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Abstract

The purpose of this paper is to explore the asymptotics of the eigen-
value spectrum of the Laplacian on 2 dimensional spaces of constant curva-
ture. We computed and analyzed the eigenvalue spectra of several differ-
ent regions in Euclidean, Hyperbolic, and Spherical space under Dirichlet,
Neumann, and mixed boundary conditions in order to observe the how
closely the spectra conform to Weyl’s Asymptotic Law and subsequent
advances, while simultaneously using the Law to determine the accuracy
of our new methods of computing Hyperbolic and Spherical spectra.

1 Introduction

The purpose of this paper is to present numerical evidence for a conjecture on
the spectral asymptotics of the Laplacian on a surface of constant curvature
presented by the second author in [S]. The conjecture was initially limited to
surfaces of either zero or constant positive curvature, but we present strong ev-
idence that it should also be valid in the case of constant negative curvature.
Results of Bleher [B] show that it cannot be valid for surfaces of variable cur-
vature, and indeed we give some numerical examples in the variable curvature
case that highlight the difference.

We consider surfaces S of finite area A with boundary ∂S of finite perime-
ter P that is made up of a finite number of smooth curves meeting at angles
{θj}. Simple examples are triangles and discs in either the Euclidean plane, the
sphere, or hyperbolic 2-space. We will also look at more complicated examples
where S is not simply connected and has non-convex boundary. We consider
the standard Laplacian ∆ with either Dirichlet (D), Neumann (N), or mixed
boundary conditions (D on a portion of the boundary with perimeter PD, and
N on the remaining portion of the boundary with perimeter PN ). We let {λj}
be the set of eigenvalues −∆uj = λjuj repeated according to multiplicity, so the
λj are all nonnegative and λj →∞ as j →∞. The eigenvalue counting function
is defined as
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(1.1) N(t) = #{λj ≤ t}
(Note that some references will use λj ≤ t2 instead). The well-known
Weyl asymptotic formula N(t) ∼ A

4π t was refined by Ivvii [I] to

(1.2) N(t) = A
4π t+ PN−PD

4π t1/2

In [S] we proposed a still more refined asymptotic

(1.3) Ñ(t) = A
4π t+ PN−PD

4π t1/2 + C
where the constant C will be explained in Definition 1.1 below. However,
it is impossible to see the constant from N(t) alone, since it is expected
that

(1.4) D(t) = N(t)−Ñ(t) will have at least growth O(t1/4). Instead we consider
the ordinary average error

(1.5) A(t) = 1
t

∫ t
0
D(s) ds.

We conjecture that this decays on the order of O(t1/4), see Conjecture 1.2
below for a more detailed description. For this to be valid we need the
correct value for the constant. We note that a different kind of average,
the trace of the heat kernel

(1.6) h(t) = −
∑
j e
−tλj

(as t→ 0) has been estensively studied, beginning with the famous paper
of Mark Kac [K] and continuing with [BS],[Bn] and [G]. We note that the
trace of the heat kernel is a much smoother average, and so it erases the
oscillatory behavior that we will see in A(t).

The method we use to numerically approximate the spectrum of the Lapla-
cian is extremely straightforward. We use the finite element solver built into
MATLAB. For surfaces in the plane we just have to give a description of the
boundary. For surfaces in the hyperbolic plane or sphere we us a conformally
flat coordinate system so the surface Laplacian becomes a scalar multiple of
the Euclidean Laplacian. By using the refinement option we obtain better and
better approximations of smaller initial segments of the spectrum. Given the
computation time constraints, this allows us to get confident approximations for
only a couple hundred eigenvalues. We then use an ad hoc extrapolation method
on the sequence of approximations with increasing refinements to get a slightly
improved final approximation. We were pleasantly surprised to see that this
small peek at an initial segment of the spectrum already yields strong evidence
for the conjecture. In other words, it appears that the asymptotic regimine kicks
in very early in the game. In the case of the Euclidean disc we have a better
alternative method, since there the eigenvalues are given explicitly as squares of
zeroes of Bessel functions of the first kind (D) or zeroes of derivatives of Bessel
functions of the first kind (N). This allows us to go higher up in the spectrum
with greater accuracy, and serves as a check on the size of the error obtained
by the cruder method. Another check on error size is provided by doing the
computations for the few triangles where the exact spectrum is known.

We now present the details concerning the constant C in (1.3)
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Definition 1.1 : Let K2(S) denote the curvature of S, which is assumed to be
constant, and let K1 denote the curvature function on the smooth pieces
of ∂S as viewed from S. Define

(1.7) ϕ(θ) = 1
24 (πθ −

θ
π )

Then

(1.8) C = C1 + C2 + C3

where

(1.9) C3 = 1
12πAK2(S),

(1.10) C2 = 1
12π

∫
∂S
K1, and

(1.11) C1 =
∑
j ϕ(θj) in the case of D or N boundary conditions throughout,

or

(1.12) C1 =
∑
ϕ(θ′j) +

∑
(ϕ(2θ′′j ) − ϕ(θ′′j )) for mixed boundary conditions,

where the corner angles are sorted into {θ′j} where the same type of bound-
ary condition is imposed on both sides of the corner, and {θ′′j } where
opposite type boundary conditions are imposed on the two side arcs.

We note that in [S] we also allowed a finite number of cone point singu-
larities on S with cone angles {αj}, and these contributed an additional
term

(1.13)
∑

2ϕ(αj/2)
to C1. However, we are unable to do our computations if there are cone
point sungularities, so we can’t test the conjecture in such cases.

Conjecture 1.2: a) Assume the curvature of S is zero or negative. Then
there exists a uniformly almost periodic function g of mean value zero
such that

(1.14) A(t) = g(t1/2)t−1/4 +O(t−1/2) as t→∞.
b) Assume the curvature of S is positive. Then there exists a uniformly
almost periodic funtion g of mean value zero such that

(1.15) A(t) = g(t1/2) +O(t−1/2) as t→ 0

We note that in [S] we conjectured that (1.14) and (1.15) are the first terms
in an asymptotic expansion, but we are unable to test this here. Indeed, we
cannot test the rate of decay in (1.14) and (1.15), since we don’t know what
g should be. So basically we will observe that t1/4A(t) in case a) and A(t) in
case b) appear to be bounded functions of t2 with mean value zero that could
reasonably be almost periodic. Since almost periodicity is a global property,
there is no way to test it by examining a small portion of the graph. We will
observe, however, that there is no discernable difference between examples where
the almost periodicity is known to be true, and all the other examples.
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2 Some Test Examples

In this section we discuss our results for a few examples of surfaces where the
spectrum is known exactly.

Example 2.1: The Euclidean right isosceles triangle with Dirichlet boundary
conditions

The set of eigenvalues is π2(j2 + k2) for all pairs (j, k) of distinct positive
integers. We will normalize all eigenvalues by dividing by π2 so that we are
dealing with integer values. In Table 2.1 we show the data for the first 10 eigen-
values (the full table is on the website at http://www.math.cornell.edu/ tmur-
ray3014/DirEuc45Tri.html). In the first column we show the initial MATLAB

computation of
λj
π2 . In the next 6 columns we show the same value of after

successive refinements. So the initial value of λ10

π2 is 44.931704, which is quite
far from the true value of 37, but by the 6th refinement the approximation has
improved to 37.001949. The next column is our predicted value obtained by
fitting the data xn for refinements n = 4, 5, 6 to xn = x + crn and taking x
for the prediction. In this case the prediction is 37.000001. If we look further
up in the spectrum we can see eigenvalues with multiplicity 2. For example
λ133

π2 = λ134

π2 = 377. At refinement 4 the two values are 380.03292 and 380.1314.
Not very close to each other and far off from the true value. At refinement 5
the two values are 377.7568 and 377.7816, closer to the true value but still not
too close to each other. The predicted values are 376.9999 and 376.9998. Even
though the order gets switched, the error is still quite acceptable.

Initial Refinement 1 2 3 4 5 Predicted
1 5.135899 5.034796 5.008795 5.002208 5.000138 5.000138 5
2 10.57357 10.14484 10.03646 10.00914 10.00057 10.00057 10
3 13.90424 13.22818 13.05738 13.01438 13.0009 13.0009 13
4 18.67836 17.41949 17.10514 17.02632 17.00165 17.00165 17
5 22.34258 20.58065 20.14513 20.03631 20.00227 20.00227 20
6 28.51405 25.87608 25.21908 25.05481 25.00343 25.00343 25
7 29.79926 26.94736 26.23707 26.05934 26.00371 26.00371 26
8 33.5825 30.15266 29.28919 29.07244 29.00453 29.00453 29
9 40.60456 35.64851 34.41145 34.10291 34.00644 34.00644 34
10 44.9317 38.99349 37.4981 37.12463 37.00779 37.00779 37
... ... ... ... ... ... ... ...
133 0 0 0 389.6568 377.7568 377.7568 376.9999
134 0 0 0 398.8737 377.7816 377.7816 376.9998

Table 2.1

In Figure 2.1 we show the graphs of

1) N(t)
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2) D(t) = N(t)− Ñ(t)

3) A(t) = 1
t

∫ t
0
D(s)ds

4) t
1
4A(t)

5) t
1
4A(t2)

6) 1
t−a

∫ t
a
s

1
2A(s2)ds for a = needs to be filled in

We used the exact values for the first approximately 150 eigenvalues. A quick
look at these graphs yields some simple observations. The graph 1) shows that
N(t) grows approximately linearly, while 2) shows that D(t) grows at a relatively
slow rate. the graph 3) suggests that A(t) is converging to 0 at a slow rate, while

graph 4) confirms that O(t−
1
4 ) is a plausible decay rate. The function in graph

5) is known to be converging to an almost periodic function g(t), but this is not
apparent from the graph. Presumably the almost periods are too large to show
up in the range of data we have plotted. On the other hand, graph 6) gives
strong evidence that the almost periodic function has mean value 0.

Figure 2.1

In Figure 2.2 we display the set of differences (λk+1−λk)
π2 , both as a cumulative

sum and a histogram. Since these differences are all integers there is no question
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about the choice of bin sizes for the histogram. It is not clear from the limited
data how the histogram will behave in the limit. The fact that the bin values
are very far from being decreasing is very intriguing. Ultimately it should be
an interesting problem in number theory to find any pattern.

Figure 2.2

Example 2.2: The Euclidean equilateral triangle with Dirichlet boundary con-
ditions.

Here the eigenvalues are known to be the values ( 4
3π)2(j2 + k2 + jk) for the

positive integers j, k. This typically produces multiplicity 1 when j = k and
multiplicity 2 when j 6= k. Here we only used 5 refinements. Table 2.2 and
Figures 2.3 and 2.4 show the same information for this example as before. For
λ119 = λ120 = 219 our predicted values are 219.0009455 and 219.0005973 while
on the 5th refinement they are 219.4644686 and 219.4662058. The qualitative
features of Figures 2.3 and 2.4 are much the same as Figures 2.1 and 2.2.
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Figure 2.3

Figure 2.4
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Initial Refinement 1 2 3 4 5 Predicted
1 3.087325 3.022238 3.005611 3.001408 3.000088 3.000088 3.000001
2 7.441032 7.111702 7.028133 7.007054 7.000441 7.000441 7.000003
3 7.498712 7.124316 7.03113 7.007791 7.000487 7.000487 7.000003
4 13.46061 12.36126 12.09015 12.02254 12.00141 12.00141 12.00001
5 14.64219 13.40837 13.10213 13.02555 13.0016 13.0016 13.00001
6 14.7099 13.42404 13.10604 13.02654 13.00166 13.00166 13.00001
7 22.38661 19.84793 19.2122 19.05312 19.00332 19.00332 19.00002
8 22.75809 19.94249 19.23499 19.05874 19.00367 19.00367 19.00002
9 25.32908 22.05932 21.26293 21.06566 21.0041 21.0041 21.00002
10 25.35513 22.07051 21.26635 21.06656 21.00416 21.00416 21.00002

Table 2.2

Example 2.3: The Euclidean disc with Dirichlet boundary conditions.

We take the radius to be one since all discs have eigenvalues that scale by
the radius. In this case the eigenvalues are the squares of the zeroes of the
Bessel functions Jk for nonnegative integers k with multiplicity one for k = 0
and multiplicity two for k ≥ 1. It is possible to get accurate values of these zeros
so we have exact values for the first 660 eigenvalues. In this example Ñ(t) =
1
4 t−

1
2

√
t+ 1

6 . Note, however, that the validity of the conjecture is not known in
this example. In Table 2.3 we show the first 10 computed approximations with 4
refinements. The table also lists the zeros of the Bessel function and the values
k and n for Jk(zn) = 0. The accuracy of our predictions are worse than in the
triangle examples. For example λ149 = λ150 = 646.7022512 = (z6)2 for J5(z6) =
0 has fairly accurate predicted values 646.7227695 and 646.7146116, while λ212 =
λ213 = Countin910.7757336 = (z5)2 for J11(z5) = 0 has unacceptable predicted
values 910.4406915 and 906.2756139.

Figure 2.5 displays the same graphs as before using the exact values. We note
that graph 5) is just as plausibly an asymptotic almost periodic function as the
same graphs in the triangle cases where we know the function is asymptotically
almost periodic. (NOTE: for this next part, I typed it up but you should look
at the re-done counting graphs for the Dirichlet counditions Euclidean disc) On
the other hand, graph 6) shows a much slower rate of decay than in the triangle
cases. It is still plausible that this gives supportive evidence that the presumed
almost periodic function has mean value zero, but the evidence is not decisive.
Figure 2.6 show the eigenvalue difference. In this case the histogram seems to
have a different appearance than for the triangle cases, but now the result is
sensitive to the choice of bin size.
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Figure 2.5

Figure 2.6
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Example 2.4: Euclidean disc with Neumann boundary conditions (again with
radius one).

In this case λ = (zn)2 where J ′k(zn) = 0. Here we were able to obtain
the exact values for the first 550 eigenvalues. Table 2.4 and Figures 2.7 and
2.8 show the corresponding data with Ñ(t) = 1

4 t + 1
2

√
t + 1

6 . The qualitative
features observed for the previous example are evident here as well.

Figure 2.7
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Figure 2.8

3 Flat Surfaces

In this section we discuss examples of polygonal surfaces in Euclidean space.
In particular we examined examples of nonconvex surfaces, surfaces with angles
exceeding π, and surfaces that are not simply connected. There are still more
examples on the website [W]. For each example we give the beginning of the list
of eigenvalues, and the analogs of Figures 2.1 and 2.2.

Example 3.1: Triangle with Dirichlet boundary conditions.

The angles are θ1 = π
4 , θ2 = π

5 , θ3 = 11π
20 and

Ñ(t) = sin θ2 sin θ1
8π sin θ3

t−
sin θ1
sin θ3

√
t+

sin θ2
sin θ3

+1

4π + 9
22

Here we used the first 130 calculated eigenvalues, as accuracy begins to break
down after that point. The graphs in Figures 3.1 and 3.2 are analogous to those
in Figures 2.1 and 2.2, respectively, and show similar behavior.
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Figure 3.1

Figure 3.2
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Example 3.2: Triangle with Neumann boundary conditions.

This is the same triangle as above, with

Ñ(t) = sin θ2 sin θ1
8π sin θ3

+
sin θ1
sin θ3

t+
sin θ2
sin θ3

+1

4π

√
t+ 9

22

Here we used the first 150 calculated eigenvalues. The graphs in Figures 3.3
and 3.4 are analogous to Figures 3.1 and 3.2 and display the same behavior,
except that in graph six of Figure 3.3 the graph is decreasing to 0, whereas it
is increasing to zero in Figure 3.1. This difference is a result of the boundary
conditions and is mirrored in all graphs of the same shape under Dirichlet and
Neumann boundary conditions.

Figure 3.3
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Figure 3.4

Example 3.3: Triangle with mixed boundary conditions.

With the same triangle, we impose Dirichlet boundary conditions on s1 and
s2 and Neumann boundary conditions on s3. Here

Ñ(t) = sin θ2 sin θ1
8π sin θ3

t−
sin θ1
sin θ3

√
t− sin θ2

sin θ3
+1

4π

√
(t) + 189

110
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Figure 3.5

Figure 3.6
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Example 3.4: Arrowhead with Dirichlet boundary conditions (see Figure 3.7)

Figure 3.7

Here the sides are s1 =
√

13
2 , s2 =

√
2

2 , s3 =
√

2, s4 =
√

5. The angle θi joins

sides si and si−1; θ1 joins s1 and s4. The angle measures are θ1 = sin−1 1√
13

+

sin−1 1√
5
, θ2 = cos−1 (

s21+s22−1
2s1s2

), θ4 = cos−1 (
s23+s23−1

2s3s4
), θ3 = 2π−θ1−θ2−θ4, and

θ3 > π. We then have

Ñ(t) =√
s1+s2+1

2 (s1+
s2
2 +1)(

s1
2 +s2+1)(s1+s2+ 1

2 )+
√
s3+s4+1

2 (s3+
s4
2 +1)(

s3
2 +s4+1)(s3+s4+ 1

2 )

4π t−∑4
i=1 si
4π

√
t+

∑4
i=1 θi
24

Figures 3.8 and 3.9 are analogous to the graphs we have seen before, and we
can see that they display the same behavior.
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Figure 3.8

Figure 3.9
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Example 3.5: Difference between triangles with Dirichlet boundary conditions
(see Figure 3.10)

Figure 3.10

This is not simply connected. The angles of the interior triangle are viewed
from the surface and hence are the exterior angles. We need to keep the vertices
of the inner triangle a reasonable distance from the edges of the outer triangle
in order to have reasonable accuracy in computing eigenvalues. Note that the

formula Ñ(t) = 3
√

3
64π t−

9
8π

√
t+ 1

15 is independent of the location and orientation
of the inner triangle.

Figure 3.11

18



Figure 3.12

Example 3.6: Regular pentagon with Dirichlet boundary conditions.

Here Ñ(t) =

√
5(5+2

√
5

16π t− 5
4π

√
t+ 2

9 . Note that there are many eigenvalues
of multiplicity two, due to the D5 symmetry group. This gives us a reasonable
tool for assessing the accuracy of our computations (since MATLAB does not
select symmetric triangulations).

Initial Refinement 1 2 3 4 5 Predicted
1 11.14793 11.03526 11.00624 10.99889 10.99704 10.99658 10.99643
2 28.80056 28.04273 27.85074 27.80238 27.79025 27.78721 27.7862
3 28.81714 28.04763 27.85201 27.8027 27.79033 27.78723 27.7862
4 52.41101 50.06061 49.47096 49.323 49.28594 49.27667 49.27358
5 52.57104 50.10611 49.48295 49.32606 49.28671 49.27686 49.27359
6 61.58734 58.21567 57.37533 57.16477 57.11204 57.09885 57.09447
7 84.93856 78.95964 77.47257 77.1007 77.00764 76.98437 76.97664
8 85.06669 78.9798 77.47749 77.10193 77.00795 76.98445 76.97664
9 99.43871 91.724 89.80689 89.32718 89.2071 89.17706 89.16708
10 100.1192 91.89246 89.84908 89.33775 89.20975 89.17773 89.16708

Table 3.2
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Figure 3.13

Figure 3.14

Example 3.7: Regular hexagon with Dirichlet boundary conditions.

Here Ñ(t) = 3
√

3
8π t −

3
π

√
t + 5

24 . Note that all Dirichlet eigenfunctions of
the equilateral triangle extend by odd reflections to Dirichlet eigenfunctions of
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the hexagon with the same eigenvalue. In our table of eigenvalues we therefore
divide by ( 4

3π)2 so that these eigenvalues become integers. This gives us an
accuracy check. We have a D6 symmetry group so that most eigenvalues have
multiplicity two.

Initial Refinement 1 2 3 4 5 Predicted
1 0.4136213 0.4093449 0.4082004 0.4079053 0.4078305 0.4078117 0.4078055
2 1.069612 1.042747 1.035759 1.03398 1.033532 1.033419 1.033382
3 1.07095 1.043083 1.035843 1.034001 1.033537 1.033421 1.033382
4 1.968578 1.880006 1.857227 1.851466 1.850018 1.849655 1.849534
5 1.969445 1.880229 1.857298 1.851485 1.850023 1.849656 1.849534
6 2.288059 2.175413 2.146518 2.139204 2.137365 2.136905 2.136751
7 2.976487 2.782209 2.731673 2.718854 2.715627 2.714818 2.714549
8 3.328669 3.08177 3.020466 3.005122 3.001281 3.00032 3
9 3.808021 3.523318 3.450285 3.431787 3.427136 3.42597 3.425581
10 3.816109 3.524926 3.450607 3.43186 3.427153 3.425974 3.425581

Table 3.2

Figure 3.15

21



Figure 3.16

Example 3.8: Regular 6-pointed star with Dirichlet boundary conditions.

Here Ñ(t) = s
√

3
4π t −

3
π

√
t + 25

48 . As in the case of the hexagon, Dirichlet
eigenfunctions of the equilateral triangle extend by odd reflection, and there is
a D6 symmetry group. Therefore we again divide our table by ( 4

3π)2 so that
these eigenvalues become integers. The other eigenvalues of the hexagon do not,
however, extend to the six-pointed star.

Figure 3.17
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Figure 3.18

4 Hyperbolic Surfaces

In this section we discuss examples of surfaces in the hyperbolic plane of constant
negative curvature −1. We use the upper half-plane model. In this model the
Laplacian is given by

(4.1) ∆ = 1
y2 ( ∂2

∂x2 + ∂2

∂y2 )

so the eigenvalue problem

(4.2) −∆u = λu

is transformed into

(4.3) −( ∂2

∂x2 + ∂2

∂y2 )u(x, y) = λy2u(x, y)

and we used MATLAB to solve (4.3) on the surfaces with the appropriate bound-
ary conditions. For simplicity we restricted our attention to Dirichlet boundary
conditions, and our surfaces were either disks or triangles.

To describe triangles we recall theat geodesics in the upper half-plane model
are either vertical half lines or half circles that intersect the x-axis perpendic-
ularly. Without loss of generality we may take one side of the triangle to lie
along the y-axis. Specifically, the triangle will have vertices (0, y1), (0, y2) and
(x3, y3), seen in figure 4.1 as points C, A, and B, respectively.
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Figure 4.1

The two boundary circles are y2 +(x−aj)2 = r2
j for j = 1, 2, and (x3, y3) lies

at the intersection of these circles, so x3 =
r22−r

2
1−a

2
2+a21

s(a1−a2) , y3 =
√
r2
1 − (x3 − a1)2,

and also yj =
√
r2
j − a2

j for j = 1, 2.

Since the model is conformal, the angles are the same as the Euclidean
angles, so we have α1 = π

2 − tan−1 (a1y1 ), α2 = π
2 − tan−1 (−a2y2

) and

α3 = tan−1 (a1−x3

y3
) + tan−1 (x3−aa

y3
). The lengths of the opposite sides are

Lj = 1
2 log(

rj+aj
rj−aj )− 1

2 log(
rj−xx+aj
rj+x3+aj

for j = 1, 2 and L3 = log y2y1 . The area of the

triangle is
A =

∫∫
T
dxdy
y2 = 1

r2
(cos−1(−a2r2 )−cos−1(x3−a2

r2
))+ 1

r1
(cos−1(x3−a1

r1
)−cos−1(−a1r1 ).

Thus we have

(4.4) Ñ(t) = 1
4πAt−

1
4π (L1 + L2 + L3)t

1
2 + C

for

(4.5) C = − 1
12πA+ 1

24

∑2
j=0( παj −

αj
π )

Of course everything may be expressed entirely in terms of the angles, since the
angles determine the triangle. Thus the hyperbolic law of cosines yields

(4.6) Li = cosh−1(
cosαj cosαk+cosαi

sinαj sinαk
)

for (i, j, k) any permutation of (1, 2, 3), and the angle defect formula yields

(4.7) A = π − (α1 + α2 + α3)

Example 4.1: Hyperbolic Equilateral Triangles with Dirichlet boundary con-
ditions.
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We take α1 = α2 = α3 = π
k for k an integer, k ≥ 4. These triangles

tesselate the hyperbolic plane. When k is even we may take odd reflections of the
Dirichlet eigenfunctions to see that we are generating a subset of the collection
of eigenfunctions on the hyperbolic closed manifolds Γ\SL(2,R)/SO(z) for the
appropriate discrete subgroup Γ.

We show the results for k = 4, 6 in figures 4.2-3 and 4.4-5, respectively.
Already for k = 6 the accuracy of our approximations begins to degrade. The
website shows complete data for k = 4, 5, 6, 7.

Figure 4.2
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Figure 4.3

Figure 4.4
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Figure 4.5

Example 4.2: General Hyperbolic Triangles with Dirichlet boundary condi-
tions.

We present two hyperbolic triangles here with arbitrary measurements. Tri-
angles are specified by a label (u, v, s) which correspond to the measuremnts
in figure 4.1. Figures 4.6 and 4.7 correspond to (5, 10, 11) and figures 4.8 and
4.9 correspond to (3, 4, 6). Note that in the fifth and sixth counting graphs
in figures 4.6 and 4.8 we begin to lose accuracy more quickly than we do in
the Euclidean results. This is not unique to the arbitrary triangles, as it is
present in both the hyperbolic equilateral triangles and hyperbolic discs, but it
is especially noticeable here.

The complete results for more arbitrary hyperbolic triangles are shown on
the website.
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Figure 4.6

Figure 4.7
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Figure 4.8

Figure 4.9

Example 4.3: Hyperbolic Discs with Dirichlet boundary conditions.

DESCRIPTION NEEDS TO BE WRITTEN: I’m presenting discs with r =
1, 1/2 in figures 4.10-11 and 4.12-13 respectively.
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Figure 4.10

Figure 4.11
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Figure 4.12

Figure 4.13
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5 Spherical Surfaces

In this section we discuss examples of surfaces in the unit sphere (curvature
+1). We use stereoprahic projection, placing the center of the sphere at (0, 0, 1)
and projecting from (0, 0, 2) onto the (u, v) plane by u = 2x

2−z , v = 2y
2−z . The

equator is mapped to the circle u2 + v2 = 4, great circles through the poles are
mapped to the lines through the origin, and other great circles are mapped to
circles intersecting u2 + v2 = 4 at two antipodal points. If we fix parameters to
t > 0 and β then these circles are given by (u− t sinβ)2 + (v+ t cosβ)2 = t2 + 4
(intersecting u2 + v2 = 4 at ±(2 cosβ, 2 sinβ)).

We will consider triangles with vertices (u1, 0), (u2, 0) and (u3, v3), with one
edge along the u-axis and two edges being arcs of circles (u− tj sinβj)

2 + (v +
tj cosβj)

2 = t2j + 4 for j = 1, 2. The angles of the triangle are given by

α1 = tan−1(−u1+t1 sin β1

t1 cos β1
)

α2 = π − tan−1(−u2+t2 sin β2

t2 cos β2
)

α3 = tan−1(−u3+t2 sin β2

v3+t1 cos β2
)− tan−1(−u3+t1 sin β1

v3+t1 cos β1
)

The angles completely determine the triangle. The lengths of the sides are given
by the spherical law of cosines

(5.1) Li = cos−1 (
cosαi+cosαj cosαk

sinαj sinαk
)

for (i, j, k) a permutation of (1, 2, 3), and the area is given by the angle defect

(5.2) A = (α1 + α2 + α3)− π

The Laplacian is given by

(5.3) ∆ = (u
2+v2+4

4 )2( ∂2

∂u2 + ∂2

∂v2 )

Example 5.1: Spherical Equilateral Right Triangle with Dirichlet boundary
conditions.

This triangle serves as our main accuracy check for our calculated eigenval-
ues in spherical space. This is because it is a region for which the eigenvalue
spectrum is known: the ith distinct eigenvalue is equal to 4i2 + 6i + 2 and has
multiplicity i. We can see the first eigenvalues in Table 5.1 below, and Figures
5.1 and 5.2 are the same graphical analysis which we have previously used in
the Euclidean and Hyperbolic cases.
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Initial 1 2 3 4 5 Predicted True Value
1 12.16833 12.04264 12.01072 12.00269 12.00067 12.00017 12 12
2 30.92848 30.23554 30.05925 30.01484 30.00371 30.00093 30 30
3 31.10818 30.28025 30.07043 30.01764 30.00441 30.0011 30 30
4 58.89556 56.73392 56.18445 56.0462 56.01156 56.00289 56 56
5 59.60545 56.91078 56.22873 56.05728 56.01433 56.00358 56.00001 56
6 59.87166 56.97753 56.24543 56.06146 56.01537 56.00384 56.00001 56
7 97.16554 91.81109 90.45516 90.11402 90.02852 90.00713 90.00001 90
8 98.88888 92.23472 90.56026 90.14023 90.03507 90.00877 90.00001 90
9 99.74519 92.453 90.615 90.15393 90.0385 90.00963 90.00001 90
10 100.1208 92.55272 90.64036 90.16033 90.0401 90.01003 90.00002 90

Table 5.1

Figure 5.1
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Figure 5.2

Example 5.2: General Spherical Triangle with Dirichlet boundary conditions.

We will now present a spherical triangle with arbitrary measurements. Spher-
ical triangles are specified by a label (t1, β1, t2, β2) which correspond to the

measurements described above. Here we have Ñ(t) = Area
4π t − Σ3

i=1Li
4π

√
t +

(Area12π + 1
24Σ3

i=1( παi −
αi
π )) The triangle corresponding to figures 5.3 and 5.4 is

(−1.5, π4 ,−2,−π6 ). Note in the Figure 5.3 that while the accuracy of our cal-
culated eigenvalues sufferes some decay, it does so at a slower rate than in the
Hyperbolic surfaces.
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Figure 5.3

Figure 5.4
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