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Abstract. We investigate bond percolation on the non-p.c.f. Sierpiński
gasket and the hexacarpet. With the use of the diamond fractal, we are able
to bound the critical probability of percolation on the non-p.c.f. gasket from

above by
√
5−1
2 , or approximately 0.618. We then show how the two fractals

are related via the barycentric subdivisions of a triangle: the two spaces
exhibit duality properties although they are not themselves dual spaces.
Finally, we conjecture that the hexacarpet has a critical probability less
than 1, which would imply that both the hexacarpet and non-p.c.f. gasket
have non-trivial critical probabilities of percolation.
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4. Hexacarpet 11
5. Proof of Theorem 1.1 14
Acknowledgements 15
References 16

1



2 DEREK LOUGEE

1. Introduction

Suppose we immerse a porous stone in a bucket of water. What is the
probability that the center of the stone gets wet? Broadbent and Hammersley
originally constructed a percolation model to answer such a problem in [6].
In two dimensions, their model can be described as the following: Let Z2 be
the planar square lattice and fix some parameter p ∈ [0, 1]. For each edge in
Z2, we set the edge to be open with probability p and closed with probability
1− p, independent of all other edges. The edges in the lattice represent inner
pathways within the stone, and the parameter p is the proportion of such
pathways that allow water to pass. The stone would then be modeled by a
finite, connected sub-graph of Z2; we say that a vertex x gets wet only if there
is an open path connecting x to the boundary of the connected sub-graph.
Such a process is known as bond percolation, and it is the main focus of this
paper.

The problem of bond percolation on Z2 has been especially well studied. In
[14], Kesten first proved that the critical probability of bond percolation on Z2

is equal to 1
2
. Although the exact values of the critical probabilities, denoted

pc, are not known for Zd, d ≥ 3, it is known that 0 < pc <
1
2
. (See [10].)

A fractal is said to be post-critically fininte, or p.c.f., (in the sense of Kigami
[15]) if the number of nth-level cells that can intersect at any point is bounded.
Several finitely ramified non-p.c.f. analogs of the Sierpiński gasket were first
introduced in [24]; Bajorin et. al. [2] provided some analysis on the non-p.c.f.
gasket. Begue et. al. [3] showed the relationship between the hexacarpet
and the barycentric subdivisions of a triangle and provided a study of simple
random walks on these spaces. The main goal of our paper is to show the
relationship between the non-p.c.f. carpet and the hexacarpet, and to bound
the critical probabilities of bond percolation on these spaces.

We now introduce some notation and definitions that will be needed through-
out the paper. Consider some graph G = (V,E) where V is its set of vertices
and E is the set of edges in G. Then define an ambient probability space, Ω,
and define a probability measure, P , on Ω by

Ω = [0, 1]E,

dP =
∞∏
i=1

dλ[0,1],

where dλ[0,1] is Lebesgue measure on [0, 1]. For each e ∈ E, we take ω(e) ∼
U [0, 1]. We then define the set of all open edges in G given parameter p as

Ep = {e ∈ E : ω(e) ≤ p}.
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We say that e ∈ E is open if e ∈ Ep. The advantage of using this definition is
that we can vary the parameter p without having to resample the environment.

Let Gp = (V,Ep). Then an open cluster is a connected subgraph of Gp, and
we denote the open, connected cluster containing zero as OGp .

Definition 1.1. The percolation probability is defined as

θG(p) = P (|OGp | =∞)

Definition 1.2. The critical probability of percolation on a given graph G is
given by

pG = sup{p : θG(p) = 0}

It is clear from the proceeding definitions that

(1.1) θG(p)

{
= 0 if p < pG,

> 0 if p > pG.

Note that we make no claim we regarding the value of θG at pG. In general,
the value of θG is unknown at the critical probability. We will make no further
comment as this question is outside of the interests of the following. See [10]
and references therein for further detail.

Remark 1.1. If H is a subgraph of G, then OHp ⊆ OGp and so

θG(p) = P (|OGp| =∞) ≥ P (|OHp | =∞) = θH(p)

for all p. Hence pG ≤ pH . We will make use of this fact frequently.

The main result of our paper is:

Theorem 1.1. Let S denote non-p.c.f. Sierpiński gasket, and let H denote

the hexacarpet. Then 0 < pS ≤
√
5−1
2

and 3−
√
5

2
≤ pH < 1.

In Section 2, we introduce the diamond fractal and discuss the results
of Hambly and Kumagai in [13]. In Section 3, we introduce the non-p.c.f.
Sierpiński gasket and the barycentric subdivisions of a triangle. We provide
an upper bound on the critical probability of percolation on the barycentric
subdivisions of a triangle using an embedding argument and the diamond frac-
tal; we then prove the relationship between the non-p.c.f. Sierpiński gasket
and the barycentric subdivisions. We introduce the hexacarpet in Section 4,
and we demonstrate the relationship between the non-p.c.f. gasket and the
hexacarpet vis-à-vis the barycentric subdivisions of a triangle. Finally, the
proof of Theorem 1.1 is provided in Section 5.
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Figure 1. First and Second Graph Approximations of D(2, 2)

2. Diamond Fractal

Percolation on the diamond fractal has already been studied by Hambly
and Kumagai [13]. In this section, we will reproduce their results, as well as
provide a more general derivation of the critical probability of percolation on
the diamond fractal.

To construct the diamond fractal, begin with a line segment (A,B) denoted
D0(m,n) where m,n ≥ 2 denote the number of branches and edges, respec-
tively. Then, the first approximation of the fractal, D1(m,n), is constructed
by replacing (A,B) by m non-intersecting line segments that have been split
into n sub-segments. More generally, Dk(m,n) is generated by replacing each
edge of Dk−1(m,n) by a copy of D1(m,n). Figure 1 shows the first and second
graph approximations of D(2, 2).

In this paper, we are interested mostly in the case m = n = 2, so when
we write Dk, it should be understood to be the kth graph approximation of
D(2, 2).

Hambly and Kumagai first showed the critical probability of percolation on
D to be

(2.1) pD =

√
5− 1

2

(see [13]). Hambly and Kumagai only considered the case for D(2, 2), but the
following method was implicit in their work and gives a general solution to
finding the critical probability of percolation on D(m,n) with m,n ≥ 2.

Proposition 2.1. The probability of not being able to cross D1(m,n) is given
by

P (no crossing) = (1− pn)m,

where p ∈ [0, 1] is the probability of an edge being open and a crossing occurs
if there is an open cluster containing both A and B as in Figure 1.
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Proof. Consider each of the m branches to be n events in series. Then the
probability of one branch being open is given by

P (branch open) = pn,

and so the probability of the branch being closed is given by

P (branch closed) = 1− P (branch open) = 1− pn.
For the event {no crossing} to occur, all m branches must be closed. Therefore

P (no crossing) = P (branch closed)m = (1− pn)m.

�

Lemma 2.1. The functions fm,n(p) = 1 − (1 − pn)m for m,n ≥ 2 each have
exactly one stationary point in (0, 1).

Proof. Consider the equation gm,n(p) = (1− p)− (1− pn)m, then for any p for
which fm,n(p) = p, gm,n(p) = 0. Note that

dgm,n

dp
= −1 +mnpn−1(1− pn)m−1

is equal to −1 for p = 0, 1, and gm,n(0) = gm,n(1) = 0. This implies that there
exists some points 0 < a < b < 1 for which gm,n(a) < 0 and gm,n(b) > 0.
Since gm,n is a polynomial, it is a continuous function and so the Intermediate
Value Theorem implies that there exists a point pc ∈ (a, b) ⊂ (0, 1) such that
gm,n(pc) = 0, which is equivalent to fm,n(pc) = pc.

To see that there is exactly one such point, we consider the problem in terms
of solving

q(p) = 1− p = (1− pn)m = r(p).

It is clear that q is equal to r at p = 0, 1 and that both q and r are strictly
decreasing for p ∈ (0, 1) for all m,n ≥ 2. Therefore there can only be one
solution in (0, 1). �

Theorem 2.1. The critical probability of percolation on D(m,n) is the sta-
tionary point of fm,n(p) in (0, 1)

Proof. From Proposition 2.1, we know that the probability of crossingD1(m,n)
with parameter p is given by fm,n(p). When we move from D1(m,n) to
D2(m,n), each edge in D1(m,n) is replaced by D1(m,n) and so the probabil-
ity of crossing D2(m,n) is equivalent to the probability of crossing D1(m,n)
with parameter fm,n(p). That is, the probability of crossing D2(m,n) is
f ◦2m,n(p) = fm,n(fm,n(p)). One can easily check that the stationary point of
fm,n in (0, 1) is an attracting stationary point. And so, continuing on in this
manner, we get that the critical probability of percolation is the stationary
point of fm,n in the interval (0, 1). (See [13] for further details.) �
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Remark 2.1. Theorem 2.1 for m = n = 2 gives Hambly and Kumagai’s result
shown in Equation 2.1.

We now turn our attention to studying how the critical probability of per-
colation on D(m,n) depends on m and n. Our reason for doing so will become
clear in Section 3 following the proof of Theorem 3.1.

Proposition 2.2. Let pc(m,n) denote the critical probability of percolation on
D(m,n). Then, for m,n ≥ 2, ∂pc

∂m
< 0 and ∂pc

∂n
> 0.

Proof. Consider the equation gm,n(p) = (1− p)− (1− pn)m. Since we consider
only p ∈ (0, 1) and m ≥ 2,

∂

∂m
gm,n(p) = −(1− pn)m ln(1− pn) > 0.

Therefore gm,n(p) < gm′,n(p) for m < m′. For some m,n, we get a value pc
satisfying gm,n(pc) = 0. So for some m′ > m,

0 = gm,n(pc) < gm′,n(pc).

From Proposition 2.1, we know that gm,n(p) > 0 for p > pc. Therefore,
pc(m

′, n) < pc(m,n), and since m′ > m,

∂pc
∂m

=
1
m2 (1− pc)

1
m ln(1− pc)

npn−1c − 1
m

(1− pc)
1
m
−1

< 0.

Checking the signs on the numerator and denominator, we see that for pc ∈
(0, 1),

npn−1c − 1

m
(1− pc)

1
m
−1 > 0.

Computing ∂pc
∂n

, we see that

∂pc
∂n

= − pc ln pc

npn−1c − 1
m

(1− pc)
1
m
−1

> 0,

giving the desired results. �

3. Barycentric Subdivisions and non-p.c.f Sierpiński Gasket

We now consider the iterated barycentric subdivisions of a triangle. The
purpose of this discussion is to show how this structure is related to the non-
p.c.f. Sierpiński gasket, which is introduced below. Theorem 3.2 shows how
the critical probability of percolation on the iterated barycentric subdivision of
a triangle can be used to bound the critical probability for the gasket from both
above and below. We begin by introducing the iterated barycentric subdivision
of a triangle and defining the limit space.
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Figure 2. Barycentric Subdivision of T0

Throughout the following discussion, we will adopt some of the notation
from Begue [3]. Let T0 be a triangle defined by its vertices (v0, v1, v2).

Definition 3.1. Let bij, i, j = 0, 1, 2, denote the midpoints of the edges of T0
defined by (vi, vj), and let b = 1

3
(v0 + v1 + v2) be the barycenter of T0. Denote

the set of vertices V = {v0, v1, v2, b, b01, b02, b12}. We define the barycentric
subdivision of T0, denoted by B(T0), to be the set of all sub-triangles of T0 of
the form (vi, b, bk) where vi is a vertex of T0, b is the barycenter of T0, and bk
is the midpoint of an edge of T0 such that each (vi, b, bk) contains no points in
V other than its own vertices.

Example 3.1. Let T0 be the triangle with vertices v0, v1, v2 as shown in Figure
2; B(T0) is also shown. Note that the triangle (v0, b, v1) is not in B(T0) since
b01 lies within the triangle but is not one of its vertices.

Definition 3.2. We define the iterated barycentric subdivision of T0 recursively
as

Bn(T0) = B(Bn−1(T0)).

Let T denote the structure resulting from performing barycentric subdivision of
T0 infinitely many times. That is, T is an infinite graph such that B(T ) = T .

Example 3.2. For T0 as in Figure 2, B2(T0) is shown in Figure 3.

The following notation will be useful in the proof of the Theorem 3.1. Let
Tk = Bk(T0). We label each of the 6 sub-triangles in T1 in a clockwise direction:
0 = {v0, b01, b}, 1 = {b01, v1, b}, etc. For each sub-triangle, there are 3 vertices,
3 midpoints, and the barycenter; we label these points recursively where i(v0)
is the lower left vertex of i, i(b) is the barycenter of i, and so forth. We label
the sub-triangles in T2 in a similar manner. That is, for i a sub-triangle of T1,
we have i0 = {i(v1), i(b01), i(b)} and label the other 5 sub-triangles of i in a
clockwise manner.
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B2(T0)

Figure 3. Repeated Barycentric Subdivision of T0
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Dk−2 in Tk−1 Sub-triangle t of Tk−1 Dk−1 in Tk

Figure 4. Embedding Dk−1 into Tk

Theorem 3.1. Let T be as defined above, and let pT denote the critical prob-

ability of percolation on T . Then pT ≤
√
5−1
2

< 1.

Proof. We will prove this result by embedding Dk−1 into Tk. We begin by
embedding D1 into T2. Note that there are in fact three copies of D1 in
T2: {v0, 1(b), b, 6(b)}, {v1, 2(b), b, 3(b)}, and {v2, 4(b), b, 5(b)}. Now suppose
we have an embedding of Dk−2 into Tk−1. The rule for identifying the new
embedding of Dk−1 in Tk is as follows: for each lowest-level sub-triangle t of
Tk−1 containing an edge {x, y} of the embedded Dk−2, {x, y} is replaced by
two edges {x, t(b)} and {t(b), y}. (See Figure 4.) That is, each edge of Dk−2
in Tk−1 is replaced by a cycle of edges in Tk, which is in fact a copy of D1. We
see that Dk−1 ⊂ Tk for any k ≥ 1, and so D ⊂ T .

Since there are three copies of D embedded within T , we end up with a
structure D, depicted in Figure 5, where D represents the diamond fractal,
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D
D

D

Figure 5. D

Figure 6. First-level approximation of S. Graphic from [2].

embedded within T . Since D ⊂ D, we have

pD ≥ pD ≥ pT

(see Remark 1.1). We now just apply Equation 2.1 and we get the desired
result. �

Remark 3.1. Our choice of using the (2, 2) diamond fractal was based upon
to result of Proposition 2.2. That is, D(2, 2) has the highest critical probability
among fractals whose first graph approximations can be embedded within T2.

Remark 3.2. The critical probability of percolation on a fractal defined via
their finite graph approximations can be defined through a limiting sequence
of graphs such as Dk → D as in the previous section. Here we have a different
limiting sequence, Tk → T , where T is the result of repeated barycentric
subdivision of a triangle and Tk is its kth graph approximation.

We now introduce the non-p.c.f. Sierpiński gasket. Specifically we are inter-
ested in the simplest non-p.c.f. analog of the Sierpiński gasket first introduced
by Teplyaev [24]. The non-p.c.f gasket can be constructed as a self-affine frac-
tal in R2 using six affine contractions (see [24]); Figure 6 shows the first-level
graph approximation of the non-p.c.f gasket.

Remark 3.3. The non-p.c.f. Sierpiński gasket is an analogue of the Sierpiński
gasket in the same way that the diamond fractal is a non-p.c.f. analogue of
the unit interval, which is p.c.f.
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We would now like to examine the relationship between T and S, but first
we need the following definition.

Definition 3.3. Let T0 = (x, y, z) be a triangle. Then we define the boundary
of T0 to be the union of its sides, that is,

∂T0 = (x, y) ∪ (x, z) ∪ (y, z),

and the interior of T0 to be T̊0 = T0 \ ∂T0.
We now introduce some notation that we will use in the following Lemma

and Theorem. Let S denote the non-p.c.f. Sierpiński gasket and let T denote
the limit space of repeated barycentric subdivisions of a triangle. Then we
define four events as follows:

W = {|OT (2p)| =∞}

X = {|OS(p)| =∞}
Y = {|OT (p on ∂T, p(2− p) in T̊ )| =∞}

Z = {|OT (p)| =∞}
where OG(p) is the open cluster containing the origin in G given parameter p.

That is, W is the event that there exists an infinite open cluster in T given
parameter 2p, X is the event that there is an infinite open cluster in S given
parameter p, Y is the event that there is an infinite open cluster in T given
parameter p on the exterior and p(2 − p) on the interior, and Z is the event
that there is an infinite open cluster in T given parameter p.

Remark 3.4. One can see by inspection that T ⊂ S. Consider Figure 6. We
can insert T1 into S1 by counting only one of the 2 non-intersecting segments
that connect each of x1 through x6 to x7. If we label the sub-triangles of S
clockwise from S1 to S6, then for S2 we keep the same edges as before and
now take only one of the two non-intersecting edges connecting Si(x1) through
Si(x6) to Si(x7) for i = 1, . . . , 6. Continuing through the iterations, we see
that T ⊂ S.

Lemma 3.1. Let T, S and X, Y be as defined above. Then X = Y .

Proof. Note that as explained in the remark above, T ⊂ S, so the events X
and Y lie within the same probability space.

Consider the relation between S and T . If we start with T , we can get to
S by replacing each of the interior edges by two non-intersecting edges with
the same endpoints. Rather than doing this, however, we instead assigned a
probability p(2−p) of being open to each of the interior edges in T . We choose
p(2−p) so that the probability of an interior edge being open in T is the same
as the probability of at least one of the two corresponding edges being open in
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S (given probability p of being open). Since these correspond exactly to the
sets X and Y , the proof is complete. �

Theorem 3.2. Let S and T be as above. Denote the critical probabilities of
percolation on T and S as pT and pS, respectively. Then pT/2 ≤ pS ≤ pT .

Proof. From the definitions of the sets W , Y and Z, it is clear that

Z ⊆ Y ⊆ W.

This is due to the fact that an infinite cluster of open edges is more likely to
exist given a higher probability of each edge being open.

If we apply Lemma 3.1, we see that

Z ⊆ X ⊆ W.

Taking the probability of each of these events and applying the definition of
θ,

θT (p) ≤ θS(p) ≤ θT (2p).

Now let 2p < pT , then θT (2p) = 0 and so

θS(p) ≤ θT (2p) = 0.

Therefore pS ≥ pT/2. Now let p > pT , then θT (p) > 0. This gives

0 < θT (p) ≤ θS(p),

and so pS ≤ pT . Combining these yields pT/2 ≤ pS ≤ pT . �

4. Hexacarpet

The hexacarpet has a natural definition as the pre-planar dual graph of the
barycentric subdivisions of a triangle (see below: Definition 4.1 and Figure 8).
We will first, however, define the hexacarpet in its own right in the manner of
Begue [3]. We again adopt their notation: Denote

X = {0, 1, 2, 3, 4, 5},

Xn = {x1x2 · · ·xn : xi ∈ X}.
Generally speaking, we call X an alphabet, and Xn is the set of all words of
length n. We also define

X∗ =
∞⋃
n=0

Xn and Σ =
∞∏
i=1

X.

Now let x ∈ X∗ and v ∈ {0, 5}ω. Then we define the equivalence relationship
∼ as follows: If i is odd and j ≡ i+ 1 mod 6, then

xi3v ∼ xj3v and xi4v ∼ xj4v.
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Figure 7. First Graph Approximation of the Hexacarpet

If i is even and j ≡ i+ 1 mod 6, then

xi1v ∼ xj1v and xi2v ∼ xj2v.

We define the hexacarpet to be H = Σ/ ∼. The first graph approximation is
shown in Figure 7.

Our goal is to show that pH < 1 by showing that it satisfies the two con-
ditions given by Kozma in [16]. We successfully show the first in Lemma 4.1,
but leave the second as Conjecture 4.1. We begin by reproducing Kozma’s
theorem without proof.

Theorem 4.1 (Kozma, [16]). Let G be a planar graph with no vertex accu-
mulation points such that

(1) There exist numbers K and D such that for all v ∈ G and for all r ≥ 1,
one has for the open ball B(v, r) that the number of vertices satisfies
|B(v, r)| ≤ KrD.

(2) There exist numbers k, ε > 0 such that for any finite non-empty set of
vertices S, |∂S| ≥ k|S|ε.

Let pG be the critical probability for independent bond percolation on G. Then
pG < 1.

Lemma 4.1. The hexacarpet satisfies condition (1) in Theorem 4.1.

Proof. Consider the hexacarpet in R2 where the length of each edge is exactly
1. Then each vertex is at least distance 1 from any other vertex, so if we place
an open ball of radius of 1

2
around each vertex, then these balls are all disjoint.

Now let r ≥ 1 and fix some vertex v. The ball B(v, r) has area πr2, and can
contain at most 4r2 open balls of radius 1

2
. Hence |B(v, r)| ≤ 4r2 for any r ≥ 1

and any vertex v. Then in condition (1) we can take K = 4 and D = 2. �

Conjecture 4.1. The hexacarpet satisfies condition (2) in Theorem 4.1.

Remark 4.1. Consider taking half-cuts of the kth graph approximation of H;
denote such a subgraph by Xn, and let X ′n be its complement in H. As n
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increases, |Xn| increases at a rate of O(6n) while |∂Xn| increases at a rate of
O(2n). Our goal is to find k, ε > 0 such that |∂Xn| = k|Xn|ε. Taking the
logarithm of both side and dividing by n,

log |Xn|
n

≤ log k

n
+

(
1− 1

ε

)
log |∂Xn|

n
.

Taking n→∞, we have

log 6 ≤
(

1− 1

δ

)
log 2.

Solving,

δ ≤ 1

1− log 2
log 6

.

We believe this to be an equality for the hexacarpet. Our conjecture is based
upon the fact that this same calculation on the pre-Sierpiński carpet gives the
same value for δ calculated by Osada in [20].

We now turn our attention to the relationship between the hexacarpet and
the barycentric subdivisions of a triangle. We remarked earlier that the hex-
acarpet is the pre-dual of the barycentric subdivisions of a triangle. That is,
the dual graph of T is H, where dual graph is defined as follows in the manner
of Grimmett.

Definition 4.1. Let G be a planar graph, drawn in the plane such that the
edges only intersect at vertices. We construct Gd, called the (planar) dual of
G, in the following manner. In each face of G (including the infinite face if it
exists) we place a vertex of Gd; for each edge e of G, we place a corresponding
edge joining those two vertices of Gd which lie in the two faces of G abutting
the edge e.

It remains to show how bond percolation on T relates to bond percolation
on H. We do so through the use of the following theorem, which comes from
Bollobás and Riordan [5] and is presented without proof. We will first need
the following definition.

Definition 4.2. We say that a lattice G has k-fold symmetry if the rotation
about the origin through an angle of 2π/k maps the plane graph G into itself.

Theorem 4.2 (Bollobás and Riordan [5]). Let G be a plane lattice with k-
fold symmetry, k ≥ 2, and let GD be its dual. Then pG + pGD

= 1 for bond
percolation.

Theorem 4.3. Let T and H be as before. Then pT + pH = 1.
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Figure 8. Dual Graphs

Proof. Consider the two dimensional triangular lattice. We define T ′n by re-
placing each triangle in the lattice with Tn. Since the triangular lattice is a
planar lattice and we are not changing the underlying structure of the lattice,
T ′n is also a planar lattice. Similarly, we define H ′n by replacing each hexagon
in the hexagonal lattice by Hn and we again get a lattice. We can see in
Figure 8 that if we tile Tn, then H ′n is clearly its dual since the hexagonal and
triangular lattices are dual lattices. That is H ′n and T ′n are dual lattices for
every n.

We now want to consider the relationship between percolation on T and
T ′ = limn→∞ T

′
n. We fix the origin x to be the lower left vertex of T . At x, T ′n

consists of six copies of Tn sharing a common vertex x. Now let B(x, 2n) be a
ball centered at x with a radius 2n (in the graph metric). Then T ′n ∩B(x, 2n)
is graph isomorphic to Tn and so percolation on T ′n is equivalent to percolation
on Tn starting at the barycenter of T1. We know that pT = limn→∞ pTn , so it
follows that pT ′

n
→ pT ′ . Hence pT = pT ′ . A similar argument for H ′n and H

tells us that pH = pH′ . This completes the proof. �

5. Proof of Theorem 1.1

Theorem 1.1. Let S denote non-p.c.f. Sierpiński gasket, and let H denote

the hexacarpet. Then 0 < pS ≤
√
5−1
2

and 3−
√
5

2
≤ pH < 1.

Proof. Assuming Conjecture 4.1 is true, Lemma 4.1 and Theorem 4.1 tell us
that pH < 1, so by Theorem 4.3, pT = 1 − pH > 0. Theorem 3.1 says that

pt ≤
√
5−1
2

, and so applying Theorem 3.2,

0 < pT/2 ≤ pS ≤ pT ≤
√

5− 1

2
.
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Since pT < 1, by Theorem 4.3,

pH = 1− pT ≥ 1− 1−
√

5

2
=

3−
√

5

2
.

Given Conjecture 4.1, pH < 1, which gives the desired result for H. �
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