        λ1            λ2              λ3                   λ4          λ2/ λ3         λ3/ λ4 

    0.0000   0.0000     0.0000    0.0000                                           

    1.5000    0.2877    0.0458    0.0071    6.2809    6.4099 

    1.7047    0.4458    0.0734    0.0114    6.0699    6.4402 

    2.5000    0.4458    0.0734    0.0114    6.0699    6.4402 

    2.5000    0.4496    0.0764    0.0120    5.8860    6.3642 

    3.1287    0.8333    0.1449    0.0230    5.7521    6.2957 

                     0.8595    0.1538    0.0244    5.5870    6.2971 

                     0.8595    0.1538    0.0244    5.5870    6.2971 

                     0.9862    0.1645    0.0257    5.9938    6.4006 

                     1.0967    0.1854    0.0289    5.9150    6.4218 

                     1.1838    0.2175    0.0346    5.4441    6.2913 

                     1.3014    0.2386    0.0372    5.4555    6.4138 

                     1.3014    0.2386    0.0372    5.4555    6.4138 

                     1.5000    0.2684    0.0420    5.5881    6.3862 

                     1.5000    0.2684    0.0420    5.5881    6.3862 

                     1.5000    0.2701    0.0428    5.5541    6.3056 

                     1.5793    0.2849    0.0454    5.5438    6.2771 

                     1.5793    0.2877    0.0458    5.4898    6.2809 

                     1.6912    0.3407    0.0552    4.9636    6.1695 

                     1.7047    0.3869    0.0626    4.4058    6.1772 

                     1.8770    0.3922    0.0633    4.7861    6.1940 

                     1.8913    0.3922    0.0633    4.8228    6.1940 

                     1.9661    0.4169    0.0685    4.7164    6.0849 

                     1.9661    0.4325    0.0705    4.5462    6.1319 

Table 5.1: beginning of the spectrum of −∆̃
(m)
0 and ratios
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Figure 5.1: graphs of selected eigenfunctions of MC 0 forms on levels 2, 3, 4
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Table 5.2: values of ‖ f (m)
j |

Ẽ(m−1)
0

− f (m−1)
j ‖2

2 .

5.1, and in Figure 5.4 we show graphs of ∗ f (m)
2 when f (m)

2 is an eigenfunction in Figure 5.2. In
Figure 5.5 and Figure 5.6, we give the weyl ratios of the eigenvalues of the 0 forms and 2 forms.

Because miniaturization holds we expect a value α = log8
logr ≈

log8
log6 . We have renormalized the

eigenvalues as {rmλ
(m)
j }, with the expectation that in the limit as m→ ∞ we obtain eigenvalues of

−∆̃0 and −∆̃2 on MC.
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     m=1         m=2        m=3         m=4         λ2/ λ3         λ3/ λ4 

   -0.0000   -0.0000    0.0000   -0.0000       NaN         NaN 

    1.2885    0.2841    0.0463    0.0071    6.1409    6.4749 

    2.1054    0.4449    0.0721    0.0112    6.1710    6.4514 

    2.1054    0.4449    0.0721    0.0112    6.1710    6.4514 

    2.5770    0.4889    0.0776    0.0119    6.2970    6.5040 

    3.8655    0.9193    0.1504    0.0232    6.1139    6.4904 

    4.3371    0.9553    0.1580    0.0244    6.0455    6.4640 

    4.3371    0.9553    0.1580    0.0244    6.0455    6.4640 

         NaN    0.9653    0.1623    0.0253    5.9494    6.4158 

         NaN    1.0110    0.1792    0.0283    5.6430    6.3393 

         NaN    1.2077    0.2192    0.0345    5.5097    6.3554 

         NaN    1.2135    0.2226    0.0356    5.4505    6.2532 

         NaN    1.2135    0.2226    0.0356    5.4505    6.2532 

         NaN    1.2885    0.2679    0.0418    4.8091    6.4058 

         NaN    1.5007    0.2679    0.0418    5.6010    6.4058 

         NaN    1.5562    0.2699    0.0425    5.7662    6.3573 

         NaN    1.5562    0.2841    0.0452    5.4771    6.2923 

         NaN    1.6334    0.2878    0.0463    5.6757    6.2202 

         NaN    1.7959    0.3541    0.0560    5.0715    6.3241 

         NaN    1.9528    0.3946    0.0628    4.9493    6.2829 

         NaN    1.9528    0.3969    0.0630    4.9204    6.3040 

         NaN    2.0288    0.3969    0.0630    5.1118    6.3040 

         NaN    2.0840    0.4358    0.0693    4.7825    6.2886 

         NaN    2.1054    0.4410    0.0712    4.7737    6.1952 

         NaN    2.1054    0.4410    0.0712    4.7737    6.1952 

         NaN    2.1700    0.4449    0.0721    4.8774    6.1710 

         NaN    2.1700    0.4449    0.0721    4.8774    6.1710 

         NaN    2.3521    0.4529    0.0728    5.1929    6.2232 

         NaN    2.3579    0.4847    0.0770    4.8648    6.2915 

         NaN    2.4038    0.4889    0.0776    4.9172    6.2970 

         NaN    2.4038    0.4971    0.0796    4.8356    6.2415 

         NaN    2.4760    0.4971    0.0796    4.9807    6.2415 

         NaN    2.4760    0.5364    0.0870    4.6156    6.1657 

Table 5.3: eigenvalues of −∆̃
(m)
2 multiplied by 0.3221 and ratios
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Figure 5.2: graphs of selected eigenfunctions of MC 2 forms on levels 2, 3, 4
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   #     m=2     m=3    m=4   3to2   4to3 

    1                       0                0              0              0             0 

    2              0.2205    0.0359    0.0055    0.0006    0.0001 

    5              0.3794    0.0602    0.0093    0.0012    0.0002 

    6               0.7135    0.1167    0.0180    0.0051    0.0003 

    9               0.7492    0.1259    0.0196    0.0056    0.0004 

   10              0.7846    0.1391    0.0219    0.0018    0.0004 

   11              0.9373    0.1701    0.0268    0.0350    0.0011 

 

Table 5.4: values of ‖ f (m)
j |

Ẽ(m−1)
2

− f (m−1)
j ‖2

2
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6 1-Forms on the Magic Carpet
We indicate briefly how the theory differs from SC. We have the analogs of (3.1), (3.2) and (3.3),
but the dimension count is different because δ̃

(m)
2 also has a 1-dimensional kernel, namely the

constants. There are exactly 2∗8m edges, since each edge is the boundary of exactly two squares,
so

dimH
(m)

1 = 2∗8m−8m− 5∗8m +1
7

+2 =
2∗8m +12

7
. (6.1)

On the other hand, the surface approximating MC on level m has genus g =
8m +6

7
, and the

cycles generating the homology are in one-to-one correspondence with the horizontal and vertical
identified edges. The analog of Conjecture 3.1 is true, in fact it is a well-known result in topology.

In Figure 6.1 to Figure 6.3 we show the values of h(2)1 , h(3)1 and the restriction of h(3)1 to Ẽ(2)
1

where γ1 is the top and bottom horizontal line. There are some surprising features of these 1-
forms that may be explained by symmetry. Let RH denote the horizontal reflection and RV the
vertical reflection about the center. Note that RHγ1 =−γ1 because the orientation is reversed, while
RV γ1 = γ1. Since−h(m)

1 (RHx) and h(m)
1 (RV x) are harmonic 1-forms with the same integrals around

cycles as h(m)
1 , it follows by uniqueness that −h(m)

1 (RHx) = h(m)
1 (x) and h(m)

1 (RV x) = h(m)
1 (x). This

implies that h(m)
1 vanishes identically along the cycle consisting of the vertical edges of the large

square, and indeed any square that is symmetric with respect to RH . Certain other vanishings of
h(m)

1 are accidental to the level m, and do not persist when m increases. For example, every cycle
of level m contains just a single edge, so vanishing of the integral forces vanishing on the edge.
Sometimes this has a ripple effect. For example, consider the region in the top center of the level
2 graph show in Figure 6.4, where the horizontal symmetry has been used in labeling edges. We
obtain the equation 2a+b = 0 from the equation d̃(2)

1 h̃(2)1 = 0 on the small square, and the equation
2c+ b = 0 from

∫
γ

h̃(2)1 = 0 on the cycle along the top of the big square. Finally the equation

a+ c− b = 0 comes from δ̃
(2)
1 h̃(2)1 = 0 at the indicated point. These yield a = b = c = 0 that we

see in Figure 6.1 to Figure 6.3.
If γ2 denote the cycle along the vertical edges of lines bounding MC, then h(m)

2 is just a rotation
of h(m)

1 . So the next interesting cycle γ3 is the top and bottom identified lines around the center
deleted square on level 1. In Figure 6.5 we show h(2)3 , h(3)3 and the restriction of h(3)3 to Ẽ(2)

1 . The
website [] has many more similar illustrations of other harmonic 1-forms.

To quantify the rate of convergence we give in Table 6.1 the values of ‖h(m)
k −Rh(m)

k ‖2 analo-
gous to Table 3.1.

As in the case of SC, we investigate the behavior of restrictions of 1-forms to line segments.
In Figure 6.5 we graph the restrictions of some h(m)

k , analogous to Figure 3.4. In Table 6.2 we
compute total variations of approximations, analogous to Table 3.2. Table 6.3, analogous to Table
3.3, shows the values of (3.9) for different values of p. In Figure 6.6 and Figure 6.7 and Table 6.4
we give analogous results for d̃(m)

0 f (m)
0 and δ̃

(m)
2 f (m)

2 where f (m)
0 and f (m)

2 are eigenforms of the
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Figure 6.1: values of h(2)2 and values of h(2)6
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Figure 6.2: the restriction of Rh(3)2 and Rh(3)6 to Ẽ(1)
1 where γ1 is the top and bottom horizontal line
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Figure 6.3: the restriction of RRh(4)2 and RRh(4)6 to Ẽ(1)
1 where γ1 is the top and bottom horizontal

line
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1k ||h(2)
k-Rh(1)

k|| ||h(3)
k-Rh(2)

k|| ||h(4)
k-Rh(3)

k|| 

1     0.1549     0.1476     0.1485 

2     0.4647     0.1581     0.1349 

3          0.2419     0.1452 

4          0.2039     0.1468 

5      0.2419     0.1452 

6      0.2669     0.1458 

7      0.2669     0.1458 

8      0.2419     0.1452 

9      0.2039     0.1468 

10      0.2419     0.1452 

11       0.2356 

12       0.1953 

13       0.1946 

14       0.1950 

15       0.1964 

16       0.1950 

17       0.1946 

18       0.1953 

19       0.2356 

20       0.2639 

 

Table 6.1: values of ‖h(m)
k −Rh(m)

k ‖2
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            #of Eigenvalue 
# of lines 

       1             2              3               4              5             6            7                 8             9             10 

1     1.0000    0.3321    0.4937    0.0535    0.4937    0.4875    0.4875    0.4937    0.0535    0.4937 

2     1.0000    0.3927    2.0000    0.0685    0.1742    2.0000    0.1448    2.0000    0.0685    0.1742 

3     1.0000    0.6818    2.0000    0.1069    0.1264    2.0000    0.0843    2.0000    0.1069    0.1264 

4     1.0000    2.0000    0.5027    0.5153    0.1453    0.5070    0.4404    0.5027    0.5153    0.1453 

5     1.0000    1.0000    0.0922    2.0000    0.0497    0.0369    0.0369    0.0922    2.0000    0.0497 

6     1.0000    1.0000    0.0497    2.0000    0.0922    0.0369    0.0369    0.0497    2.0000    0.0922 

7     1.0000    2.0000    0.1453    0.5153    0.5027    0.4404    0.5070    0.1453    0.5153    0.5027 

8     1.0000    0.6818    0.1264    0.1069    2.0000    0.0843    2.0000    0.1264    0.1069    2.0000 

9     1.0000    0.3927    0.1742    0.0685    2.0000    0.1448    2.0000    0.1742    0.0685    2.0000 

10     1.0000    0.3321    0.4937    0.0535    0.4937    0.4875    0.4875    0.4937    0.0535    0.4937 

          #of Eigenvalues 
                           
# of lines 

    1             2             3            4              5             6           7             8            9            10 

1     1.0000    0.2769    0.3982    0.0396    0.3982    0.3879    0.3879    0.3982    0.0396    0.3982 

2     1.0000    0.2864    0.6450    0.0407    0.2488    0.6335    0.2361    0.6450    0.0407    0.2488 

3     1.0000    0.2864    0.7645    0.0417    0.2209    0.7604    0.2067    0.7645    0.0417    0.2209 

4     1.0145    0.3701    2.0289    0.0522    0.1748    2.0328    0.1488    2.0289    0.0522    0.1748 

5     1.0000    0.3477    1.0000    0.0535    0.1125    1.0000    0.0987    1.0000    0.0535    0.1125 

6     1.0000    0.3477    1.0000    0.0599    0.1111    1.0000    0.0947    1.0000    0.0599    0.1111 

7     1.0145    0.5811    2.0289    0.0972    0.1272    2.0328    0.0959    2.0289    0.0972    0.1272 

8     1.0000    0.8094    0.7537    0.1645    0.1142    0.7322    0.1244    0.7537    0.1645    0.1142 

9     1.0000    1.0154    0.6166    0.1788    0.1195    0.5577    0.1242    0.6166    0.1788    0.1195 

10     1.1735    2.0000    0.4047    0.3799    0.1492    0.4299    0.3285    0.4047    0.3799    0.1492 

11     1.0000    1.0000    0.1743    0.5790    0.0497    0.0845    0.0418    0.1743    0.5790    0.0497 

12     1.0000    1.0000    0.1620    0.7406    0.0403    0.0739    0.0418    0.1620    0.7406    0.0403 

13     1.0216    1.0648    0.0970    2.0006    0.0445    0.0508    0.0506    0.0970    2.0006    0.0445 

14     1.0000    1.0000    0.0476    1.0000    0.0423    0.0237    0.0237    0.0476    1.0000    0.0423 

15     1.0000    1.0000    0.0423    1.0000    0.0476    0.0237    0.0237    0.0423    1.0000    0.0476 

16     1.0216    1.0648    0.0445    2.0006    0.0970    0.0506    0.0508    0.0445    2.0006    0.0970 

17     1.0000    1.0000    0.0403    0.7406    0.1620    0.0418    0.0739    0.0403    0.7406    0.1620 

18     1.0000    1.0000    0.0497    0.5790    0.1743    0.0418    0.0845    0.0497    0.5790    0.1743 

19     1.1735    2.0000    0.1492    0.3799    0.4047    0.3285    0.4299    0.1492    0.3799    0.4047 

20     1.0000    1.0154    0.1195    0.1788    0.6166    0.1242    0.5577    0.1195    0.1788    0.6166 

21     1.0000    0.8094    0.1142    0.1645    0.7537    0.1244    0.7322    0.1142    0.1645    0.7537 

22     1.0145    0.5811    0.1272    0.0972    2.0289    0.0959    2.0328    0.1272    0.0972    2.0289 

23     1.0000    0.3477    0.1111    0.0599    1.0000    0.0947    1.0000    0.1111    0.0599    1.0000 

24     1.0000    0.3477    0.1125    0.0535    1.0000    0.0987    1.0000    0.1125    0.0535    1.0000 

25     1.0145    0.3701    0.1748    0.0522    2.0289    0.1488    2.0328    0.1748    0.0522    2.0289 

26     1.0000    0.2864    0.2209    0.0417    0.7645    0.2067    0.7604    0.2209    0.0417    0.7645 

27     1.0000    0.2864    0.2488    0.0407    0.6450    0.2361    0.6335    0.2488    0.0407    0.6450 

28     1.0000    0.2769    0.3982    0.0396    0.3982    0.3879    0.3879    0.3982    0.0396    0.3982 

Table 6.2: Total variation of MC harmonic one forms along horizontal lines at level 2 and level 3
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