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Abstract

In this paper, we provide a survey (both theoretical and computational) of
the conditions for determining which finite p -groups are strongly flat. Let m(G)
denote the maximum size of an irredundant generating set of a group G . Then,
a group G is strongly flat if m(G) is strictly greater than m(H) for all proper
subgroups H of G . For example, J. Whiston has shown in his dissertation
that all symmetric groups are strongly flat. Here, we shall only consider the
simpler case of finite p -groups. We observe that non-abelian powerful p -groups
exhibit this property only when p is odd. Meanwhile, computations made using
GAP show that, in general, the occurrences of strongly flat groups vary greatly
between the cases where p is odd and where p = 2 . When p is odd, there are
very few strongly flat p -groups as the group must be nilpotent of class 2 and
have exponent p or p2 . When p = 2 , strongly flat p -groups are fairly common,
as both the class and exponent of the group are unbounded. In particular, over
1
4 of the groups of order 256 are found to be strongly flat. These concepts are
of interest in a number of situations: Powerful p -groups are important in the
study of profinite groups, and also, many computations of m(G) are aided by
knowing that some maximal subgroups are strongly flat. Throughout the paper,
we shall mainly be following the notations and definitions of [6].
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1 Introduction

Consider the group Z6 . This group can be generated by either 1 or 2 elements:
Z6 = 〈 1 〉 = 〈 5 〉 = 〈 2, 4 〉 = 〈 3, 4 〉 . This leads us to consider various questions.
Which groups can be generated by a single group element? What is the minimum
number of elements that are needed to generate a group G ? How many elements are
needed to generate a proper subgroup of G ? In answering these questions, we are
better able to classify groups and study their properties in the general form. In this
section, we shall begin by going through some key definitions.

Definition 1.1. A generating set (of size n ) of a finite group G is a finite set
{ g1, . . . , gn } of elements of G that generate G.

Definition 1.2. We define r(G ) as the smallest size of a generating set of G .

Definition 1.3. A generating set { g1, . . . , gn } of G is irredundant if no proper subset
generates G . A generating set that has a proper subset that generates G is redundant.

Definition 1.4. We let m(G) be the maximum size of an irredundant generating set
of G and i(G) be the maximum size of any irredundant set of G . Equivalently,

i(G) = max {m(H) : H ≤ G }

It follows from the above definitions that r(G) ≤ m(G) ≤ i(G) .

Example 1.5. We have:

r(G) = 1 ⇐⇒ G can be generated by a single g ∈ G
⇐⇒ G is cyclic

Now, for G = Zp , a cyclic group of prime order, any g ∈ G (where g 6= 1 ) generates
G . Any generating set of more than two elements will then be redundant. Thus, we
have r(G) = m(G) = i(G) = 1 in this case.
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2 Preliminaries

In this section, we will go through some basic definitions of terms that we would use
in this paper. We will also work through various relevant propositions and theorems
in group theory. Most of them are elementary, and can be found in [6].

2.1 Basic definitions

Definition 2.1. A non-generating element of G is an element x in G such that if
x ∈ X and 〈X 〉 = G , then 〈X \ {x} 〉 = G . The Frattini subgroup Φ(G) is the
set of all non-generating elements of G .

Proposition 2.2. An alternative definition of the Frattini subgroup is given as follows:
Φ(G) =

⋂
Mi , where {Mi} is the set of all the maximal subgroups of G .

Proof. First, we show that the set of all non-generating elements of G lies in in the
intersection of all the maximal subgroups of G . Let x be a non-generating element
of G . Suppose x /∈ Mi , where Mi is a maximal subgroup of G. Then 〈Mi, x 〉 = G
since Mi is a maximal subgroup. This implies that Mi ∪ {x} is a generating set of
G . But x is a non-generator means that 〈Mi 〉 = G , which is a contradiction since
〈Mi 〉 = Mi 6= G . Therefore, x ∈ Mi , for all i . Next, we show the converse is also
true. Let x lie in the intersection of all the maximal subgroups of G , and suppose
S is a subset such that S ∪ {x} generates G . Suppose x is a necessary generator,
then 〈S 〉 = H � G . Since 〈H, x 〉 = G , we have x /∈ H . Since H � G , H must
lie in some maximal subgroup Mi . But by assumption, x ∈Mi , so 〈H, x 〉 ≤M and
therefore G ≤ M , which is a contradiction. Thus, x is a non-generator. This shows
the equivalence of the two definitions.

Next, we quote a useful result regarding the Frattini subgroup of a direct product.

Proposition 2.3. Let G and H be finite groups. Then Φ(G×H) = Φ(G)×Φ(H) .

Proof. This is a standard result, and can be found in many places, including [5].

Definition 2.4. Given a group G , the commutator of two elements g, h ∈ G is given
as [g, h] = g−1h−1gh . Given sets A,B ⊆ G , [A,B] is defined as 〈 [a, b] : a ∈ A, b ∈ B 〉 .
[G,G] is known as the commutator subgroup and is also denoted as G′ .

There are many well-known commutator identities which would be useful in our sub-
sequent discussion. Here, we note the following identity: [ab, c] = [a, c]b[b, c] (where
xy is defined to be y−1xy for x, y ∈ G ). This can be proven by expanding both sides
of the expression.
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Proposition 2.5. G/G′ is abelian.

Proof. First, to show that G/G′ is well-defined, we prove that G′ E G . Let g ∈ G ,
then:

g−1G′g = g−1 〈 [x, y] | x, y ∈ G 〉 g
=

〈
g−1[x, y]g | x, y ∈ G

〉
=

〈
[g−1xg, g−1yg] | x, y ∈ G

〉
= 〈 [x, y] | x, y ∈ G 〉

Next, to prove that G/G′ is abelian, we prove a stronger result that holds for normal
subgroups N EG : Let x, y ∈ G . Then:

(xN)(yN) = (yN)(xN) ⇐⇒ (xy)N = (yx)N

⇐⇒ (yx)−1(xy) = [x, y] ∈ N

Since [x, y] ∈ G′ for all x, y ∈ G , therefore G/G′ is indeed abelian.

Definition 2.6. Let p be a prime. A group G is a p -group if it is non-trivial and
every element of G has a power of p as its order.

Proposition 2.7. Let G be a finite group. Then, we have the following equivalent
relationship: G is a p -group ⇐⇒ |G| = pn for some n > 0

Proof. Suppose |G| = pn for some n > 0 . Then by Lagrange’s theorem, for all g ∈ G ,
ord (g) | pn . Therefore, we have ord(g) = pk , where k ≤ n . Thus, G is a p -group.
Conversely, if G is a p -group with an order not of the form pn , then there exists a
prime q 6= p such that q | |G| . By Cauchy’s theorem, G would have an element of
order q , and so G is not a p -group.

Definition 2.8. An elementary abelian p -group is a finite abelian group where every
nontrivial element has order p .

Next, we define and list the properties of a nilpotent group. We require the following
definitions.

Definition 2.9. The upper central series is defined as follows:

1 = Z0(G) ≤ Z1(G) ≤ Z2(G) ≤ . . .

with Z0(G) = 1 , Z1(G) = Z(G) and Zi+1(G) is the subgroup of G containing Zi(G)
such that Zi+1(G)/Zi(G) = Z(G/Zi(G)) .

The lower central series is defined as follows:

G = G0 ≥ G1 ≥ G2 ≥ . . .

with G0 = G , G1 = [G,G] and Gi+1 = [G,Gi]
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Definition 2.10. A group G is said to be nilpotent if the Zc(G) = G for some c ∈ Z .
The smallest such c is called the nilpotence class of G and we denote it as cl (G) = c .

Here, we quote a theorem on nilpotent groups. The proof can be found in various
texts, including [12], and shall not be included here.

Theorem 2.11. Let G be a finite group. Then, the following are equivalent:

1. G is nilpotent

2. Φ(G) ≥ G′

3. G is a direct product of p -groups

We end this subsection by introducing the two subgroups Ωi(G) (omega) and fi(G)
(agemo), and their basic properties:

Definition 2.12. Let G be a finite p -group. Then:

Ωi(G) =
〈
{x ∈ G | xpi = 1}

〉
fi(G) =

〈
{xpi | x ∈ G}

〉
We also introduce another notation, which would be used later in a subsequent section.
Let f1(G) = f1(G),f2(G) = f1(f1(G)) , and so on. In other words, fn(G) =
f1(fn−1(G)) , for n ≥ 2 .

Proposition 2.13. The omega and agemo subgroups form two normal series. Let G
be a finite p -group with order pd , then:

G = Ωd(G) ≥ Ωd−1(G) ≥ · · · ≥ Ω1(G) ≥ Ω0(G) = 1

G = f0(G) ≥ f1(G) ≥ · · · ≥ fd−1(G) ≥ fd(G) = 1
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2.2 Properties of p-groups

With the following definitions, we describe some commonly known properties of p -
groups, which would be useful for our subsequent discussion. First, we require the
following proposition, which holds for finite groups in general.

Proposition 2.14. Let G be a finite group and let S ⊆ G . Then S is an irredundant
generating set of G if and only if the image of S in G/Φ(G) is an irredundant
generating set of G/Φ(G) .

Proof. Let S = {g1, . . . , gn} ⊆ G and let S̄ = {g1Φ(G), . . . , gnΦ(G)} ⊆ G/Φ(G) be
the image of S in G/Φ(G) . Clearly, if S generates G , then S̄ generates G/Φ(G) .
Now, suppose S̄ generates G/Φ(G) and S does not generate G , then 〈S 〉 ⊆M ( G,
for some maximal subgroup M . In particular, there exists g ∈ G such that g /∈ M ,
so g /∈ Φ(G) and gΦ(G) /∈

〈
S̄
〉

. Therefore, S̄ does not generate G/Φ(G) , and we
have a contradiction with our initial assumption. Therefore, S generates G ⇐⇒ S̄
generates G/Φ(G) .

Now, suppose S is an irredundant generating set but S̄ is a generating set that is
redundant. Then, there exists a proper subset S̄ ′ that is generating, and the preimage
of S̄ ′ is a proper subset of S that is generating. This would contradict our assumption
that S is an irredundant generating set. By a similar argument, if S̄ is an irredundant
generating set, then S must necessarily be an irredundant generating set. Therefore,
S is an irredundant generating set of G ⇐⇒ S̄ is an irredundant generating set of
G/Φ(G) .

Corollary 2.15. Let G be a finite group. Then:

r(G) = r(G/Φ(G))

m(G) = m(G/Φ(G))

Lemma 2.16. If G is an elementary abelian p -group, then Φ(G) = 1

Proof. Since every element g ∈ G has order p , therefore G ' Zp × · · · × Zp = Zn
p .

Let Mi = Zp × · · · × 1× · · · × Zp , where 1 is in the ith coordinate. Mi is a maximal
subgroup and ⋂

0≤i≤n

Mi = 1

Thus, we have Φ(G) = 1

Lemma 2.17. Let G be a group. Suppose N EG and N ≤ Φ(G) , then Φ(G/N) =
Φ(G)/N.
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Proof. N ≤ Φ(G) implies that N is contained in all the maximal subgroups of G.
By the Correspondence Theorem, the maximal subgroups of G/N correspond to the
maximal subgroups of G . Therefore, the intersection Φ(G/N) corresponds to the
intersection Φ(G) of the maximal subgroups of G .

Lemma 2.18. Let G be a finite p -group. Then f1(G)G′ ≤ Φ(G) .

Proof. Let M ≤ G be a maximal subgroup of G . By Sylow’s Theorem, [G : M ] = p
and so G/M ' Zp , which is abelian. Therefore, G′ ≤ M . Also, (gM)p = M for all
g ∈ G . Therefore, gp ∈ M for all g ∈ G and we have f1(G) ≤ M . Since G′ is a
normal subgroup, we have f1(G)G′ ∈M and thus f1(G)G′ ≤ Φ(G) .

With the following lemmas, we can now make the following propositions:

Proposition 2.19. Let G be a finite p -group, then f1(G)G′ = Φ(G) .

Proof. From Lemma 2.18, we have f1(G)G′ ≤ Φ(G) . Now, let H = f1(G)G′ . Since
f1(G) E G , we have H E G . Since G′ ≤ H , therefore G/H is abelian. Also, by
Lagrange’s theorem, f1(G) ≤ H implies that G/H is elementary abelian. Thus, by
Lemma 2.16 and 2.17, we have Φ(G)/H = Φ(G/H) = 1 . In other words, Φ(G) =
H = f1(G)G′ .

Proposition 2.20. Let G be a finite p -group. Each irredundant generating set of G
has d elements, where |G : Φ(G)| = pd .

Proof. Let { g1, . . . , gn } be an irredundant generating set of G . Then, by Proposi-
tion 2.14, we have {g1Φ(G), . . . , gnΦ(G)} = G/Φ(G) and therefore d ≤ n . Suppose
that d < n . Then, there exists a proper subset of {g1Φ(G), . . . , gnΦ(G)} which still
generates G/Φ(G) . The corresponding proper subset of {g1, . . . , gn} generates G .
This contradicts the irredundancy of the set {g1, . . . , gn} . Thus, we have d = n .

Corollary 2.21. Let G be a finite p -group. Then r(G) = r(G/Φ(G)) = d = m(G) ,
where |G : Φ(G)| = pd .

Proposition 2.22. Let G be a finite p -group. Then G/Φ(G) is elementary abelian.
Furthermore, if H is another normal subgroup of G such that G/H is elementary
abelian, then Φ(G) ≤ H .

Proof. From the proof of Lemma 2.18, we have G′ ≤ Φ(G) and so G/Φ(G) is abelian.
From the same proof, we have f1(G) ≤ Φ(G) . Now, for all g ∈ G , gΦ(G) has order
p , and thus G/Φ(G) is elementary abelian. Now suppose that G/H is elementary
abelian of order pn . Then G/H is abelian implies that G′ ≤ H . Also, (gH)p = 1
implies that gp ∈ H for all g ∈ G , so f1(G) ≤ H . Thus, Φ(G) = f1(G)G′ ≤ H .
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Lemma 2.23. Let G be a non-trivial finite p -group. Then Z(G) 6= 1 .

Proof. The class equation states that:

|G| = |Z(G)|+
r∑

i=1

|G : CG(gi)|

where g1, . . . , gr are representatives of the distinct non-central conjugacy classes. By
definition, CG(gi) 6= G for all i so p divides |G : CG(gi)| . Since p also divides |G| ,
it follows that p divides |Z(G)| and hence the center of a p -group is non-trivial.

Corollary 2.24. If |G| = p2 for some prime p , then G is abelian.

Proof. Since Z(G) 6= 1 , therefore we have G/Z(G) is cyclic. Let xZ(G) be a gen-
erator G/Z(G) , then every element in G is of the form xaz for some integer a ∈ Z
and some element z ∈ Z(G) Then, G is clearly abelian.

Proposition 2.25. Let G be a p -group of order pn . Then G is nilpotent of nilpo-
tence class at most n− 1 for n ≥ 2 (and class equal to n when n = 1 or 0).

Proof. Now, for each i ≥ 0 , G/Zi(G) is also a p -group. Thus, if |G/Zi(G)| > 1 ,
then Z(G/Zi(G)) 6= 1 . Therefore, if Zi(G) 6= G , we have Zi+1(G)/Zi(G) 6= 1 and
thus |Zi+1(G)| ≥ p|Zi(G)| . We end up with |Zi+1(G)| ≥ pi+1 . This implies that
|Zn(G)| ≥ pn , so G = Zn(G) and cl (G) ≤ n . Suppose cl(G) = n , then |Zi(G)| = pi

for all i . However, this would mean that Zn−2(G) would have index p2 in G and
so by Corollary 2.24, G/Zn−2(G) would be abelian. This would then mean that
G/Zn−2(G) = Z(G) and Zn−1(G) = G , which would be a contradiction.

Next, we quote a theorem from Laffey [9], which we shall not prove here as it is rather
involved:

Theorem 2.26. (T. Laffey) Let G be a finite p -group, where p > 2 . Then G has
a normal subgroup N such that

1. r(G) = r(N)

2. Φ(N) = N ′ ≤ Z(G)

3. N ′ is elementary abelian

7



2.3 Extensions to Direct Products

If we were to study the generating sets of a group G , an obvious extension would be
to study the sets that generate the direct product G×H .

Definition 2.27. Two groups G and H are relatively prime if they do not have any
common non-trivial quotient groups.

Proposition 2.28. Let G and H be finite groups such that |G| and |H| are rela-
tively prime integers. Then, G and H are relatively prime groups.

Proof. Let Q be a common quotient group of both G and H . By Lagrange’s theorem,
|G| and |H| are both divisible by |Q| , so we have |Q| = 1 , and the only common
quotient group is the trivial group.

Theorem 2.29. (D. Collins and K. Dennis) Let G and H be two relatively prime
groups. Then, the following holds:

1. r(G×H) = r(G) + r(H)

2. m(G×H) = m(G) +m(H)

3. i(G×H) = i(G) + i(H)

Proof. The proof can be found in [4]. In fact, D. Collins and K. Dennis proved a
stronger result, showing that (2) and (3) hold for all direct products of finite groups.

Corollary 2.30. Let G ' Zk1
p1
× · · · × Zkn

pn , where pi are distinct primes. Then

m(G) = m(Zk1
p1

) + · · ·+m(Zkn
pn) = k1 + · · ·+ kn

8



2.4 Examples

Before we proceed to the next section, we give several examples here to illustrate the
concepts of r,m, i .

Example 2.31. Let G = Zn , the cyclic group of order n . Then, we have:

r(Zn) = 1

m(Zn) = ν(n)

i(Zn) = ν(n)

where ν(n) is the number of distinct prime divisors of n .

Example 2.32. Let D2n denote the dihedral group of order 2n . D2n is generated
by two elements, R (“rotation”) and F (“flip”), that satisfy Rn = F 2 = 1 and
RF = FR−1 . We have:

r(D2n) = 2

m(D2n) = 1 +m(Zn)

i(D2n) = 1 +m(Zn)

Example 2.33. Let A be a finite abelian group. Let

A ' Zn1 × · · · × Znk

for 1 < n1|n2| · · · |nk be the unique description of A as a product of cyclic groups,
subject to the given conditions. Next, decompose A as a direct product of it Sy-
low subgroups to express A as a product of cyclic subgroups of prime power order.
Let t denote the number of all non-trivial cyclic groups that appear in the second
decomposition. Then, we have:

r(A) = k

m(A) = t

i(A) = t

9



3 Flat groups

3.1 Basic definitions

Definition 3.1. Let G be a finite group, then:

1. G is flat if m(H) ≤ m(G) for all H ≤ G

2. G is strongly flat if m(H) < m(G) for all H � G

3. G is uniformly flat if m(K) < m(H) for all K� H ≤ G

Remark 3.2. It is clear from the above definitions that a group G is uniformly flat
if every subgroup H of G is strongly flat.

Example 3.3. Zp is strongly flat. Zp2 is flat but not strongly flat.

Proof. Let G = Zp . Then m(G) = 1 . However, the only proper subgroup H of
G is the trivial group 〈 1 〉 , where m(H) = 0 . Thus, Zp is strongly flat. Now, let
G′ = Zp2 . Then m(G′) = ν(G′) = 1 . However, G = Zp � G′ and therefore Zp2 is
not strongly flat.

In the closing remarks of [14], J. Whiston and J. Saxyl claimed that nilpotent groups
are flat. If this were to hold true, then all p -groups would be flat since all p -groups
are nilpotent (by Proposition 2.25). We argue that this is in fact false, by showing an
example of a p -group that is not flat.

Example 3.4. Let G = Zp
p o Zp for p an odd prime. Then G is not flat.

Proof. Let a = ((1, 0, . . . , 0); 0) and b = ((0, . . . , 0); 1) . Clearly, a and b generate
the group G : Denote (1, 0, . . . , 0) as e1 , (0, 1, . . . , 0) as e2 , etc. Then we have
a = (e1; 1) and b = (0; 1) . Observe that we have:

bab−1 = (e2; 0)

b(e2; 0)b−1 = (e3; 0)

· · ·
b(ei; 0)b−1 = (ei+1; 0)

Therefore, all of (ei; 0) appear and they form a basis for the vector space V = Zp
p .

Therefore, all of V and (0,Zp) appear in 〈 a, b 〉 and thus 〈 a, b 〉 = G.

Now, since m(V ) = p and V ≤ G , we have i(G) ≥ p . This leaves us with i(G) >
m(G) = r(G) = 2 , as long as p > 2 .
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Example 3.5. The symmetric groups Sn are strongly flat.

Proof. The set of transpositions {(1, 2), (2, 3), . . . , (n − 1, n)} forms an independent
generating set of Sn and thus m(Sn) ≥ n−1 . In [13], J. Whiston showed that n−1 is
an upper bound for the size of an independent generating set in Sn and that equality is
only achieved when the set generates the whole of Sn In other words, m(H) < m(Sn)
for all H � Sn and therefore Sn is strongly flat.

Lemma 3.6. Let G be a finite abelian p -group. The, the following are equivalent:

1. G is uniformly flat

2. G contains no subgroup isomorphic to Zp2

3. G ' Zp × · · · × Zp

4. G is a finite dimensional vector space over Fp = Zp

5. exp (G) = p

6. Φ(G) is trivial

7. G is strongly flat

Proof. First, note that by Remark 3.2 and Example 3.3, (1), (2) and (3) are equivalent.
Meanwhile, (3) and (4) are equivalent (by definition of vector space) and they are
both equivalent to (5), for G a finite abelian p -group. Also, (5) implies (6) because
of Lemma 2.16, while (6) implies (5) because of f1(G) = 1 (Proposition 2.19). It
remains to prove that (7) implies (1); the converse is trivial.

Now, let G be a finite abelian p -group. By the Fundamental theorem of finite abelian
groups, G ' Zpk1 × · · · × Zpkn . Let H ' Zp × · · · × Zp = Zn

p . Now, we have H ≤ G
with m(H) = m(G) = n . Since G is strongly flat, therefore H = G . Thus, we have
(7) implies (3) and thus (1).

We can also extend the above lemma to finite abelian groups in general, with the
following modifications:

Lemma 3.7. Let G be a finite abelian group. Then, the following are equivalent:

1. G is uniformly flat

2. G contains no subgroup isomorphic to Zp2 for any prime p

3. Every Sylow p -subgroup is uniformly flat

11



4. exp (G) is square-free

5. Φ(G) is trivial

6. G is strongly flat

Proof. From Lemma 3.6, (2) and (3) are equivalent. (1) implies (2) from Example 3.3.
The converse is true because of Proposition 2.29 and Lemma 3.6: G ' Zk1

p1
×· · ·×Zkn

pn .
Suppose we have K � H , then we have K ' Za1

p1
×· · ·×Zan

pn and H ' Zb1
p1
×· · ·×Zbn

pn

with ai ≤ bi for all i (with equality not holding for at least one i ). Thus, we have:

m(K) =
n∑

i=1

ai <

n∑
i=1

bi = m(H)

Now, (2) and (4) are equivalent since exp(Zk1
p1
× · · · ×Zkn

pn) = p1· · · · · pn is square-free.
Meanwhile, to show that (2) and (5) are equivalent, we know from Proposition 2.3 and
Lemma 3.6 that Φ(G) = Φ(Zk1

p1
) × · · · × Φ(Zkn

pn) = 1 . It remains to prove that (6)
implies (1); the converse is trivial.

Let G be a finite abelian group. By the Fundamental theorem of finite abelian groups,
G ' Zj1

p
k1
1

× · · · × Zjn

pknn
, where pi and pj are not necessarily distinct primes. Let

H ' Zj1
p1
× · · · × Zjn

pn . Now we have H ≤ G with

m(G) =
n∑

i=1

ji = m(H)

Since G is strongly flat, therefore we have H = G . We have (6) implies (2) and thus
(1).

12



3.2 Strongly flat p-groups

Definition 3.8. Let G be a finite p -group. Then G is r-maximal if r(H) < r(G)
for all proper subgroups H of G .

The properties of r -maximal groups have been studied in various papers [3, 11]. Here,
we make the following observation: If G is a finite p -group, then r(G) = m(G) .
In other words, G is r -maximal is equivalent to saying G is strongly flat. In this
sub-section, we will work through the proof of the following theorem from Chin[3].

Theorem 3.9. (A. Chin) Let G be a strongly flat p-group. If p > 2 , then G has
exponent p or p 2 . If p = 2 , then G has exponent 4 if any one of the following
conditions is satisfied:

1. |Φ(G)| ≤ 23 .

2. Φ(G) is elementary abelian.

3. r(G) ≤ 3 .

Before we start on the proof, we need the following lemma (Kahn, [8]) and a few
propositions.

Lemma 3.10. If G is a strongly flat p -group and N E G with N ⊆ Φ(G) , then
G/N is strongly flat.

Proof. Let K/N � G/N . In other words, N ≤ K � G with N E K . Since the
standard projection of K on K/N is clearly onto, the minimal generating set of K
is at least as big as K/N . Thus, we have r(K/N) ≤ r(K) . Similarly, N ⊆ Φ(G)
implies that r(G/Φ(G)) ≤ r(G/N) .

r(K/N) ≤ r(K)

= m(K) (K is a p-group)

< m(G) (G is strongly flat)

= r(G)

= r(G/Φ(G)) (by Corollary 2.21)

≤ r(G/N)

Thus, G/N is strongly flat.

Proposition 3.11. If G is a strongly flat p -group, then Φ(G) = G′ .

13



Proof. Since G is strongly flat and G′ ⊆ Φ(G) , it follows from Lemma 3.10 that G/G′

is strongly flat. Also, we know from Proposition 2.5 that G/G′ is abelian. It follows
from Lemma 3.6 that exp (G/G′) = p and thus G/G′ is in fact elementary abelian.
From Proposition 2.22, we have Φ(G) ≤ G′ , and thus Φ(G) = G′ .

Proposition 3.12. Let x, y be elements of a group G and let n be a positive integer.
Then (x[x, y])n = xn[y, xn]−1 . In particular, if G′ ⊆ Z(G) , then [x, y]n = [y, xn]−1 =
[xn, y] .

Proof.

(x[x, y])n = (xx−1y−1xy)n

= (y−1xy)n

= y−1xny

= xnx−ny−1xny

= xn[xn, y]

= xn[y, xn]−1

Suppose G′ ⊆ Z(G) , then we can collect the x terms on the left hand side of the
expression above and it follows that [x, y]n = [y, xn]−1 . Meanwhile, [x, y]n = [xn, y]
can be derived from the expansion of terms.

We now proceed to prove Theorem 3.9:

Proof. For the case of G being abelian, we have already shown earlier that exp (G) = p
for G to be strongly flat. Now, let G be a non-abelian strongly flat p -group. Then, the
nilpotency class of G is 2 [2, 9, 11]. Thus, we have G′ ≤ Z(G) . From Proposition 3.11,
we have:

f1(G) ≤ Φ(G) = G′ ≤ Z(G)

Suppose that exp (G) > p . Let x, y be arbitrary elements of G . Since G′ is contained
in the center of G and f1(G) ≤ Z(G) implies that [f1(G), G] = 1 , we have by
Proposition 3.12 that [x, y]p = [xp, y] = 1 . Thus, exp (G′) = p . We now have:

f2(G) ⊆ (f1(G))p ⊆ (G′)p = 1

Therefore, exp (G) = p2 .

For the case of p = 2 , Chin noted that any group with at least two distinct elements
of order 2 contains a dihedral subgroup, and thus has exponent at least 4.

A direct consequence of the theorem by Chin is that it allows us to rule out p -groups
that are not strongly flat.

14



Corollary 3.13. Let G be a non-abelian p -group with exponent ≥ p3 . Then G is
not strongly flat if any one of the following conditions is satisfied:

1. p is odd

2. p = 2 and |Φ(G)| ≤ 23

3. p = 2 and Φ(G) is elementary abelian

4. p = 2 and r(G) ≤ 3

Aother observation by Chin is that we can put a lower bound for r(G) when G is
strongly flat:

Proposition 3.14. Let G be a non-abelian strongly flat p -group. Then r(G) ≥ 3 ,
except when G = Q8 .

Proof. Since G is non-abelian, r(G) 6= 1 . Suppose r(G) = 2 , then G is strongly
flat implies that r(H) = 1 for any subgroup H � G (Recall that r(P ) = m(P ) for
a p -group P ). This implies that every proper subgroup of G is cyclic. In particular,
G would have a cyclic maximal subgroup. Checking through the list (from [7]) of
p -groups which have a cyclic maximal subgroup, none of those groups are strongly
flat, except for G = Q8 .
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Search for strongly flat groups amongst non-abelian p -groups

Order Conditions Primes (p =)

3 5 7 11 13

p (0) 1 1 1 1 1

(1) 0 0 0 0 0

p2 (0) 2 2 2 2 2

(1) 0 0 0 0 0

p3 (0) 5 5 5 5 5

(1) 2 2 2 2 2

(2) 2 2 2 2 2

(3) 2 2 2 2 2

p4 (0) 15 15 15 15 15

(1) 10 10 10 10 10

(2) 9 9 9 9 9

(3) 5 5 5 5 5

Table 1: Table showing how the conditions help to restrict the number of cases we have
to consider in our search for strongly flat groups amongst the non-abelian p -groups
(for p odd), using Corollary 3.13. (0) denotes the number of groups of that order. (1)
denotes the number of groups that is non-abelian. (2) denotes the number of groups
left after imposing the second condition that the exponent of the group is at most
p2 . (3) denotes the number of groups left after imposing the third condition that the
group is of nilpotency class 2. Notice here that there are no differences amongst the
p -groups here up to the order of p4 .
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(Continued)

Order Conditions Primes (p =)

3 5 7 11 13

p5 (0) 67 77 83 87 97

(1) 60 70 76 80 90

(2) 50 60 66 70 80

(3) 22 24 26 30 32

p6 (0) 504 684 860 1192 1476

(1) 493 673 849 1181 1465

(2) 405 580 744 1060 1328

(3) 101 115 129 157 171

p7 (0) 9310 34297 113147 750735

(1) 9295 34282 113132 750720

(2) 8315 33091 111577 748745

(3) 1563 6849 26463 204373

Table 2: A continuation of the previous table. Once again, (0) denotes the number of
groups of that order. (1) denotes the number of groups that are non-abelian. (2) de-
notes the number of groups left after imposing the second condition that the exponent
of the group is at most p2 . (3) denotes the number of groups left after imposing the
third condition that the group is of nilpotency class 2. Note that the computations
here are done using GAP and the SmallGroups library in GAP only contains groups of
order up to p6 for p = 13.
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4 Powerful p-groups

In the study of profinite groups, the concept of powerful p -groups play an important
role. These groups were introduced in 1987 by Lubotzky and Mann [10], where a
number of applications are given. Here, we follow closely to [1, 10].

4.1 Basic definitions

Definition 4.1. Let G be a finite p -group. Then G is powerful if p is odd and
G/f1(G) is abelian, or if p = 2 and G/f2(G) is abelian.

Recall in the proof of Proposition 2.5 that G/N is abelian if and only if G′ ≤ N .
Thus, the above definition is equivalent to saying that G is powerful if p is odd and
G′ ≤ f1(G) , or if p = 2 and G′ ≤ f2(G) . This is an alternative definition of a
powerful group. Here, we note that if G is a 2 -group, then G′ ≤ f1(G) and thus we
need a different definition from the general case. While this makes the proofs regarding
powerful groups slightly trickier (having to consider both cases separately), this can
usually be resolved by direct substitution of the definitions for the two cases.

Meanwhile, the condition G′ ≤ f1(G) implies that f1(G) = G′f1(G) = Φ(G)

Definition 4.2. A subgroup N ≤ G is powerfully embedded in G if p is odd and
[N,G] ≤ f1(N) , or p = 2 and [N,G] ≤ f2(N) .

From the above definitions, we note the following: if G is powerful, then G is power-
fully embedded in itself; if N is powerfully embedded in G , then N E G and N is
powerful.

Example 4.3. Since all quotient groups of an abelian group are also abelian, every
finite abelian p -group is powerful. Furthermore, their subgroups are all powerfully
embedded.

We observe that the conditions for a group N to be powerfully embedded in a p -group
G are different for p odd and p even. For the next three lemmas, we prove the case
for p odd. The proofs for p = 2 are similar - simply apply direct substitutions of the
definitions.

Lemma 4.4. If N is powerfully embedded in G and K C G , then NK/K is pow-
erfully embedded in G/K .

Proof. Let φ be the natural epimorphism G→ G/K Then, we have φ(N) = NK/K ,
φ(f1(N)) = f1(φ(N)) . Since [N,G] ≤ f1(N) , by applying φ to both sides of the
expression, we obtain [φ(N), φ(G)] ≤ f1(φ(N))

18



Lemma 4.5. Let K,N E G and K ≤ f1(N) . Then N is powerfully embedded in
G if and only if N/K is powerfully embedded in G/K .

Proof. It remains to prove the converse. Suppose [N/K,G/K] ≤ f1(N/K) . Since
f1(N/K) = f1(N)/K , we have [N,G] ≤ f1(N) .

Lemma 4.6. Let N be powerfully embedded in G and x ∈ G . Then H = 〈N, x 〉
is powerful.

Proof. We have N/f1(N) ≤ Z(H/f1(N) . Since H/N is cyclic, we have H/f1(N)
is abelian. Then, f1(H) ≥ f1(N) ≥ H ′ implies that H is powerful.

Proposition 4.7. Let G be a powerful p -group. Then fj(fi(G)) = fi+j(G) for any
integers i, j ≥ 0 .

Proof. We start by proving that f1(fj(G)) = fj+1(G) . Since fj+1(G) ⊆ f1(fj(G)) ,
we assume fj+1(G) = 1 . Otherwise, by Lemma 4.5, we can pass G to the quotient
G/fj+1(G) . We then attempt to show that f1(fj(G)) = 1 .

We first consider the case for p odd: Let N be a minimal normal subgroup contained in
fj(G) . By induction, f1(fj(G)) ⊆ N . Since fj(G) is powerful, therefore fj(G)/N
is abelian, while N ⊆ Z(G) (since N is minimal normal), and so cl(fj(G)) ≤ 2 .
Since fj+1 = 1 , fj(G) is generated by elements of order p , and thus we have
f1(fj(G)) = 1 .

Next, we consider the case for p = 2 : Again, let N be a minimal normal subgroup
contained in fj(G) . By induction, f1(fj(G)) ⊆ N , and hence f2(fj(G)) = 1 .
But since fj(G) is powerfully embedded, so [fj(G), G] = 1 , and therefore fj(G) is
abelian. By our assumption that fj+1(G) = 1 , fj(G) is generated by elements of
order 2, and thus has exponent 2. Therefore, f1(fj(G)) = 1 .

For both cases of p , we have shown that f1(fj(G)) = 1 . By induction on i , we have:

fi+1(fj(G)) = f1(fi(fj(G)))

= f1(fi+j(G))

= fi+j+1(G)
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4.2 Flatness of powerful p-groups

In this subsection, we will work through various propositions and lemmas, to show
that all powerful p-groups are flat. The proofs here are for the case when p is odd,
but the proof for the case when p = 2 is similar. We follow closely [1, 10].

Proposition 4.8. If G is a finite p -group, and N is powerfully embedded in G ,
then f1(N) is powerfully embedded in G .

Proof. We consider here the case when p is odd. Since N is powerfully embedded in
G , we have [N,G] ≤ f1(N) Thus, it suffices to show that [f1(N), G] ≤ f1([N,G]) .
Without loss of generality, we assume that f1([N,G]) = 1 . Otherwise, by Lemma 4.5,
we can pass G to the quotient G/f1([N,G]) . Since G is nilpotent, [K,G] � K
for every non-trivial normal subgroup K E G . Hence, we can further assume that
[[f1(N), G], G] = 1 . This implies that [[N,G], G] ≤ [f1(N), G] ≤ Z(G) .

Let x ∈ N and g ∈ G . Then [[x, g], xi] ∈ Z(G) for i ∈ {0, . . . , p− 1} , and

p−1∏
i=0

[[x, g], xi] =

p−1∏
i=0

[[x, g], x]i = [[x, g], xi]p(p−1)/2

Since p is odd and f1([N,G]) = 1 , we have

[xp, g] = [x, g]x
p−1

[x, g]x
p−2

. . . [x, g] (using the identity [ab, c] = [a, c]b[b, c])

=
0∏

j=p−1

[x, g][[x, g], xj]

= [x, g]p
p−1∏
j=0

[[x, g], xj] ([[x, g], xi] ∈ Z(G))

= [x, g]p[[x, g], x]p(p−1)/2

= 1

Therefore, we have [f1(N), G] = 1

The lower p -series of a group G is the descending series

G = P1(G) ≥ P2(G) ≥ . . . ,where Pi+1(G) = f1(Pi(G))[Pi(G), G]

Then, for a p -group, we have P2(G) = f1(P1(G))[P1(G), G] = f1(G)[G,G] = Φ(G) .

Lemma 4.9. Let G be a powerful p -group. Then:
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1. For each i ≥ 1 , Pi(G) is powerfully embedded in G and Pi+1(G) = f1(Pi(G)) =
Φ(Pi(G)) .

2. For each i ≥ 1 , the map x 7→ xp induces a homomorphism from Pi(G)/Pi+1(G)
onto Pi+1(G)/Pi+2(G)

Proof. (1.) P1(G) = G is powerfully embedded in G . Suppose that Pi(G) is power-
fully embedded in G for some i ≥ 1 , then:

Pi+1(G) = f1(Pi(G))[Pi(G), G] ≤ f1(Pi(G))f1(Pi(G)) = f1(Pi(G)) ≤ Pi+1(G)

This implies that Pi+1(G) = f1(Pi(G)) . By Proposition 4.8, Pi+1(G) is powerfully
embedded in G . Therefore, Pi+1(G) = f1(Pi(G)) = Φ(Pi(G)) .
(2.) We know from the proof above that Pi(G) is powerful and Pi+1(G) = Φ(Pi(G)) =
P2(Pi(G)) . Also, Pi+2(G) = f1(f1(Pi(G))) = P3(Pi(G)) . By changing notation if
necessary, we can assume that i = 1 , and P3(G) = 1 (by replacing G with G/P3 ).
Then, G′ ≤ Φ(G) = P2(G) ≤ Z(G) , so for x, y ∈ G , we have (xy)p = xpyp[y, x]p(p−1)/2

(This identity holds for G if cl(G) = 2 ). Since p > 2 , we get [y, x]p(p−1)/2 ∈
f1(P2(G)) = P3(G) = 1 , and thus (xy)p = xpyp . Since f1(P2(G)) = P3(G) = 1 and
f1(G) = P2(G) , this shows that x 7→ xp induces a homomorphism from G/P2(G)
onto P2(G)/P3(G) .

Lemma 4.10. If a powerful p -group G = 〈 a1, . . . , ad 〉 , then f1(G) = 〈 ap1, . . . , a
p
d 〉 .

Proof. Let φ : G/P2(G)→ P2(G)/P3(G) be the homomorphism given in the previous
lemma. Then:

P2(G)/P3(G) = φ(G/P2(G))

= 〈φ(a1P2(G)), . . . , φ(adP2(G)) 〉
= 〈 ap1, . . . , a

p
d 〉P3(G)

Since P3(G) = Φ(P2(G)) , we get f1(G) = 〈 ap1, . . . , a
p
d 〉 .

Proposition 4.11. If G is a powerful p -group, then every element of f1(G) is a
p -th power.

Proof. We proceed by induction on |G| . Let g ∈ f1(G) = P2(G) . By Lemma 4.9,
there exists x ∈ G and y ∈ P3(G) such that g = xpy . Let H = 〈f1(G), x 〉 .
Since f1(G) = P2(G) is powerfully embedded in G (by Lemma 4.9), it follows from
Lemma 4.6 that H is powerful. Also, g ∈ f1(G) since y ∈ P3(G) = f1(f1(G)) ≤
f1(H) . Assuming that G is not cyclic, then H < G . Then g is a p -th power in H ,
by induction.
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Remark 4.12. Let G be a powerful p -group. Then f1(G) = {xp | x ∈ G} , by
the previous proposition. By Proposition 4.8, f1(G) is also powerful. Thus, we get
f2(G) = f1(f1(G)) = f1(f1(G)) = {yp | y ∈ f1(G)} = {xp2 | x ∈ G} , and so on. We
thus have fk(G) = {xpk | x ∈ G} .

We can now summarize the results that we have on powerful p -groups as follows:

Theorem 4.13. Let G = 〈 a1, . . . , ad 〉 be a powerful p -group.Then,

1. Pi(G) is powerfully embedded in G

2. Pi(G) = fi−1(G) =
〈
ap

i−1

1 , . . . , ap
i−1

d

〉
3. Pi+k(G) = Pk+1(Pi(G)) = fk(Pi(G)) for each k ≥ 0

4. The map x 7→ xp
k

induces a surjective homomorphism Pi(G)/Pi+1(G)→
Pi+k(G)/Pi+k+1(G) for each i and k

Proof. (1) is exactly part (1) of Lemma 4.9. We also observed from the same lemma
that Pi+1(G) = f1(Pi(G)) = P2(Pi(G)) . It thus follows from Proposition 4.11 that
Pi+1(G) = {xp | x ∈ Pi(G)} and by induction, Pi(G) = {xp | x ∈ Pi−1(G)} . But
Remark 4.12 and (1.) implies that Pi−1(G) = {xpi−2 | x ∈ G} , and thus, we have
Pi(G) = {xpi−1 | x ∈ G} . Since Pi(G) < G , this means that Pi(G) = fi−1(G) . Mean-

while, repeated application of Lemma 4.10 shows that Pi(G) =
〈
ap

i−1

1 , . . . , ap
i−1

d

〉
, and

thus (2) is proven. Then, if we were to replace G with Pi(G) and i with k+1 (where
k ≥ 0) , then (2) would translate to (3):

Pk+1(Pi(G)) = fk(Pi(G))

= {xpk | x ∈ Pi(G)}
= {ypi−1+k | y ∈ G}
= Pi+k(G)

Meanwhile, (4) is exactly part (2) of Lemma 4.9.

Theorem 4.14. Let G be a powerful p -group. Then G is flat.

Proof. For this theorem, we will show both the proofs for p odd and p = 2 .

We begin by considering the case for p odd. Here, (1) to (4) refers to the respective
parts of the previous theorem. For the proof, we use induction on |G| . Let H ≤ G and
let r = r(G), r2 = r(P2(G)) . By (1), we know that P2(G) is powerful, so by induction,
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r(K) ≤ r2 , where K = H ∩ P2(G) . By (4), the map θ : G/P2(G) → P2(G)/P3(G) ,
induced by x 7→ xp , is an epimorphism. By considering G/P2(G) as a vector space
over Fp , we get dim(ker(θ)) = r − r2 . Therefore, dim(ker(θ) ∩ HP2(G)/P2(G)) ≤
r − r2 . Denoting e = dim(HP2(G)/P2(G)) , we get:

dim(θ(HP2(G)/P2(G))) = dim(HP2(G)/P2(G))− dim(ker(θ) ∩HP2(G)/P2(G)

≥ dim(HP2(G)/P2(G))− (r − r2)
= e− (r − r2)
= r2 − (r − e)

Now, let h1, . . . , he ∈ H be such that HP2(G) = 〈h1, . . . , he 〉P2(G) . Since Φ(K) =
Φ(H ∩ Φ(G)) ≤ Φ(Φ(G)) = P3(G) , therefore the subspace of K/Φ(K) spanned by
the cosets of hp1, . . . , h

p
e has dimension at least dim(θ(HP2(G)/P2(G))) ≥ r2− (r− e) .

Since dim(K/Φ(K)) = d(K) ≤ r2 , we can find r − e elements yi, . . . , yr−e ∈ K such
that

K = 〈hp1, . . . , hpe, y1, . . . , yr−e 〉Φ(K) = 〈hp1, . . . , hpe, y1, . . . , yr−e 〉

Then, by the modular law, we have

H = H ∩ 〈h1, . . . , he 〉P2(G)

= 〈h1, . . . , he 〉 (H ∩ P2(G))

= 〈h1, . . . , he 〉K
= 〈h1, . . . , he, y1, . . . , yr−e 〉

Thus, we have r(H) ≤ r = r(G) . But H and G are both p -groups and thus we have
m(H) = r(H) ≤ r = r(G) = m(G) , implying that G is flat.

We then consider the case for p = 2 . Again, we use induction on |G| . The map
θ : G/f1(G) → f1(G)/f2(G) , induced by x 7→ x2 , is an epimorphism. Since G is
a powerful 2 -group, G/f2(G) is abelian by definition. Therefore, for x, y ∈ G , we
have (xy)2 ≡ x2y2 (mod f2(G)) . Also, G = 〈 a1, . . . , ad 〉 implies that f1(G) =
〈 a21, . . . , a2d 〉 , by Lemma 4.10. Let r = r(G) and set r1 = r(f1(G)) so that r2 ≤ r .
Since f1(G) is powerful, therefore by induction, r(K) ≤ r1 , where K = H∩f1(G) By
considering G/f1(G) as a vector space over Fp , we get dim(ker(θ)) = r− r1 . There-
fore, dim(ker(θ)∩Hf1(G)/f1(G)) ≤ r− r1 . Denoting e = dim(Hf1(G)/f1(G)) , we
get:

dim(θ(Hf1(G)/f1(G))) = dim(Hf1(G)/f1G))− dim(ker(θ) ∩Hf1(G)/f1(G)

≥ dim(Hf1(G)/f1(G))− (r − r1)
= e− (r − r1)
= r1 − (r − e)

23



Now, let h1, . . . , he ∈ H be such that Hf1(G) = 〈h1, . . . , he 〉f1(G) . Thus, 〈h1, . . . , he 〉
covers H/K . Since Φ(K) = Φ(H ∩ f1(G)) ≤ f1(f1(G)) = f2(G) , therefore the
subspace of K/Φ(K) , spanned by the cosets of h21, . . . , h

2
e has dimension at least

dim(θ(Hf1(G)/f1(G))) ≥ r1− (r− e) . Since r(K) ≤ r1 , we can find r− e elements
yi, . . . , yr−e ∈ K such that

K = 〈hp1, . . . , hpe, y1, . . . , yr−e 〉Φ(K) = 〈hp1, . . . , hpe, y1, . . . , yr−e 〉

Recall that 〈h1, . . . , he 〉 covers H/K and thus H = 〈hp1, . . . , hpe, y1, . . . , yr−e 〉 . Thus,
we have m(H) = r(H) ≤ r = r(G) = m(G) , implying that G is flat.
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4.3 Strongly flat powerful p-groups

Given that all powerful p -groups are flat, it remains to study which powerful p -groups
exhibit the property of being strongly flat. Here, we quote a theorem from [3].

Theorem 4.15. Let G be a non-abelian powerful 2-group. Then G is not strongly
flat.

Proof. From Theorem 4.14, r(H) ≤ r(G) for any subgroup H of G . Suppose that G
is strongly flat, then Φ(G) = G′ (Proposition 3.11). Since Φ(G) = f1(G)G′ , it follows
that f1(G) ≤ G′ . Meanwhile, G is a powerful 2-group implies that G′ ≤ f2(G) .
Then, we get f1(G) ≤ G′ ≤ f2(G) ≤ f1(G) , which gives us G′ = f2(G) = f1(G) .
By Proposition 4.7 and induction, we obtain G′ = f1(G) = f2(G) = · · · = fn(G) =
· · · . Since G has exponent 2k for some k , thus G2k = {1} , which means that G is
abelian. This is a contradiction, and hence G is not strongly flat.

Corollary 4.16. The only possible non-abelian powerful p -groups which are strongly
flat are the ones with exponent p2 where p is odd.

Proof. The above theorem implies that a non-abelian powerful 2-group would not be
strongly flat. We then consider the case where p is odd. A non-abelian powerful p -
group has exponent ≥ p2 . By Corollary 3.13, we know that any non-abelian p -group
of exponent ≥ p3 cannot be strongly flat. This leave us with groups of exponent p2

to consider, where p is odd.
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Non strongly flat powerful 2 -groups

Order Conditions Number of groups

21 = 2 (0) 1

(1) 1

(2) 0

22 = 4 (0) 2

(1) 2

(2) 0

23 = 8 (0) 5

(1) 3

(2) 0

24 = 16 (0) 14

(1) 6

(2) 1

25 = 32 (0) 51

(1) 11

(2) 4

26 = 64 (0) 267

(1) 23

(2) 12

27 = 128 (0) 2328

(1) 51

(2) 36

28 = 256 (0) 56092

(1) 139

(2) 117

Table 3: Table showing the number of 2-groups with various conditions. (0) denotes
the total number of 2-groups of that order. (1) denotes the number of powerful 2-
groups of that order. (2) denotes the number of non-abelian powerful 2-groups. These
groups are not strongly flat.
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Possible strongly flat powerful 2 -groups

Order Conditions Primes (p =)

3 5 7 11 13

p2 (0) 2 2 2 2 2

(1) 2 2 2 2 2

(2) 0 0 0 0 0

(3) 0 0 0 0 0

p3 (0) 5 5 5 5 5

(1) 4 4 4 4 4

(2) 1 1 1 1 1

(3) 1 1 1 1 1

p4 (0) 15 15 15 15 15

(1) 9 9 9 9 9

(2) 4 4 4 4 4

(3) 3 3 3 3 3

Table 4: Table showing how the conditions help to restrict the number of cases we
have to consider in our search for strongly flat groups amongst the powerful p -groups.
(0) denotes the number of groups of that order. (1) denotes the number of groups that
are powerful. (2) denotes the number of groups that are powerful and non-abelian. (3)
denotes the number of groups that are powerful, non-abelian and have exponent p2 .
These are the only powerful non-abelian p -groups that might be strongly flat.
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(Continued)

Order Conditions Primes (p =)

3 5 7 11 13

p5 (0) 67 77 83 87 97

(1) 26 28 30 34 36

(2) 19 21 23 27 29

(3) 13 15 17 21 23

p6 (0) 504 684 860 1192 1476

(1) 99 113 127 155 169

(2) 88 102 116 144 158

(3) 57 69 81 105 117

p7 (0) 9310 34297 113147 750735

(1) 1300 6349 25561 201973

(2) 1285 6334 25546 201958

(3) 1081 6084 25250 201570

Table 5: A continuation of the previous table. (0) denotes the number of groups of that
order. (1) denotes the number of groups that are powerful. (2) denotes the number of
groups that are powerful and non-abelian. (3) denotes the number of groups that are
powerful, non-abelian and have exponent p2 . These are the only powerful non-abelian
p -groups that might be strongly flat. Again, note that the computations here are done
using GAP and the SmallGroups library in GAP only contains groups of order up to p6

for p = 13,
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5 Computations of strongly flat p -groups

The computations here are done using GAP. The SmallGroups library in GAP contains
all groups of certain small order. This includes groups of order pn , which goes up to
n = 7 for p = 3, 5, 7, 11 and up to n = 6 for p = 13 . The identification numbers allow
us a systematic way to check through the entire list of the groups of that particular
order. Since the conditions for a p -group to be strongly flat are different for p = 2
and for p odd, we consider them under different subsections.
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5.1 2 -groups

Strongly flat 2 -groups

Order Conditions Number of groups exp = 2 exp = 4

21 = 2 (0) 1

(1) 1 1

22 = 4 (0) 2

(1) 1 1

23 = 8 (0) 5

(1) 2 1 1

24 = 16 (0) 14

(1) 3 1 2

25 = 32 (0) 51

(1) 6 1 5

26 = 64 (0) 267

(1) 25 1 24

27 = 128 (0) 2328

(1) 131 1 130

Table 6: Table showing the number of 2 -groups with various conditions. (0) denotes
the total number of 2 -groups of that order. (1) denotes the number of strongly flat
2 -groups. They are split up into groups of exponent 2 and exponent 4 . Up to the
groups of order 27 , there is only 1 strongly flat 2 -group with exponent 2 in each
order, which is the group Cn

2 (for groups of order 2n ).
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Professor Dennis’s program for searching strongly flat 2 -groups of order 28 = 256 is
still ongoing, but most of the strongly flat 2 -groups have exponent 4. Listed below,
however, are two examples that have exponent 8.

Group ID: [256, 22218]
Group Structure: C4.((C4 ×D8) : C2) = (C4 × C2 × C2).(C2 × C2 × C2 × C2)
Φ(G) : [16, 10]
Φ(G) Group Structure: C4× C2× C2
Exponent: 8
m: 4
i: 4

Group ID: [256, 22219]
Group Structure: C4.((C4 ×D8) : C2) = (C4 × C2 × C2).(C2 × C2 × C2 × C2)
Φ(G) : [16, 10]
Φ(G) Group Structure: C4 × C2 × C2

Exponent: 8
m: 4
i: 4

Since these computations were made using GAP, we use their notation Cn for a cyclic
group of order n here rather than the Zn that we used earlier. We will continue to
use the Cn notation for results that we attain from GAP.
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5.2 p -groups, where p is odd

Strongly flat 3 -groups

Order Conditions Number of groups exp = 3 exp = 9

31 = 3 (0) 1

(1) 1 1

32 = 9 (0) 2

(1) 1 1

33 = 27 (0) 5

(1) 2 1 1

34 = 81 (0) 15

(1) 2 1 1

35 = 243 (0) 67

(1) 4 2 2

36 = 729 (0) 504

(1) 12 2 10

Table 7: Table showing the number of 3-groups with various conditions. (0) denotes
the total number of 3-groups of that order. (1) denotes the number of strongly flat
2-groups. (2) denotes the number of strongly flat 3-groups with exponent 3, and with
exponent 9.
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We continued computations for p -groups of order 5, 7, 11 and 13 and find that a
similar pattern follows up to the order of p5 .

Strongly flat p -groups

Order Conditions Number of groups exp = p exp = p2

p1 (0) 1

(1) 1 1

p2 (0) 2

(1) 1 1

p3 (0) 5

(1) 2 1 1

p4 (0) 15

(1) 2 1 1

p5 (0) *

(1) 4 2 2

Table 8: Table showing the number of p-groups with various conditions. (0) denotes
the total number of p -groups of that order. (1) denotes the number of strongly flat
p -groups. (2) denotes the number of strongly flat p -groups with exponent p , and
with exponent p2 . Note: * = 77, 83, 87, 97 for p = 5, 7, 11 and 13 .
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6 Concluding remarks

In this paper, we have provided a survey of the strongly flat p -groups. Through the
computations, we find that the behavior for p = 2 and p odd vary rather markedly.
For example, for n = 5 , 11.8% of the groups of order 2n are strongly flat while just
6.0% of the groups of order 3n are strongly flat. Meanwhile, the p -groups for with
p = 5, 7, 11 and 13 display a similar pattern as the case for p = 3 .

Another observation is that amongst the 2 -groups, up to the order of 28 = 512 ,
there exists only 1 strongly flat group with exponent 2 . For groups of order 2n ,
this particular group would be Cn

2 . In contrast, groups of order 35 have 2 strongly
flat groups with exponent 2 , of which one is not abelian ((C3×((C3×C3) : C3)) : C3) .

A. Chin’s theorem provides a suggestion why the behavior may vary. For p odd,
G must have exponent at most p2 , and be nilpotent of class 2. These conditions,
restrict the possible choices to consider, and also simply our search for strongly flat
p -groups for odd p . For p = 2 , there is no upper bound on our exponent. Though few
in comparison, groups of exponent 8 showed up as examples of strongly flat p -groups
for groups of order 256 .
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