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Abstract

As an infinite family of simple groups, the two dimensional special projective linear groups PSL(2,p) are
interesting algebraic objects. While the groups are well known in the sense that their subgroup lat-
tice structure is completely determined, properties of their generating sequences are still not entirely
understood. With recent developments in this direction, one can begin to completely answer questions
associated with the properties of generating sequences of PSL(2,p). The culmination of this discussion is
in a conjecture for the size of irredundant generating sequences of the maximal length. A related notion
to generating sequences is that of the replacement property - an attribute of groups that is analogous
to the Steinitz Exchange Property for vector spaces. It will be shown that PSL(2,p) sometimes has this
property, but does not have it in general.
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0.1 Introduction

This document is organized into three chapters. The first chapter discusses the construction and struc-
ture of PSL(2,p). This includes a complete description of the lattice of subgroups via Dickson’s Theorem.
All the results in this first chapter are already well-known. Careful proofs are given of the relevant prop-
erties in order to build the necessary machinery for later discussions. The second chapter focuses on
irredundant generating sequences for PSL(2,p). Specifically, the discussion is focused on the invariant
m which is the maximal length of such sequences. For many primes, this length is already known but its
value in general for all p is an open question. Finally, in the third chapter the replacement property is
considered in the context of PSL(2,p). In some sense, the generating sequences of this group are not well
behaved in general because it does not satisfy the replacement property for all primes. A proof of this
statement is given in addition to showing that PSL(2,p) does not always fail the replacement property.
These results are also new.

The background necessary for this thesis is an introduction to group theory. For example, the first
part of Abstract Algebra by Dummit and Foote [6] would suffice.

In the process of researching, many computations have been made for specific cases. The sizes of the
relevant groups are so large that the computations are unwieldy to do by hand. Therefore, it is useful
to employ the algebraic computation language GAP [7]. Original source code will be shown in places.
Familiarity with GAP is not necessary to understand the theorems in the thesis, but programming knowl-
edge and with GAP in particular will help parse these scripts. These scripts are presented with many
comments for those who are not fluent in this language.
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Chapter 1

Subgroup Structure of PSL(2, p)

2



1.1 The 2D Projective Linear Group over the field of p elements: PSL(2, p)

There are at least two equivalent ways of constructing PSL(2,p). The first is more straightforward,
but less geometric. Let V be a 2 dimensional vector space over the field of p elements. The General
Linear Group, GL(V) = GL(2,p), is the set of invertible 2 × 2 matrices over p. This group is also the
automorphism group of V . One then constructs the Special Linear Group SL(V) = SL(2,p) ≤ GL(2,p)
as the set of elements in GL(2,p) which have determinant equal to 1. The Projective Linear Group is
then defined as the quotient SL(V)/Z(SL(V)), where Z(·) is the center of the group. For example, let
p = 2. Then, V has precisely four vectors:

V =

{(
0
0

)
,

(
0
1

)
,

(
1
0

)
,

(
1
1

)}
(1.1)

Furthermore, there are 16 total 2× 2 matrices. However, not all of these matrices are invertible. For a

generic matrix of the form

(
a b
c d

)
, invertibility requires the following:

Det

[(
a b
c d

)]
= ad− bc 6= 0 (1.2)

The ones which are not invertible have ad = bc. There are two possibilities for ad. In the first case,
ad = 1 and then one needs a = d = 1 and also b = c = 1. In the second case, ad = 0. Then, there are
nine possibilities: either a or d or both are zero and either c or d or both are zero. Therefore, GL(2, 2)
has six elements:

GL(V) =

{(
1 0
1 1

)
,

(
0 1
1 1

)
,

(
1 1
0 1

)
,

(
0 1
1 1

)
,

(
0 1
1 0

)
,

(
1 0
0 1

)}
(1.3)

and since 1 is the only nonzero element, each of these matrices has determinant one and so GL(V) =
SL(V). The next step is to compute Z(GL(V)). For example consider the following commutator:

(
1 0
1 1

)(
0 1
1 1

)
=

(
0 1
1 0

)
(1.4)

but

(
0 1
1 1

)(
1 0
1 1

)
=

(
1 1
0 1

)
(1.5)

and so GL(V) is a non-commutative group of order six. Up to isomorphism, there is only one such group:
S3, the symmetric group on three letters. Since Z(S3) is trivial, it must be that S3

∼= GL(V) ∼= PSL(2, 2).

While the above discussion is an algebraic construction of PSL(2,p), there exists a more geometric
description of this group in terms of the Projective Space of V [9]. The Projective Space P(V) is the
set of one dimensional subspaces of V , i.e. the set of lines through the origin. Any such line can be
parameterized by the equation f(x) = mx with m ∈ Fp and is uniquely determined by m. Since there
are p elements in Fp, there are p lines determined this way. There is then one additional line which has
infinite slope and is governed by the equation x = 0. Therefore, P(V) has p+ 1 elements. Then, just as
SL(V) acts naturally on V , PSL(V) acts naturally on P(V). Pick any v ∈ V . Let [v] denote the set of
v ∈ V that are on the same line. In other words, define the equivalence relation ∼ by v ∼ w if v = mw
for 0 6= m ∈ Fp. Then, [v] is simply the equivalence class of v under ∼. For a linear transformation
T ∈ SL(V), define [T ] ∈ PSL(V) by [T ][v] = [Tv]. The claim is that PSL(V) is the set of such (special)
projective transformations, with the group operation of composition. In order to prove this, one will
need a proposition:

Proposition 1. For any [T1], [T2] in the set of projective transformations, [T1] = [T2] if and only if
T1 = mT2 for some 0 6= m ∈ Fp.
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Proof. First, suppose that [T1] = [T2]. Then, [T1][v] = [T2][v] for all v ∈ V . By construction, this
means that [T1v] = [T2v] for all v ∈ V . Furthermore, note that T1v = m(T2v) for all v ∈ V . Then,
(T1−mT2)(v) = 0. Since this is true for all v ∈ V , it must be that T1−mT2 = 0, the zero transformation.
Thus, T1 = mT2.

Conversely, suppose that T1 = mT2. Then, for all [v] ∈ P(V),

[T1][v] = [mT2][v] = [mT2v] = [T2(mv)] = [T2][mv] = [T2][v] (1.6)

and since this is true for all [v] ∈ P(V), it must be that [T1] = [T2].

If π is the canonical map from SL(V) to PSL(V), define the map

φ : PSL(2,p)→ {Projective Transformations}

as g 7→ [π−1g]. The symbol π−1(g) means the following: take any representative of the inverse image
of g under the projection. With the above definition, the claim is that φ is an isomorphism. First, one
needs to ensure that φ is well-defined. Take any g ∈ PSL(2,p) and consider two elements in the inverse
image π−1g. Such elements will be related by a central element of SL(V). The center of SL(V) is given
by the below proposition:

Proposition 2. The center of GL(V) is isomorphic to F∗p and is precisely given by the set of scalar
matrices, mI for some m ∈ F∗p and I the 2× 2 identity matrix.

Then, two elements in π−1g are related by T1 = mT2 for some m ∈ Fp. Two such elements give rise to the
same projective transformation and so φ is well defined. It is not hard to show that φ is a homomorphism
and is both injective and surjective.

Now, before going in to the general properties of PSL(2,p), another explicit construction for a par-
ticular p is given using this second definition of PSL(2,p). Let p = 3. This is slightly less trivial than
p = 2 because now there are non-identity scalars to deal with. In this case, |V | = 9. There are five
elements of P(V):

P(V) =

{[(
0
0

)]
,

[(
0
1

)]
,

[(
1
0

)]
,

[(
1
1

)]
,

[(
1
2

)]}
(1.7)

For the field of three elements in dimension two, GL(V) acts transitively on V and since there are 4
nonzero elements of P(V), the set of all projective maps will be isomorphic to S4, the symmetric group
on 4 letters. There are 24 such transformations. All of these must have determinant 1 or 2 (i.e. nonzero)
since they are invertible. By symmetry, half will have determinant 1 and so PSL(V) will have 12 elements.
There is only one 12 element subgroup of S4, namely A4. Thus, PSL(2, 3) ∼= A4. Note that A4 is also
the quotient of S4 by its center, in accordance with the first definition of PSL(2,p).

1.1.1 Constructing PSL(2, p) in GAP

In proving theorems, it is often necessary to make algebraic computations that are too complicated to do
by hand. GAP is a computer language that is available for making such computations with a computer.
Many common groups, such as PSL(2,p) are constructed from built-in libraries within GAP. However,
groups constructed in this manner are represented as subgroups of the symmetric group Sn for a large
enough n. For the purpose of the work presented in this thesis, it is useful to consider elements as
matrices in SL(2,p) (of course this is not unique because of the quotient by the center). The second
description of PSL(2,p) in the previous section allows one to make this connection. The first step is to
construct the two dimensional special linear group. GAP stores this group as a set of matrices.

SLp:=SL(2,p);

Next, let SL(2,p) act on the set of vectors of the two dimensional vector space over Fp. To do this, one
first needs to generate the set of vectors. Beginning with a nonzero vector in this space, all the other
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vectors are generated via the action of GL(2,p). GAP represents elements of F∗p as Z(p)n where Z(p) is
the smallest generator of Fp that generates the cyclic multiplicative group. For example, Z(7) is 3 and
Z(5) is 2. One can check this in GAP with the command PrimitiveRootMod(p). The nonzero vector is
constructed by

v:=[1,0]*Z(p)^0;

Next, let GL(2,p) act on this vector to get the set of all other vectors. This is possible because this
action is transitive. Since the projective space is defined as an action on lines and not on the set of all
vectors, one can use the action ‘OnLines’ which actually will return the set of normalized vectors (and
the initial vector is normalized).

V:=Orbit(GL(2,p),v,OnLines);

Now, one realizes PSL(2,p) as the action of SL(2,p) on V .

act:=ActionHomomorphism(SLp,orb,OnLines);

In other words, given an element of SL(2,p), act will map this element to the relevant permutation of the
set of lines which is called V . Now, one needs a way of going between this representation of PSL(2,p)and
the one that is constructed naturally in GAP. To do this, first take the image of act:

myPSL:=Image(act);

and then construct an isomorphism from it to the PSL(2,p) that is constructed in GAP:

iso:=IsomorphicSubgroups(myPSL,PSL(2,p));

Then, if one has an element x of PSL(2,p) in the permutation representation, the following command
will return a matrix:

PreImagesRepresentative(act,ImagesRepresentative(iso[1],x));

The only further complication is that this matrix will have elements in F∗p∪{0} which is usually less useful
than having elements in Fp. The script in the Appendix A.3 converts between these two representations.
For example:

decodeMat([[Z(3)^1,0*Z(3)],[Z(3)^2,Z(3)^9]],3);

returns the matrix [[2, 0], [1, 2]].

1.1.2 General Properties

The special projective linear groups have many nice properties, most of which are not discussed here or
even needed. For example, for p > 3, PSL(2,p) is a simple group. For all p, PSL(2,p) is a centerless
group. This is not immediate, since the center of a the factor group by the center need not be centerless.
The only general property that is discussed here is the order of PSL(2,p), which is needed later in
describing its subgroups.

Proposition 3. If p > 2, then |PSL(2,p)| = (p+ 1)p(p− 1)/2

Proof. A standard fact from linear algebra is that a n× n matrix over a field F is invertible if and only
if its rows form a basis of Fn. For a finite field F , F ∼= Fp. The proposition is then reduced to counting
the number of possible bases over F2

p. Each vector is a 2-tuple of elements of the field. The first vector
can be any nonzero element of the vector space. For a generic vector, there are p possibilities for the
first component of the vector and p possibilities for the second. Thus, there are p2 total vectors in the
space. There are p2 − 1 nonzero vectors. Now, one needs to figure out how many choices there are for
the second vector in the basis. The only requirement for it to be linearly independent from the first (and
thus to form a basis with the first pick) is for it not to be a multiple of the first. There are p2 − 1 total
vectors and there are p−1 nonzero scalars to multiply the first vector by. Thus, there are p2−1− (p−1)
possible vectors for the second choice in the basis. This means that
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|GL(2,p)| = (p2 − 1)((p2 − 1)− (p− 1)) = (p− 1)2(p+ 1)(p+ 1− 1) = (p− 1)2(p+ 1)p (1.8)

The next step is to determine the size of SL(2,p). To do this, one needs to divide by p − 1, which is
the number of possible determinants of a matrix in GL(2,p), in order to isolate matrices with the same
determinant (+1). This means that

|SL(2,p)| = (p− 1)p(p+ 1) (1.9)

If p > 2, then the number of scalar determinant one matrices is equal to 2 (if p = 2, the center is trivial).
Therefore,

|PSL(2,p)| = (p− 1)p(p+ 1)/2 (1.10)

1.1.3 Subgroups: Dickson’s Theorem

The subgroup structure of PSL(2,p) is very well known. Most importantly for the purposes of this thesis
is the collection of maximal subgroups. This was completely determined by American mathematician
Leonard Dickson about a century ago [5]. First, his theorem is stated1, then there is a brief discussion
of the strategy for the proof.

Theorem 1 (Dickson). For p > 5, the maximal subgroups of PSL(2,p) are isomorphic to one of the
following groups:

1. Zp o Z(p−1)/2, The non-abelian solvable group of order p(p− 1)/2

2. Dp−1, the Dihedral Group of size p− 1

3. Dp+1

4. A4,S4 or A5

Moreover, while subgroups of types (1), (2) and (3) always exist, a maximal subgroup isomorphic to S4

exists if and only if p ≡ ±1 mod 8, subgroups isomorphic to A5 exist if and only if p ≡ ±1 mod 10 and
subgroups isomorphic to A4 are maximal if and only if p ≡ 3, 13, 27, 37 mod 40.

To outline the proof, fix a prime p. Let F be an algebraically closed field of characteristic p. To begin,
one finds the subgroups of a different group, SL(V) where V is a vector space of two dimensional matrices
over the field F . Then, SL(2,p) is embedded in SL(V) to find the subgroups of SL(2,p). Next, subgroups
of PSL(2,p) are constructed via the fourth isomorphism law. Finally, these results are put together to
form the final version of Dickson’s theorem.

To begin, here are some useful definitions. Let

dω =

(
ω 0
0 ω−1

)
tλ =

(
1 0
λ 1

)
w =

(
0 1
−1 0

)
(1.11)

for any ω ∈ F ∗, λ ∈ F . Soon, it will be shown that every element x ∈ SL(V) is conjugate to either dω or
±tλ. First, a few preliminary results are needed about dω, tλ and w.

Lemma 1. These special elements have the folloing multiplication rules:

dωdω′ = dωω′ tλtµ = tλ+µ

1We will follow the proof in Suzuki’s book [13]. However, Suzuki presents the proof in a slightly different way than the
approach given here. Furthermore, he leaves out many details, which are filled in throughout this thesis.
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Proof. This is follows immediately from matrix multiplication. For example, take tλ, tµ. Then,

tλtµ =

(
1 0
λ 1

)(
1 0
µ 1

)
=

(
1 0

λ+ µ 1

)
= tλ+µ (1.12)

Lemma 2. The center of SL(V) is Z(SL(V)) ∼= Z2.

Proof. The only matrices which commute with every other matrix are the scalar matrices. This reduces
to finding which scalar matrices are in SL(V). Let x ∈ Z(SL(V)). Then

x =

(
α 0
0 α

)
(1.13)

but, by the construction of SL(V), the determinant of x must be 1 and so α2 = 1. Therefore, α = ±1
and so the center has order 2.

In fact, this is the unique element of order 2. To see this, let x ∈ SL(V) of order 2. Note that if

x =

(
α β
γ δ

)
(1.14)

then

x−1 =

(
δ −β
−γ α

)
(1.15)

so if x has order two, these are equal. This means that γ = β = 0 and since the determinant is 1,
α = δ = ±1. Now, the machinery is sufficient to return to looking at the conjugacy classes of SL(V).

Proposition 4. Any element x ∈ SL(V) is conjugate to either dω or ±tλ.

Proof. Let f be the characteristic equation of x. Since F is algebraically closed, f has at least one root
in F . Let ω be such a root (and thus an eigenvalue). Let u1 be the corresponding eigenvector so that
xu1 = ωu1. Let v be any vector that is linearly independent from u1 (many such vectors exist - only one
is required which is not a multiple of u1). Then, in the basis {v, u1}

x =
(
xv xu1

)
=

(
δ 0
γ ω

)
(1.16)

It is not clear that such a change of basis can be accomplished with an element of SL(V). Let u2 = qv
for some q ∈ F ∗. Then, u1, u2 will still be a basis. In this new basis,

x =
(
qxv xu1

)
=

(
qδ 0
qγ ω

)
(1.17)

which has determinant q(δω − γ). Since this determinant is nonzero, there exists q ∈ F ∗ such that this
determinant is one. Thus, the change of basis can indeed be accomplished within SL(V) conjugation.
Now, absorb q into δ, γ so that q = 1. Since the determinant of x must be 1, ω = δ−1. Now, there are
two cases. First case: ω = δ. Then, ω2 = 1 and so ω = ±1. Such an x is therefore clearly conjugate to
±tλ. Second case: ω 6= δ. From linear algebra one can concluded that the eigenvector corresponding to
the eigenvalue δ must be linearly independent from u1. Let it be u2. Thus, {u2, u1} from a basis and in
that basis, x has the form

x =
(
xu2 xu1

)
=

(
δ 0
0 ω

)
(1.18)

And by the above discussion, changing bases to arrive at this form can be done within SL(V) conjugation.
Thus, x is conjugate to dω.
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Now, since all the conjugacy classes of all the elements of SL(V) have been determined, one can classify the
centralizers of all the elements x ∈ SL(V). This is because if x = ydωy

−1, then CSL(V)(x) = yCSL(V)y
−1

(and likewise if x is conjugate to ±tλ). First, a few more definitions are needed.

T ≡ 〈{tλ}〉 D ≡ 〈{dω}〉 Z ≡ Z(SL(V)) (1.19)

Then,

Proposition 5. The centralizers of all elements of SL(V) can be classified as one of the following:

CSL(V)(tλ) = T × Z ∼= T × Z2 CSL(V)(dω) = D (1.20)

for ω 6= ±1 and λ 6= 0.

Proof. Take any element in y ∈ CSL(V)(tλ). Generically write

y =

(
a b
c d

)
(1.21)

Then,

(
a b

λa+ c λb+ d

)
=

(
1 0
λ 1

)(
a b
c d

)
=

(
a b
c d

)(
1 0
λ 1

)
=

(
λb+ a b
λd+ c d

)
(1.22)

Therefore, for λ 6= 0, b = 0 and a = d, so

y =

(
a 0
c a

)
(1.23)

but, since y ∈ SL(V), it must be that a2 = 1 and so a = ±1. If a = 1, then y ∈ T . If a = −1, then y
is a product of the nontrivial element of order 2 and an element of T . Therefore, CSL(V)(tλ) ⊆ TZ =
T × Z. Since elements of Z commute with any element of SL(V), it remains to show that elements of
T commute with each other. This is clear from our preliminary results on these matrices. Therefore,
T ×Z ⊆ CSL(V)(tλ) and so they are equal. Now, one can make a similar computation for dω 6= ±1. Take
any element y ∈ CSL(V)(dω) and write it with the generic form as before. Then,

(
aω bω−1

cω dω−1

)
=

(
ω 0
0 ω−1

)(
a b
c d

)
=

(
a b
c d

)(
ω 0
0 ω−1

)
=

(
aω bω
cω−1 dω−1

)
(1.24)

Therefore, since x 6= x−1, it must be that c = 0 and b = 0. Therefore, y ∈ D and so CSL(V)(dω) ⊆ D.
Now, all that is left to show is that two elements in D commute with each other. But, this is clear
because multiplying elements in D is the same as multiplying the upper left and lower right components
separately.

This gives the following:

Corollary 1. The centralizer of an element x ∈ SL(V) is abelian unless x ∈ Z.

Proof. The previous proposition shows that the centrealizer of x is either T × Z or D if x is not in the
center. In addition, it is clear that elements of T commute with each other and elements of D commute
with each other. Therefore, T × Z and D, and thus the centralizers of all non-central elements, are
abelian.

Now, one can begin looking at the subgroups of SL(V). Pick any G ≤ SL(V). First, suppose that Z 6⊆ G.
Since the intersection of these two groups must then be trivial,

|GZ| = |G||Z|/|G ∩ Z| = |G||Z| = 2|G| (1.25)
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Therefore, since the index of G in GZ is 2, GEGZ. Since ZESL(V), GZ ∼= G×Z. Thus, the structure
of G is uniquely determined by GZ in the sense that one can look only at subgroups which contain Z
and then project to the quotient to recover all subgroups. Therefore, without loss of generality, in the
following discussion, only subgroups which contain Z are considered. Here are a few preliminary results:

Proposition 6. Let G ≤ SL(V) with Z ⊆ G. Let M be the set of all maximal abelian subgroups of G.
Then, if x ∈ G− Z, CG(x) ∈M .

Proof. From the above Corollary 1, x 6∈ Z implies that CSL(V)(x) is abelian. Therefore, CG(x) =
G∩CSL(V)(x) is abelian as well. Suppose that a maximal abelian subgroup H of G contained CSL(V)(x).
Then, all the elements of H commute with x as well so H = CSL(V)(x).

Corollary 2. For any two distinct A,B ∈M , A ∩B = Z

Proof. Take x ∈ A ∩ B. Then, CG(x) contains both A and B, since they are abelian and so commute
with everything inside themselves, namely x. But, A and B are maximal abelian subgroups of G, so
CG(x) cannot be abelian. But, the contrapositive of the previous proposition implies that x ∈ Z and so
A ∩B ⊆ Z. It is also clear that any H ∈M must contain Z, otherwise, one could form a larger abelian
subgroup out of Z and H. Therefore, A ∩B = Z.

Before diving into the next proposition, one needs the following lemma:

Lemma 3. Let x ∈ SL(V) of finite order n. Then x is conjugate to ±tλ (λ 6= 0) if and only if p|n (in
which case the order of x is either p or 2p).

Proof. Take any tλ ∈ T . Then, tpλ = tpλ = t0 = 1, since elements in the matrices are in a field with
characteristic p. If one takes −tλ, then −tpλ = −tpλ = −1 and so (−tλ)2p = 1. Since the order of ±tλ
must divide p or 2p, it must be that these are in fact the orders. Therefore, since conjugation preserves
order, if x is conjugate to ±tλ, it will have order p or 2p and p divides both of these.

Now for the converse. By Proposition 4, x is conjugate to dω or ±tλ. Suppose that x is conjugate
to dω. Then, (dω)n = dωn = 1. This means that ωn = 1 and since n is the order, ωm 6= 1 for m < n (i.e.
ω is a primitive nth root of unity). Suppose that p|n. Then, n = mpq for some m relatively prime to p.
Since ω is a primitive nth root of unity, ω is a solution to the equation

Xn − 1 = 0 (1.26)

However, this can be rewritten as

0 = Xmpq − 1 = (Xm − 1)p
q

(1.27)

since p is zero in the field (and the binomial expansion formula has been used). Therefore, ω is also a
solution to Xm − 1 = 0. But, ω was primitive, a contradiction. Therefore, x cannot be conjugate to dω
and therefore must be conjugate to ±tλ.

Next is a proposition which describes the set M of maximal abelian subgroups of G ≤ SL(V) in more
detail.

Proposition 7. Let P be a Sylow p-subgroup of G. Then, any A ∈ M is either cyclic with order
relatively prime to p or is of the form P × Z.

Proof. Take any element x ∈ G. Then, 〈Z, x〉 is abelian and properly contains x. Therefore, if Z 6= G,
then any member A ∈M must contain an element x 6∈ Z - otherwise, a larger abelian subgroup of G can
be formed by adding in a non-central element. One can always pick such an element so that A = CG(x).
This is because CG(x) ∈ M and CG(x) ∩ A = Z (if they are different), but they both contain x 6∈ Z, a
contradiction. By Proposition 4, x is conjugate to dω for ω 6= ±1 or ±tλ for λ 6= 0.

If the former is true, then CSL(V)(x) is conjugate to D. But, D ∼= F ∗, so CG(x) = A is isomorphic
to a finite subgroup H of F ∗. But, all such groups are cyclic. In addition, H must have subgroups of
all orders dividing |H|. Suppose p divided the order of H. Then, there will be nontrivial elements in
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A which are conjugate to ±tλ by the lemma. However, no such elements exist in D, a contradiction.
Therefore, |H| is relatively prime to p.

Now, suppose that x is conjugate to ±tλ. Then, CG(x) is isomorphic to T × Z. It is easy to see
that T is isomorphic to the additive group F+. Therefore, T contains at least one nontrivial finite sub-
group. But any such subgroup must have order a power of p since the characteristic of F is p. Therefore,
A = Q×Z with Q an elementary abelian p group. In fact, Q is a Sylow p subgroup of G. First of all, Q
is contained in some Sylow p-subgroup of G, call it P . The claim is that the center of P is not trivial.
To see this, consider the class equation:

|P | = |Z(P )|+
∑
|P : CP (gi)| (1.28)

for gi the representatives of the distinct conjugacy classes of elements in P . If P is not abelian the sum
is nonzero. All of the indices in the sum must be powers of p and p divides the order of P and so p
divides the order of Z(P ) as well. Let z ∈ Z(P ) be nontrivial. Then, z commutes with everything in P ,
so P is contained in the centralizer of z in G, i.e.

A ∼= Q× Z ⊆ P × Z ⊆ CG(z) (1.29)

but, clearly, z 6∈ Z (since it has order p), so CSL(V)(z) is abelian and therefore CG(z) is also abelian.
Thus, CG(z) ∈M . It is maximal because if it were properly contained in an abelian subgroup of G, there
would be more elements which commuted with z. This implies that A = CG(z) and so Q× Z = P × Z
as desired.

The description of M is continued in what follows:

Proposition 8. For A ∈M and |A| relatively prime to p, then |NG(A) : A| ≤ 2.

Proof. By the previous proposition, Prop 7, A is cyclic and a generator of A is conjugate to dω (ω 6= ±1).
Since |NG(A) : A| is invariant under conjugation of A, one can consider dω to be a generator of A. Take
any element in the normalizer of A in SL(V) and conjugate dω:

(
a b
c d

)(
ω 0
0 ω−1

)(
d −b
−c a

)
=

(
adω − bcω−1 ab(ω−1 − ω)
cd(ω − ω−1) daω−1 − cbω

)
(1.30)

For this to be in the normalizer, it is required that either a = 0 or b = 0 and either c = 0 or d = 0 since
A is a subgroup of D. It cannot be that a = 0 and c = 0 or b = 0 and d = 0, because then the matrix
would not be invertible. Therefore, either a = 0 and d = 0 or b = 0 and c = 0. If b = 0 and c = 0,
then, the matrix would be an element of D. If a = 0 and d = 0, then it is required that −bc = 1, or that
b = ±1 and c = ∓1, so the matrix is ±w. Therefore, NSL(V )(A) ⊆ 〈D,w〉 and inclusion the other way
is clear.

Now, consider the former case in which b = c = 0. One needs to know what elements in G have
this form. Suppose that there is an element in G with this structure which is not in A, call it dΩ.
Then, 〈A, dΩ〉 will be abelian because dΩ and dω commute. This cannot be since A is a maximal abelian
subgroup of G. Thus, NG(A) ⊆ 〈A,w〉.

Therefore, there are only two possibilities. If w ∈ A, then the order of the normalizer is twice the
size of A. Otherwise, it is the same size as A. In the case that w ∈ A, note that

w−1dωw = d−1
ω (1.31)

Next is a counting argument. As before, take G such that Z ≤ G. Define g such that |G| = 2g. Let Q
be a Sylow p-subgroup of G and let |Q| = q and |NG(Q) : Q| = 2k. Note that one can write this because
for p > 2, Q does not contain Z as |Q| is relatively prime to 2 but clearly, Z ⊆ NG(Q) as Z ≤ G and
Z normalizes Q. Let M be the set of maximal abelian subgroups of G. The work above shows that M

10



has two kinds of elements: subgroups conjugate to Q× Z (conjugate because all Sylow p subgroups are
conjugate) or a cyclic subgroup which has order relatively prime to p. Furthermore, for the second type
of subgroup,

|NG(A) : A| ≤ 2 (1.32)

Let {Ci} be the set of conjugacy classes of elements of M of order relatively prime to p. Order them
so that for a representative Ai of Ci, NG(Ai) = Ai for i ≤ s and |NG(Aj) : Aj | = 2 for s < j ≤ s + t.
Finally, it is clear that Z ∈ Ai, so let |Ai| = 2gi for i = 1, ..., s+ t. First of all, note that every element
x ∈ G is contained in CG(x), which is an element of M , so every element of x is contained in some
element of M . The only elements in common between two distinct subgroups of M are in the center.
Consider some fixed Ai. This group has 2gi− 2 non-central elements. There are |G : NG(Ai)| conjugates
of Ai, which is 2g/(2giε) where ε = 1 for i ≤ s and 2 otherwise. Therefore, the number of non-central
elements that a conjugacy class Ci contains is

(2gi − 2)× 2g

2giε
=

2g

giε
(gi − 1) (1.33)

Next, consider the conjugacy class of Q×Z. Any conjugate will have 2q−2 non-central elements. There
are 2g/(2qk) = g/qk such conjugates. Since there are 2g−2 total non-central elements in G, the following
equation holds:

2(g − 1) =
2g

qk
(q − 1) + 2g

t∑
i=1

gi − 1

giε
(1.34)

this can be rewritten as

1 =
1

g
+
q − 1

qk
+

s∑
i=1

gi − 1

gi
+

s+t∑
i=s+1

gi − 1

2gi
(1.35)

Since each gi is an integer greater than 1,

gi − 1

gi
≥ 1

2
(1.36)

Furthermore, since q is either 1 or a power of p the equation implies that

1 >
s

2
+
t

4
(1.37)

Therefore, there are 6 possible cases for G:

Case s t
1 1 0
2 1 1
3 0 0
4 0 1
5 0 2
6 0 3

This will allow for the classification of the subgroups of SL(V), considering one case at a time2.

Proposition 9 (Case 1). Q 6= G and G is an elementary abelian normal subgroup of G (and thus is
unique). The factor group G/Q is a cyclic group whose order is relatively prime to p.

2Let this be a disclaimer that in the subsequent discussion, it is assumed, but perhaps not always stated, that p > 2.
Furthermore, some of the subsequent work only holds if p is not one of the small primes 3 or 5. Since this thesis is concerned
with the behavior of PSL(2,p) for all primes, these cases are not isolated and considered separately.
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Proof. Eq. 1.35 becomes

1 =
1

g
+
q − 1

qk
+
g1 − 1

g1
(1.38)

which is

1

g
+

1

k
=

1

qk
+

1

g1
(1.39)

By construction q > 1. The claim is that this implies k > 1. To see this suppose that instead k = 1.
Then,

1

q
=

1

g
− 1

g1
+ 1 (1.40)

It cannot be that g = g1 since then q = 1. Therefore, 1
g −

1
g1
< 0. Note that

∣∣∣∣1g − 1

g1

∣∣∣∣ < 1

g1
− 1

g1 + 1
=

1

g1(g1 + 1)
≤ 1

2
(1.41)

and so the right side of Eq. 1.40 is strictly bigger than 1/2. Therefore, q cannot be an integer if q > 1. This
contradiction leads to the conclusion that k > 1. More work is now required to see why this is important.

In the proof of Prop. 7, it was shown that the maximal abelian groups of G which have order not
relativity prime to p are isomorphic to R × Z, where R is a subgroup of T and is also a Sylow-P
subgroup. Therefore, all Sylow-P subgroups are conjugate to subgroups of T . Since conjugation will
preserve the lattice structure of subgroups, without loss of generality assume that Q is a subgroup of T .
The centralizer of tλ has already been computed in SL(V), but now consider the normalizer. Take any
element in y ∈ NSL(V)(tλ). Generically write

y =

(
a b
c d

)
(1.42)

Then,

(
d −b
−c a

)(
1 0
λ 1

)(
a b
c d

)
=

(
ad− baλ− bc −λb2

λa2 −bc+ baλ+ ad

)
(1.43)

for y to be in the normalizer, one needs b = 0 and ad = 1. Therefore,

y =

(
a 0
c a−1

)
= tcda (1.44)

Thus, NSL(V)(tλ) ⊆ TD. The reverse inclusion is clear and so NSL(V)(tλ) = TD. Therefore, NG(Q) ⊆
TD. In fact, it is clear from the form of T,D that all such elements normalizes Q and so NG(Q) = TD∩G.
Furthermore, in the proof of Prop. 7, it was shown that the maximal abelian subgroups which contains
Q are of the form Q × Z and so all elements t ∈ G ∩ T must be in Q. Thus, T ∩ NG(Q) = Q. By the
second isomorphism theorem, N(Q)/Q is isomorphic to a (finite) subgroup of TD/T ∼= D ∼= F ∗. This
means that N(Q)/Q is cyclic. Additionally, the order must be relatively prime to p since F ∗ is composed
of all the invertible elements in F . Let x be a generator of this cyclic quotient (and so the order of x is
relatively prime to p) such that K is a subgroup generated by a lift of x to NG(Q) with NG(Q) = QK
and Q ∩K trivial.

Now, the claim is that K ∈M , i.e. is a maximal abelian subgroup of G. To begin, note that |K| = 2k > 2.
Let K ≤ A ∈M . This is possible since K is cyclic (and thus abelian) and so is contained in a maximal
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abelian subgroup. Since K is cyclic of order relatively prime to p, by Prop. 7, A will also be cyclic and
have order relatively prime to p. Now, some geometry is needed to complete the proof.

Let P(V) be the projective line of V . One needs to characterize the fixed points of P(V) under the
action of SL(V). Take any x ∈ SL(V). Suppose that x has two fixed points P,Q ∈ SL(V). Let u, v ∈ V
correspond to P,Q, i.e. [u] = P, [v] = Q under the equivalence relation defined in the earlier discussion
of projective geometry. Since x fixes [u], it must be that xu = mu for some m ∈ F ∗. Likewise, xv = nv
for some n ∈ F ∗. Since n,m are eigenvalues of x and x has determinant 1, it must be that nm = 1 and
so it is possible to write n = m−1. It is thus clear that x could not have any more fixed points, since
then there would be three distinct eigenvalues of x, which is not possible. Furthermore, dω will have
exactly two fixed points because it has two distinct eigenvalues so long as ω 6= ±1.

Next, consider the fixed points of T . In a given fixed basis (say u, v) one knows that the elements
of T fix v since x12 = 0 and x22 = 1. Thus, there is a point Y ∈ P(V) which is fixed by all of T . It is also
clear that in the diagonal form, elements of D also fix Y . Therefore, TD is contained in the stabilizer
of P . Now, take any element x in the stabilizer of [v]. Such an element sends v to ωv for some ω 6= 0.
Therefore, one can write (in the u, v basis)

x =

(
x11 0
x21 ω

)
(1.45)

but since x ∈ SL(V), x11 = ω−1. Therefore,

x =

(
ω−1 0
x21 ω

)
= dω−1tx21

(1.46)

and so x ∈ TD so the stabilizer of [v] is TD.

Now, back to Case 1. A generator of A is conjugate to dω for ω 6= ±1. Therefore, such a genera-
tor fixes two points P1, P2 in P(V). By the same reason, a generator x of K also has two fixed points -
in fact they must be the same two fixed points. Every element of T has a common fixed point, call it P .
The stabilizer of P is TD. Since K ⊆ TD, K must fix P . Thus, one of P1, P2 is P . Therefore, since a
generator of A fixes P1, P2, it fixes P and so is in the stabilizer of P . This gives

A ⊆ Stab(P ) ∩G = TD ∩G = NG(Q) = QK (1.47)

This means

A = QK ∩A = (Q ∩A)K = K (1.48)

and so K belongs to M . There is only one element in M for Case 1, so k = g1. Therefore, the equation
the proof started with gives g = qk and so G = NG(Q).

Proposition 10 (Case 2). The order of |G| is relatively prime to p and G is either the group of order
4n defined by the presentation

〈x, y|xn = y2, y−1xy = x−1〉 (1.49)

where n is odd, or G ∼= SL(2, 3).

Proof. Eq. 1.35 becomes

1 =
1

g
+
q − 1

qk
+
g1 − 1

g1
+
g2 − 1

2g2
(1.50)
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which is

1

g1
+

1

2g2
=

1

g
+
q − 1

qk
+

1

2
(1.51)

Suppose that q > 1 (i.e. there is a nontrivial Sylow-p subgroup). Then, (q − 1)/qk ≥ 1/qk ≥ 1/2k.
Therefore,

1

2g2
− q − 1

qk
=

1

g
+

1

2
− 1

g1
(1.52)

becomes

1

2g2
− 1

2k
≥ 1

2g2
− q − 1

qk
=

1

g
+

1

2
− 1

g1
>

1

2
− 1

g1
≥ 0 (1.53)

where the last inequality is because A1 contains the center and cannot be the center and so g1 > 1. It
cannot be the center because then it would not be maximal abelian (since one could always add one
more element and it would still be abelian). Therefore, k > g2. Most notably, this means that k > 1 and
so by the same logic in Case 1, k must be equal to gi for some i. Since k 6= g2, it must be that k = g1.
However, this means that the above inequality is

1

2g2
+

1

2g1
>

1

2
(1.54)

but, g1, g2 > 1 (they cannot be the center) and so this is a contradiction. Therefore, q = 1. Thus, the
order of G is relatively prime to p (otherwise, it would have a nontrivial Sylow-p subgroup). Furthermore,
Eq. 1.50 becomes

1 =
1

g
+
g1 − 1

g1
+
g2 − 1

2g2
(1.55)

which means that

1

g1
+

1

2g2
=

1

2
+

1

g
(1.56)

or

1

g1
+

1

2g2
>

1

2
=⇒ 1

g1
>

1

4
(1.57)

This means that g1 = 2 or g1 = 3. Consider each of these cases separately. First, suppose that g1 = 2.
Then, Eq. 1.50 becomes

g = 2g2 (1.58)

Since |NG(A2) : A2| = 2, it must be that G = NG(A2). The Ai are cyclic, so let x be a generator of A2

and y a generator of A1. By construction, NG(A1) = A1. The claim is that this means A1 is a Sylow-2
subgroup of G. The size |A1| = 4, so it is a 2 group. There is a standard corollary3 to Sylow’s Theorems
which says that if P is a p-subgroup of G and if P is a Sylow-p subgroup of NG(P ), then P is a Sylow-p
subgroup of G. Since NG(A1) = A1, so A1 is a Sylow-2 subgroup of NG(A1) and so is a Sylow-2 subgroup
of G. Therefore, since the intersection of A1 and A2 is Z, it must be that A2/Z is odd, otherwise A2

would contain a Sylow-2 subgroup, conjugate to A1. Therefore, if |A2| = 2n, then n is odd.

3For example, see p. 98 in [13].
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Recall from the proof of Prop. 8 that |NG(A2) : A2| = 2 means that A2 is conjugate to a subgroup
of 〈D,w〉. Without loss of generality, suppose that G = 〈A2, w〉. Then, there is a subgroup of G which
is 〈w〉 and having order 4 must be conjugate to A1 (as it is a Sylow-2 subgroup). Therefore, one can
let y = w. In this case, the observation at the end of the proof of Prop. 8 says that y−1xy = x−1.
Furthermore, x2n = y4 = e, the identity since w has order 4 and x is a generator of a cyclic group of
order 2n. In fact, xn = y2, since both of these elements have order 2 and are not the identity and thus
are in Z, which has only one such element of this kind. It is routine to show that these two relations
uniquely define a finite group of order 4n [13].

Now, suppose that g1 = 3. Then, Eq. 1.50 becomes

g2 =
3g

6 + g
= 3− 18

6 + x
(1.59)

for g2 to be an integer, one needs 18 to be a multiple of 6+g. Since g > 1, there is only one such solution,
which is g = 12. This then gives g2 = 2. There are only 15 groups of order 24 and it is possible to
uniquely determine which one is G. First of all, G has a cyclic self normalizing subgroup of order six and
a cyclic subgroup of order four, which is normalized by a subgroup of order eight. By the same reason
as in the previous case, from the proof of Prop. 8, |NG(A2) : A2| = 2 means that NG(A2) is conjugate
to 〈A2, w〉. Since w conjugates elements of A2 to their inverse, for x a generator of A2, there exists an
element y in the normalizer of A2 such that yxy−1 = x−1. Therefore, NG(A2) is a group of order 8
with elements x and y such that yxy−1 = x−1. In addition, x2 = y2, since both of these elements have
order 2 and so are in Z, which has only one such element. Therefore, NG(A2) is isomorphic to Q8, the
quaternion group [7]. It is straightforward to show that G ∼= SL(2, 3) [13]. Note that this means that
G/Z ∼= A4.

Proposition 11 (Case 3). G = Q× Z.

Proof. If s = t = 0, then the only maximal abelian subgroups of G are the ones conjugate to Q×Z. Take
any element g ∈ G such that the order of G is relatively prime to p. Consider CG(g). This is a maximal
abelian subgroup. Since the only maximal abelian subgroups are conjugate to Q × Z, it must be that
g ∈ Z. Therefore, all non-central elements in G are a power of the prime p and thus are contained in a
Sylow p subgroup of G. Therefore, G = Q× Z.

Proposition 12 (Case 4). This can only happen if p = 2 or 3. If p = 3, G ∼= SL(2, 3).

Proof. Eq. 1.35 becomes

1 =
1

g
+
q − 1

qk
+
g1 − 1

2g1
(1.60)

or

1

2
=

1

g
+
q − 1

qk
− 1

2g1
(1.61)

Also, g ≥ 2g1 since A1 ≤ NG(A1) ≤ G and |NG(A1) : A1| = 2. Therefore,

q − 1

qk
=

1

2
− 1

g
+

1

2g1
≥ 1

2
(1.62)

This means q > 1. Since (q − 1)/q < 1, it cannot be that k ≥ 2 and so k = 1. Then, Eq. 1.35 becomes

1

2
+

1

g
=

1

q
+

1

2g1
(1.63)

i.e.

1

q
+

1

2g1
>

1

2
(1.64)
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As in Case 2, this means q = 2 or q = 3. In the former case, p = 2, which is already excluded. In the
later case, p = 3. Since PSL(2, 3) ∼= A4, no further details are necesary.

Proposition 13 (Case 5). If |Q| = 3, then G ∼= S5. Otherwise, g = q(q2 − 1)/d (d=1 or d=2).

Proof. Eq. 1.35 becomes

1 =
1

g
+
q − 1

qk
+
g1 − 1

2g1
+
g2 − 1

2g2
(1.65)

or

1

2g1
+

1

2g2
=

1

g
+
q − 1

qk
(1.66)

If q = 1, then (suppose without loss of generality that g1 ≥ g2)

1

g1
≤ 1

2g1
+

1

2g2
=

1

g
(1.67)

which means g = g1, but NG(A1) = 2|A1|, i.e. G has a subgroup which is larger than |G|, a contradiction.
Thus, q > 1. This means (q − 1)/q ≥ 1/2. Then, Eq. 1.35 says the following:

1

2
≥ 1

2g1
+

1

2g2
=

1

g
+
q − 1

qk
≥ 1

g
+

1

k
≥ 1

k
(1.68)

Which means k ≥ 2. As was shown earlier, since k > 1, it must be that k is equal to one of the gi.
Without loss of generality, let k = g1. Then, Eq. 1.35 gives the relation

1

2g2
=

1

g
− 1

qg1
+

1

2g1
(1.69)

Since |Ai| is relatively prime to p, it must be that g ≥ g1q. In fact, since the normalizer of Ai is twice
as large (and thus also has order relatively prime to p), this is strict equality, or 1

g −
1
g1q

< 0. Therefore,
the above says

1

2g2
<

1

2g1
=⇒ g1 < g2 (1.70)

Now, the claim is q ≡ 1 mod g1. First of all, take any non-identity element x ∈ Q. Then, from earlier
note that CG(x) is Q× Z. Therefore, the number of elements in NG(Q) conjugate to x is

|NG(Q) : CNG(Q)(x)| = |NG(Q) : Q× Z| = k (1.71)

By construction, if one conjugates elements of Q by elements of NG(Q), the result is elements of Q.
Therefore, if an element x ∈ Q − {e} has k conjugates in NG(Q), it really has k conjugates inside
Q−{e}. Since the number of conjugacy classes of elements in Q without the identity must be an integer,
it must be that (q − 1)/k is an integer. Thus, q ≡ 1 mod k, as claimed.

Let ag = 2g1g2q (it is not clear here that a ∈ Z). Then,

1

2g1
+

1

2g2
=

1

g
+
q − 1

qg1
(1.72)

becomes

g1q = a+ (q − 2)g2 (1.73)

This makes it clear that a is an integer. By construction it must be positive (since gi, q, g > 0). Thus,
g1 > (q − 2)g2/q. In addition,

g2 mod g1 =
g1q − a
q − 2

mod g1 =
a

2− q
mod g1 = a mod g1 (1.74)
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where the fact that q mod g1 = 1 mod g1 form earlier has been used. Eq. 1.74 says that g2 = a + lg1

for some integer l. Now, consider two cases: q ≥ 4 and q < 4. First, suppose that q ≥ 4. From Eq. 1.73,
g1 > 2g2/q > 2g2/4. Thus,

2g1 > g2 > g1 (1.75)

Therefore,

2 > a/g1 + l > 1 =⇒ 1 >
a

2g1
+
l

2
>

1

2
(1.76)

Now, note that since g ≥ 2qg2, it must be that a/2g1 = g2q/g ≤ 1/2. This tells says l cannot be negative,
otherwise a/2g1 + l/2 would be less than 1/2. It also cannot be that l > 1, otherwise this same quantity
would be larger than 1. Therefore, l = 0 or l = 1. First, suppose that l = 0. Then, g2 = a. This
means g = 2g1q. However, g ≥ 2g2q > 2g1q since the order of NG(A2) is relatively prime to p and so the
order of G (2g) is greater than the product of the order of the normalizer of A2 (4g1) and the order of a
Sylow-p subgroup (q). Thus, l = 1. This means

g2 = g1 + a (1.77)

Then, Eq. 1.73 says

g1q = a+ (q − 2)g2 = g1q = a+ (q − 2)(g1 + a) =⇒ 2g1 = a(1− q) (1.78)

Rearranging gives 2g2 = a(q + 1) and 2g = a(q2 − 1)q and

2

a
=
q − 1

g1
(1.79)

Since q is 1 mod g1 the right hand side is an integer and so d ≡ 2/a is an integer. This completes this
case. Now, suppose q < 4. This means either p = 2 or p = 3. Ignore the case p = 2 and consider
q = p = 3. Since q is 1 mod g1, there is an integer l so that 3 = 1 + lg1. This means 2 = lg1 and so it
must be that l = 1 and g1 = 2. Next, since g1 > (q − 2)g2/q, g1 > g2/3, i.e. g2 < 6. Also, g2 > g1 so
2 < g2 < 6. Furthermore, g2 is relatively prime to p = 3 so g2 = 4 or g2 = 5. In the first case (g2 = 4),
a = 2 and the second case (g2 = 5) a = 1. Therefore, g = 60 or g = 2 ∗ 2 ∗ 4 ∗ 3/2 = 3(3 − 1)(3 + 1)/2,
which is a subgroup of the type in the first case of the proposition. Since this thesis cares about generic
p, the proof that for this g = 60 group, G ∼= SL(2, 5) is omitted.

Proposition 14 (Case 6). G is isomorphic to either

〈x, y|xn = y2, y−1xy = x−1〉 (1.80)

for n even, or G ∼= S5
∼= SL(2, 5) or G/Z ∼= S4.

Proof. Eq. 1.35 becomes

1 =
1

g
+
q − 1

qk
+
g1 − 1

2g1
+
g2 − 1

2g2
+
g3 − 1

2g3
(1.81)

or

1

2g1
+

1

2g2
+

1

2g3
=

1

2
+

1

g
+
q − 1

qk
(1.82)

Suppose that q > 1. Then, (q− 1)/q ≥ 1/2 and so (q− 1)/(qk) ≥ 1/(2k). From the proof of Case 1, one
knows that k is one of the gi. Without loss of generality, suppose that k = g1. Then,
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1

2g1
+

1

2g2
+

1

2g3
≥ 1

2
+

1

g
+

1

2g1
(1.83)

since gi > 1,

1

2
≥ 1

2g2
+

1

2g3
≥ 1

2
+

1

g
(1.84)

which is a contradiction. Therefore, q = 1. This implies that

1

2g1
+

1

2g2
+

1

2g3
=

1

2
+

1

g
>

1

2
(1.85)

without loss of generality, let 1 < g1 ≤ g2 ≤ g3. If g1 = 3, then,

1

2g2
+

1

2g3
=

1

3
+

1

g
(1.86)

but, the left hand side is at most 1/3 and so this is not possible. Therefore, g1 = 2. Then,

1

2g2
+

1

2g3
=

1

4
+

1

g
(1.87)

If g2 = 2, then g = 2g3. If g2 = 3,

1

2g3
=

1

12
+

1

g
(1.88)

which means that g3 ≤ 5. If g2 = 4,

1

2g3
=

1

8
+

1

g
(1.89)

which would mean that g3 < 4, a contradiction. Thus, there are only two possibilities. The first
case is when g1 = 2, g2 = 2 and g = 2g3. Thus, G = NG(A3) since the index between these is two by
construction. Let x be a generator of A3. Then, as in Case 2, there is an element y of G which conjugates
x to its inverse, where y is conjugate to w. If x has order 2n, then this means that G is a subgroup of

〈x, y|xn = y2, y−1xy = x−1〉 (1.90)

and since |A2| = 4 and NG(A2) = 8, it must be that the size of a Sylow-2 subgroup is at least 8. This
means that n must be even because A3 must contain a Sylow-p subgroup of order at least 4 (and so n
must be divisible by half of that). It has not been shown that G is defined by this presentation, but this
is a routine exercise.

The second case is g1 = 2, g2 = 3 and 3 ≤ g3 ≤ 5. If g3 = 3 then Eq. 1.88 says that g = 12.
Therefore, subgroups of G of order 3 are Sylow-3 subgroups and are thus all conjugate. This means that
A2 and A3 are conjugate. However, Ai are chosen to be not conjugate by construction and so there is a
contradiction. Thus, g3 = 4 (and so g = 24 by Eq. 1.88) or g3 = 5 (and so g = 60).

First, suppose that g = 24 (so that |G| = 48). Then, |NG(A2)| = 12 and so |G : NG(A2)| = 4.
Let G act on the set of cosets of NG(A2) by conjugation. This gives a non-trivial homomorphism from G
to S4, the symmetric group on four letters. It is not hard to show that Z is the kernel. Thus, the image
is S4, which one can deduce by counting the sizes of groups. This means that G/Z = S4. The group G
is uniquely defined as a central extension of S4, but in the end for PSL(2,p), one only cares about the
factor group by the center.

Next, suppose that g = 60 and so |G| = 120. One plays the same game as in the previous case. A
Sylow-2 subgroup must have order at least 8. Since 16 does not divide 120 (and neither does any higher
power of 2) it must be that the Sylow-2 subgroup is precisely of order 8 and thus conjugate to A1. By
the same logic as in the proof of Case 2, this Sylow-2 subgroup is isomorphic to Q8. It is an elementary
fact that Q8 has three subgroups of order 4 (which are normal in Q8). Each of these (as well as A1) are
isomorphic to Z4. Since these are abelian, they must be contained in some maximal abelian subgroup
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of G. The only ones with an order which has 4 as a divisor is A1. Thus, these subgroups of Q8 must
be conjugate to A1. There are |G : NG(A1)| = 15 subgroups conjugate to A1. Therefore, there must
be 5 Sylow-2 subgroups in G. Let G act on the set of Sylow-2 subgroups. This gives a homomorphism
from G to S5, the symmetric group on 5 letters. Since all the Sylow-2 subgroups are conjugate, it must
be that the non-central elements of G act nontrivially on this set. Therefore, G/Z is isomorphic to the
image of the homomorphism which is a subgroup of S5. Since the order of the image is 60, it must be
normal in S4 and thus is isomorphic to A4. Thus, G ∼= S4

∼= SL(2, 5).

Now, all of these cases can be collected in one place:

Theorem 2. A subgroup of PSL(2,p) is isomorphic to one of the following groups:

1. The dihedral group of order p± 1 and their subgroups

2. A group H of order p(p−1)/2 and its subgroups. A Sylow p-subgroup Q of H is elementary abelian,
QEH and the factor group H/Q is cyclic of order (p− 1)/2.

3. A4,S4 or A5

Proof. From all the work with the various cases above, one knows what the subgroups of SL(V) that
contain the center look like. Since PSL(2,p) is contained in SL(V)/Z, the correspondence theorem (a.k.a.
fourth isomorphism theorem) states that the subgroups of PSL(2,p) must be of the form G/Z where G is
a subgroup of SL(V) which contains Z. Consider each of the six cases. Before proceeding, note that since
|SL(2,p)| = (p− 1)p(p+ 1), it must be that a Sylow-p subgroup has order p, since p cannot divide p± 1.
Let G be a subgroup of PSL(2,p). First, consider Case 2. Here, G is isomorphic to SL(2, 3)/Z ∼= A4 or
H/Z where

H = 〈x, y|xn = y2, y−1xy = x−1〉 (1.91)

From the proof of this case, y is conjugate to w in SL(V). Squaring w gives the negative identity which
is in Z and so y2 = 1 in H/Z. Therefore,

H/Z = 〈x, y|xn = y2 = 1, y−1xy = x−1〉 (1.92)

It is not hard to show that this is precisely D2n, the dihedral group of order n [6]. In Case 3, one gets the
cyclic Sylow-p subgroup of PSL(2,p). Case 4 only happens if p = 3 in which case G ∼= SL(2, 3)/Z ∼= A4.
In Case 5, one either has that G ∼= S5/Z ∼= A5 or |G| = 2p(p2 − 1)/d where d = 1 or 2. If d = 2, then
going mod the center will give a group with precisely the same size as PSL(2,p). Thus, if G is a subgroup
it must be the entire group. If d = 2, then |G| is larger than the size of PSL(2,p) and so this possibility
can be ignored. In Case 6, one either havs G ∼= A5 or S4 or G is isomorphic to H/Z where

H = 〈x, y|xn = y2, y−1xy = x−1〉 (1.93)

once again, this is a dihedral group. Now, return to Case 1. This will correspond to groups of the second
type in the theorem. In this case, G contains the cyclic Sylow-p subgroup. Furthermore, it was proved
in that case that the quotient of G by the normal Sylow-p subgroup is cyclic of order relatively prime to
p. All that remains is to describe the order of G in this case. For this, one needs to know the number
of Sylow-p subgroups. This must be congruent to 1 mod p and must divide p(p + 1)(p − 1). This last
bit is because it is clear that for p 6= 2, the number of Sylow-p subgroups of PSL(2,p) is the same as
the number in SL(2,p). The number of subgroups thus must divide p + 1 and or p − 1. However, in
order to be congruent to 1 mod p, it must be that the number of Sylow p subgroups is precisely p + 1.
Therefore, the index of the normalizer of Q in PSL(2,p) is (p+ 1) and so the order of the normalizer is
p(p − 1)/2. The subgroup G normalizes Q and so is contained in the normalizer and thus has order at
most p(p− 1)/2.

With the above theorem, one can begin to find how often and how many of these subgroups occur.

Theorem 3. Let G = PSL(2,p). Then,
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1. G always contains subgroups isomorphic to the dihedral groups in Part (1) and the groups of Part
(2) of the previous theorem.

2. G contains A5 if and only if p ≡ ±1 mod 5.

3. G contains A4 if and only if p 6= 2.

4. G contains S4 if and only if p ≡ ±1 mod 8.

Each part of this theorem will be proved one at a time as Dickson’s Theorem is completed.

Proposition 15. G always contains subgroups isomorphic to the dihedral groups in Part (1) and the
groups of Part (2) of the previous theorem.

Proof. From Case 5, PSL(2,p) has cyclic subgroups of order p± 1. Furthermore, the normalizer is twice
as big. In addition, these normalizers cannot be abelian because the cyclic subgroups of order p± 1 are
maximal abelian. Therefore, the normalizers are precisely the dihedral groups of order 2(p± 1).

The group of order p(p − 1)/2 also must exist because it is the normalizer of the Sylow-p subgroup,
whose existence Sylow’s theorem guarantees.

Proposition 16. A5 is a subgroup of PSL(2,p) if and only if 2 6= p ≡ ±1 mod 5.

Proof. Since A5 is simple, its center is trivial and so under the isomorphism theorems, one only needs to
show that A5 is a subgroup of SL(2,p) if and only if 2 6= p ≡ ±1 mod 5. First of all, if A5 ⊂ SL(2,p),
then 5 divides |SL(2,p)| = (p − 1)p(p + 1). Since A5

∼= SL(2, 5) it is trivial if 5|p (so ignore that case).
Therefore, either 5|(p+ 1) or 5|(p− 1). Thus, p ≡ ±1 mod 5.

Now, for the converse. Suppose that p ≡ ±1 mod 5. The argument is similar in both cases, but
for the sake of brevity consider only the case where p ≡ +1 mod 5. Since F∗p has p − 1 elements, this
multiplicative group has order divisible by 5. Therefore, by Cauchy’s theorem, F∗p has an element of
order 5, call it z. Consider two matrices in SL(2,p):

x =

(
z 0
0 z−1

)
y =

(
a b
c d

)
(1.94)

with the two equations a+ d = −1 and az + dz−1 = 0. The solutions to these equations are

a =
1

z2 − 1
d = − z2

z2 − 1
(1.95)

since z has order 5, these are well defined. The claim is that with these restrictions on y give y3 =
(xy)4 = 1. This is a straightforward matrix computation. Below is a part of the one which shows that
y3 = 1.

y3 =

(
a3 + 2abc+ bcd a2b+ b2c+ abd+ bd2

a2c+ acd+ bc2 + cd2 abc+ 2bcd+ d3

)
(1.96)

It is not hard to see that the first entry is 1. Similar computations work for the other components. Note
that ad− bc = 1 and a+ d = −1. Then,

b =
ad− 1

c
=
a(−1− a)− 1

c
= −a

2 + a+ 1

c
(1.97)

Therefore,

a3 + 2abc+ bcd = a3 − 2a(a2 + a+ 1)− d(a2 + a+ 1) (1.98)

= a3 − 2a(a2 + a+ 1) + (a+ 1)(a2 + a+ 1)

= a3 − 2a3 − 2a2 − 2a+ a3 + a2 + a+ a2 + a+ 1

= 1
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One can also show that4 A5 = 〈a, b|a3 = (ab)4 = 1〉. Therefore, there exists a homomorphism φ : A5 �
〈x, y〉 ≤ SL(2,p). Since A5 is simple, 〈x, y〉 is isomorphic to A5 or is trivial. Since x is not trivial,
〈x, y〉 ∼= A5.

Proposition 17. G contains A4 if and only if p 6= 2.

Proof. If p = 3 then SL(2, 3)/Z ∼= A4. If p > 3, then either p is 1 or −1 mod 3 and so p2 ≡ 1 mod 3.
Then, just as in the proof of the previous proposition, there are elements x, y ∈ SL(2,p) such that
x3 = y3 = 1 and xy 6∈ Z but (xy)2 ∈ Z. It is not hard to show that 〈x, y〉 ∼= SL(2, 3) and so the image
in PSL(2,p)is A4.

Proposition 18. G contains S4 if and only if p ≡ ±1 mod 8.

Proof. First suppose that G contains a subgroup H isomorphic to S4. Then, since the Sylow-2 subgroup
of S4 is isomorphic to the quaternion group, it must be that the Sylow-2 subgroup of G has order at
least 8. Therefore, 8 must divide p− 1 or p+ 1 (since it does not divide p) and so p is ±1 mod 8.

Conversely, suppose that p ≡ ±1 mod 8. Then, since 8 divides p + 1 or p − 1, it must be that the
Sylow-2 subgroup has order at least 8. By the previous proposition, G contains a subgroup A isomorphic
to A4. Let Q be the unique elementary abelian Sylow-2 subgroup of A. From Sylow, it must be that Q
is contained in some Sylow-2 subgroup of G. Since such subgroup has order at least 8 and Q has order
4, it must be that this is proper containment. Thus, A is not the normalizer of Q in G. Looking through
the possible subgroups which could be the normalizer, one can see that it must be S4.

Now that the elements of PSL(2,p) are understood, it is possible to identify the order of elements merely
by the trace of a lift to SL(2,p) [13][11].

Lemma 4. Let I be the 2× 2 identity matrix and take ±I 6= x ∈ SL(2,F). Then,

1. x2 6= I if and only if p = 2 and tr(x) = 0.

2. x2 = −I if and only if tr(x) = 0.

3. x3 = ±I if and only if tr(x) = ∓1.

4. x4 = −I if and only if tr(x) = ±
√

2.

Proof. The element x is conjugate to ±tλ or dω. Furthermore, it has been shown that if the former is
true, then xp ∈ Z, so if x2 ∈ Z then p = 2. Furthermore, since traces are preserved under conjugation,
tr(x) = ±2 which is zero in a field of characteristic 2. Next, suppose that x is conjugate to dω. Then,
tr(x) = ω+ω−1. If x 6∈ Z but x2 ∈ Z then ω2 = −1, so ω−1 = −ω and thus tr(x) = ω+ω−1 = 0 as desired.

Next, suppose that x3 = I. Note that this means that

0 = (x3 − I) = (x2 + x+ I)(x− I) (1.99)

Since x 6= ±I, it must be that x2 + x + I = 0 so x2 + x = −I or x + x−1 = −I, since x−1 = x2. Now,
suppose that x3 = −I. Note that this implies that

0 = (x3 + I) = (x2 − x+ I)(x+ I) (1.100)

Since x 6= ±I, it must be that x2 − x+ I = 0 so x2 − x = −I and thus x−1 + x = I since −x2 = x−1.
Therefore, if x ∈ SL(2,p) then x has order 3 if tr(x) = −1 and order 6 if tr(x) = +1.

Now, suppose x4 = −I. There exists an ω such that x is conjugate to dω. Then, ω4 = −1. This
means that ω2 = −ω−2. Then,

4See for example, page 176 in [13].
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(ω + ω−1)2 = ω2 + 2ωω−1 + ω−2 (1.101)

= 2

Therefore, tr(x)2 = 2.

One can use trace identities to write down conditions for other orders as well [8]. For example, for
A ∈ SL(2,p), A 6= ±I and ±tr(A)3 + tr(A)2 ∓ 2tr(A) − 1 = 0 then A has order 7. Similarly, if
tr(A)2 ± tr(A)− 1 = 0 then A has order 5. In fact, the traces of elements even carry information about
subgroups. For example, there is a theorem by McCullough [11] which relates traces of elements to the
subgroup that they generate. One result from this theorem will be needed later and so it is proved here.
That paper considers a slightly different case than the present one, but the proof goes through without
much modification. Let p ≡ 1 mod 8 (so that

√
2 ∈ Fp - see for example [12]). The following is true:

Theorem 4. Let A,B ∈ SL(2,p) with no more than one of tr(A), tr(B), tr(AB) equal to zero. Then,
π (〈A,B〉) = S4 if tr(A), tr(B), tr(AB) ∈ {0,±1,±

√
2} (and at least one is ±

√
2) and tr ([A,B]) = 1.

Before proving this, preliminary lemmas need to be established to build some trace technology in SL(2,p).

Lemma 5. Let a, b ∈ SL(2,p). Let π : SL(2,p)→ PSL(2,p) be the standard projection. Then, π(〈a, b〉)
is the same as each of the following groups:

π(〈a−1, b〉), π(〈b, a〉), π(〈a−1, ab〉), π(〈−a, b〉), π(〈−a,−b〉)

Proof. This is clear since π(a) = π(−a).

Now, the goal is to see how these actions on the set of generators change the traces of the generators.
Then, one can simply look at traces of elements instead of the elements themselves. To attack this, it is
necessary to establish a few trace identities in SL(2,p).

Lemma 6. For a, b ∈ SL(2,p), tr(a−1b) + tr(ab) = tr(a)tr(b)

Proof. Take

a =

(
a11 a12

a21 a22

)
b =

(
b11 b12

b21 b22

)
(1.102)

Then,

a−1b =

(
a22 −a12

−a21 a11

)(
b11 b12

b21 b22

)
=

(
a22b11 − a12b21 a22b12 − a12b22

−a21b11 + a11b21 −a21b12 + a11b22

)
(1.103)

ab =

(
a11b11 + a12b21 a11b12 + a12b22

a21b11 + a22b21 a21b12 + a22b22

)
(1.104)

therefore,

tr(a−1b) + tr(ab) = a11b11 + a12b21 + a21b12 + a22b22 − a22b11 + a12b21 + a21b12 − a11b22 (1.105)

= a22b11 + a11b22 + a11b11 + a22b22

= (a11 + a22)(b11 + b22)

= tr(a)tr(b)

Lemma 7 (Fricke). For a, b ∈ SL(2, p), tr([a, b]) = tr(a)2 + tr(b)2 + tr(ab)− tr(a)tr(b)tr(ab)− 2
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Proof. All that is required is the repeated use of the previous lemma and its immediate consequences
such as tr(a2) = tr(a)2 − 2. The first computation is

tr(a)tr(b)tr(ab) = tr(a)
[
tr(b−1ab) + tr(ab2)

]
(1.106)

= tr(a)2 + tr(a)tr(ab2)

= tr(a)2 + tr(b2) + tr(a2b2)

= tr(a)2 + tr(b)2 − 2 + tr(a2b2)

which means that the righthand side of the lemma is tr(ab)2 − tr(a2b2). The next computation is the
lefthand side:

tr(aba−1b−1) = tr(a−1b−1ab) = tr((ba)−1(ab)) = tr((ba)−1)tr(ab)− tr(baab) (1.107)

= tr(ab)2 − tr(a2b2)

and so the Fricke trace identity is proved.

Now, it is possible to return to considering the consequences of Lemma 5. Let T (a, b) = (tr(a), tr(b), tr(ab)).
For each of the equivalent generating sets in Lemma 5, the goal is to write down the sets of equivalent
traces.

Lemma 8. Let a, b ∈ SL(2,p). Let π : SL(2,p)→ PSL(2,p) be the standard projection. Then, one can
always pick a different generating set a′, b′ of π(〈a, b〉) so that if T (a, b) = (α, β, γ) then T (a′, b′) can be
chosen to be one of the following:

(α, β, αβ − γ), (β, α, γ), (α, γ, β), (−α, β,−γ), (−α,−β, γ)

Proof. First, note that one can choose (a−1, b) as a generating set. Since tr(a−1) = α, all that needs to
be computed is

tr(a−1b) = tr(a)tr(b)− tr(ab) = αβ − γ (1.108)

Next, note that (b, a) can be used as a generating set. Trivially, this leaves the trace of the product
unchanged and simply swaps α and β. Now, consider (a−1, ab) as a generating set. This switches β and
γ, leaving α unchanged. The multiplication by the negative signs is trivial; clearly if (−a, b) is used as a
generating set, the traces will be (−α, β,−γ) and if both a and b are negated, there is no change to the
trace of the product.

Now, Theorem 4 can be proved.

Proof of Theorem 4. First of all, by the lemma, if B has trace
√

2, then A and B can be switched and
generate the same group. Similarly, if AB has trace

√
2, then one can switch A and AB and generate

the same group. Therefore, without loss of generality, suppose that tr(A) =
√

2. Since no two of
tr(A), tr(B), tr(AB) are zero, by the same logic one can take tr(B) to be nonzero. Let tr(A) = α,
tr(B) = β and tr(AB) = γ. First, consider the case where (α, β) = (

√
2,
√

2). By the Fricke trace
identity

tr([A,B]) = tr(A)2 + tr(B)2 + tr(AB)− tr(A)tr(B)tr(AB)− 2 (1.109)

for γ ∈ {−
√

2,−1, 0, 1,
√

2}, the possible values of tr([A,B]) are respectively (4 + 2
√

2, 5, 2, 1, 4− 2
√

2).
Quick arithmetic computations show that the only possibility is for γ = 1. By the lemma, one can always
pick new generators A′, B′ so that (α, β, γ) 7→ (α, γ, β) 7→ (α, γ, αγ−β). In the case at hand, this means
the traces are (

√
2,
√

2, 1) 7→ (
√

2, 1,
√

2) 7→ (
√

2, 1, 0). This means that π(A′) has order 4, π(B′) has or-
der 3 and π(A′B′) has order 2. This is precisely a presentation5 of S4 and so S4

∼= π(〈A′, B′〉) = π(〈A,B〉).
5This is a solution to exercise 6 in Section 6.3 of [6].
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Now, consider the case where β = 1 (this also covers the case where β = −1 by the lemmas). Then, the
Fricke trace identity gives

tr([A,B]) = 1 + γ2 − γ
√

2 (1.110)

Setting this equal to 1 results in γ(γ −
√

2) = 0. The two solutions of this are γ =
√

2 and γ = 0.
The first case was covered above. In the second case, (α, β, γ) = (

√
2, 1, 0), which as above means that

π(〈A,B〉) ∼= S4.

1.1.4 Application: Computing the Maximal Subgroups

For further computations, it will be necessary to generate the list of maximal subgroups for PSL(2,p) for
large p. The algebra programming language GAP has a built-in algorithm for computing the set of
maximal subgroups. However, it is generic. By using Dickson’s Theorem, one can do much better (in
terms of efficiency and space). The idea is to take the subgroups spelled out in Dickson’s Theorem and
to inject them into PSL(2,p), which GAP can create efficiently. The GAP script is reproduced in Appendix
A.1.
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Chapter 2

Irredundant Generating Sequences
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2.1 Generating Sequences

The main purpose of this thesis is to study a specific subset of generating sequences of finite groups.
Before getting too far, it is necessary to pause to explain precisely what is meant by generating sequence.

Definition 1. Let G be a group. A sequence g1, ..., gn for gi ∈ G is called a Generating Sequence if
〈g1, ..., gn〉 = G.

For example, consider the group G = (Zq)k oZp where the subgroup K isomorphic to (Zq)k is minimal
normal in G. It is easy to see what the subgroup lattice of this group looks like. There are qk subgroups
Hi
∼= Zp, all of which are conjugate as Sylow-p subgroups. Furthermore since Hi has p elements, all qk

of these groups intersect trivially. One can depict this subgroup structure pictorially in the following
diagram:

K ∼= (Zq)k {identity}

H1
∼= Zp

H2
∼= Zp

H3
∼= Zp

...

Hqk
∼= Zp

With such a simple lattice structure, one can easily compute properties of generating sequences. For
example, consider the number of length two generating sequences. Every nontrivial pair of elements
(x, y) ∈ G × G will have order structure (Order(x),Order(y)) of the form (p, q), (q, p), (p, p) or (q, q).
Clearly, if one has two elements of order q, then they can generate at most K 6= G and so a length two
generating sequence must have one of the first three order structures listed in the previous sentence.
Furthermore, any sequence of the first two types, (p, q), (q, p), will be a generating sequence. This is
clear because an element of order p will generate one of the Hi, which is maximal in G and so adding
any element no in Hi, namely any element of order q, will generate all of G. The next computation is to
determine how many sequences are of this form. There are qk−1 non-identity elements in K, qk possible
Hi to chose from and p − 1 non-identity elements in each Hi. The two types (p, q) and (q, p) will give
the same number of sequences and so the number of sequences of both types will be

2(qk − 1)qk(p− 1)

Now, one needs to determine how many length two generating sequences exist with elements of orders
(p, p). All that is required is that the two elements come from different Hi. Then, the same logic as
before applies, namely, each Hi is maximal and so adding any other element of G not in Hi will generate
the entire group. There are qk Hi to choose from, each with p− 1 elements. Then, one has qk − 1 other
Hj to choose from such that i 6= j. There are p − 1 choices for an element in each Hj . Adding this to
the term from before, one has that the total number of length two generating sequences of G is given by
the following expression:

(qk − 1)qk(p2 − 1)

For a more concrete example, consider k = 1, q = 3, p = 2 so that G ∼= S3, the symmetric group on 3
letters and the smallest non-Abelian group. According to the formula, there should be 18 generating
sequences of length 2. If e, τ1 = (1, 2), τ2 = (2, 3), τ3 = (1, 3), σ = (1, 2, 3), σ2 = (1, 3, 2) are the elements
of S3 then the generating sequences are listed below (up to switching elements).

Sequence Orders
(τ1, σ) 2,3
(τ2, σ) 2,3
(τ3, σ) 2,3

Sequence Orders
(τ1, σ

2) 2,3
(τ2, σ

2) 2,3
(τ3, σ

2) 2,3

Sequence Orders
(τ1, τ2) 2,2
(τ1, τ3) 2,2
(τ2, τ3) 2,2

As another example, let G = V , a finite-dimensional vector space. Then, any basis will form a generating
sequence of G. In fact, any set of vectors which contains a basis as a subset will be a generating sequence.
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Any sequence which does not contain a basis as a subset will not generate G and thus will not be a
generating sequence. However, one can see that there are arbitrarily large (constrained only by the
size of the group) generating sets. Therefore, a restriction is made to the following class of generating
sequences:

Definition 2. A generating sequence g1, ..., gn is called irredundant if it is no longer a generating sequence
after removing any one element.

With this definition, for a vector space the set of irredundant generating sequences is precisely the set of
bases of V . Furthermore, if V is finite dimensional (say dimension n), then the size of any irredundant
generating sequence has length n. This is due to the elementary Linear Algebra result which says that
all bases have the same number of elements. The following is a study of the properties of the set of
irredundant generating sequences of the finite group PSL(2,p).

2.1.1 Categorizing Groups Based on Generating Sequences

There are two obvious invariants of a group that one can construct based on irredundant generating
sequences: the minimum and maximum length of possible sequences. After discussing the properties of
these and other functions of the set of irredundant generating sequences, the attention will be focused
on PSL(2,p).

Minimal Length

Definition 3. Denote by r(G) the minimum length of an (irredundant) generating sequence.

A trivial example is the cyclic groups, for which r(G) = 1. This is the defining property of a cyclic group.
For another example consider G = A4. The maximal subgroups are isomorphic to Z3 and Z2

2. Therefore,
taking a generator of the cyclic group of order 3 and adding any element of order 2 will irredundantly
generate the group. Since A4 is not cyclic, one needs at least two elements and so r(G) = 2. For any
non-abelian finite simple group r(G) has been completely determined by Robert Guralnick, a professor
at the University of Southern California [10]. The theorem, which invokes the classification of finite
simple groups is as follows:

Theorem 5 (3/2 Generation). Given any x ∈ G, there exists a y ∈ G so that G = 〈x, y〉. In particular,
r(G) = 2 for any G a non-abelian finite simple group.

Since for p > 3, G = PSL(2,p) is simple and this powerful theorem says that r(G) = 2. However, the
3/2 Generation theorem is much more general and powerful than is needed to determine r(PSL(2,p)).
It is actually a trivial consequence of elementary linear algebra that PSL(2,p) can be generated by two
elements. The argument simply involves a careful manipulation of elementary matrices.

Maximal Lengths

Definition 4. Denote by m(G) the maximum length of an irredundant generating sequence.

For example for PSL(2,p), it is easy to see that m(G) ≥ 3. From the earlier order computation
of PSL(2,p) it is clear that |PSL(2,p)| must be even because p+ 1 and p− 1 are both even. Therefore,
there exist nontrivial elements of order 2. Let H be the subgroup generated by all the elements of order
2. This subgroup must be normal and since it is nontrivial it must be all of G because PSL(2,p) is
simple. Furthermore, two elements of order 2 generate a dihedral group, which is a proper subgroup
(dihedral groups are not simple). Therefore, there must exist an irredundant generating sequence of
length at least 3 (with elements all of order 2).

The function m(G) is known for several types of groups. As a trivial example, for a vector space
V , r(V ) = m(V ) = dim(V ) since all bases have the same size. A less trivial example is the symmetric
groups Sn of order n!. These groups along with a few others are discussed in Julius Whiston’s The-
sis [15]. For the symmetric groups, the answer is (which uses the classification of finite simple groups)
as follows [14]:

Theorem 6. For G = Sn the symmetric group on n letters, m(G) = n− 1.
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In the course of the proof, a limit is placed on the value of m for subgroups of Sn and so the author
concludes that m(An) ≤ n − 2. Since (123), (124), ..., (12n) generate An, m(An) = n − 2 [4]. In
addition to these specific examples, m(G) has some nice general properties. For examples, m(G×H) =
m(G) + m(H) [3]. One can use this to compute m(G) for any finite abelian group G via the cyclic
decomposition in the structure theorem for finite abelian groups.

2.2 Irredundant Generating Sequences of PSL(2, p)

While the complete classification of generating sequences of PSL(2,p) is not known, there has been a lot
of progress in that direction. The strongest theorem to date is by Julius Whiston and Jan Saxl of the
University of Cambridge in 2002 [16]:

Theorem 7 (Whiston and Saxl). Let G = PSL(2,p), p prime. Then, m(G) = 3 or 4. If p 6= ±1
mod 10 or p 6= ±1 mod 8, then m(G) = 3.

The exceptional cases are the ones in which S4 or A5 are subgroups of PSL(2,p). If m(G) = 4, let
{x1, x2, x3, x4} be an irredundant generating set. Let H1 be a maximal subgroup containing 〈x2, x3, x4〉
and analogously define H2, H3, H4. In the course of their proof, Whiston and Saxl show that in the case
m(G) = 4, it must be that at least one of the Hi is isomorphic to either S4 or A5. In fact, one can learn
even more in general about the xi and the Hi. Another proposition in Whiston and Saxl’s paper says
the following:

Proposition 19. No more than three Hi can be of the form Dp±1 or Zp o Z(p−1)/2. If three of the Hi

are of this form, then m(G) = 3.

This means that when m(G) = 4 at least two of the Hi must be isomorphic to A5 or S4. To proceed, it
is important to understand the generating sequences of S4 and A5. First of all, from Whiston’s thesis,
m(Sn) = n− 1 which is 3 for S4 and since A5

∼= PSL(2, 5), m(A5) = 3. Next, note that

Lemma 9. Every irredundant sequence of length 3 in G ∼= S4 or G ∼= A5 must generate.

Proof. This follows from a careful consideration of the lattice of subgroups. The union of the sets of
possible subgroups for these two groups have isomorphism classes {A4,D10,D8,S3,Z5,Z2

2,Z4,Z2, {e}}.
All of these groups have m(H) ≤ 2. If one has an irredundant sequence of length 3, it generates a
subgroup of G. However, it cannot generate a proper subgroup because the maximal length of such a
sequence for all the proper subgroups is less than 3, i.e. m(H) ≤ 2 for all proper subgroups H < G.

This property of S4 and A4 is more general and is given the following name in [16]:

Definition 5. A finite group G is said to be flat if m(H) ≤ m(G) for H ≤ G and is called strongly flat
if m(H) < m(G) for any proper subgroup H < G.

So in this language, both S4 and A5 are strongly flat. In fact, all symmetric groups are strongly flat [16].

Since the orders of S4 and A5 are relatively small, one can easily compute the possible orders of el-
ements in irredundant generating sequences of length 3. To save space, below is the script for a ‘brute
force’ GAP computation:

findorders:=function()

local G,Ele,s,a,b,c,abc;

G:=SymmetricGroup(4); #or G:=AlternatingGroup(5);

Ele:=Elements(G);

s:=Size(Ele);

for a in [1..s] do;

for b in [a+1..s] do

for c in [b+1..s] do

abc:=Subgroup(G,[Ele[a],Ele[b],Ele[c]]);

#Check that the sequence {a,b,c} generates

if (not(Size(abc)=Size(G))) then

continue;

fi;
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#Now, check that it is irredundant

if (Size(Subgroup(G,[Ele[a],Ele[b]]))=Size(G)) then

continue;

fi;

if (Size(Subgroup(G,[Ele[a],Ele[c]]))=Size(G)) then

continue;

fi;

if (Size(Subgroup(G,[Ele[b],Ele[c]]))=Size(G)) then

continue;

fi;

Print(Order(Ele[a])," , ", Order(Ele[b]), " , ", Order(Ele[c]), "\n");

od;

od;

od;

end;

The program proves the following:

Lemma 10. Length three irredundant sequences (x, y, z) in S4 and A5 have order structure
(Order(x),Order(y),Order(z)) equal to one of the triples below. Furthermore, all of these appear except
(3, 3, 3), which appears for A5 but not S4. Since both of these groups are strongly flat and m(G) = 3, it
must be that all of these sequences are in fact generating sequences as well.

(2, 2, 2), (2, 2, 3), (2, 3, 2), (2, 3, 3), (3, 3, 3), (3, 2, 2), (3, 2, 3), (3, 3, 2)

By Proposition 19, at least two of the Hi are contained in an isomorphic copy of S4 or A5. Without loss
of generality, suppose that H1 and H2 are contained in isomorphic copies of S4 or A5. Then, x2, x3, x4 is
an irredundant sequence of length 3 sitting inside an isomorphic copy of S4 or A5. However, by Lemma
5, these length three irredundant sequences must generate the S4 or A5 they sit inside. Thus, x2, x3, x4

have orders 2 or 3 by Lemma 6. Repeating this same argument for x1, x3, x4 reveals that x1 also must
have order 2 or 3. Therefore,

Proposition 20. If m(G) = 4, the possible orders of elements in an irredundant generating sequence of
length 4 in PSL(2,p) are 2 and 3.

Now, one can make an efficient computation in GAP to determine if m(G) = 4. Every length 4 irredundant
generating sequence must originate from a length 3 irredundant generating sequence of H = S4 or
H = A5. Therefore, the computation begins by determining all such irredundant generating sequences
for an isolated copy of S4 or A5 in GAP. To limit the number of computations that need to be made, one can
consider all sequences up to the action of theH on the sequences by element-by-element conjugation. This
is because the goal is to prove the existence of a length four generating sequence. It is sufficient to look
at all sequences up to conjugacy in G, since conjugating a length four irredundant generating sequence
will produce another (possibly identical) length four irredundant generating sequence. Furthermore,
conjugation in H can be extended to conjugation in G by using the lift of the conjugating element in H
to G. To reduce the number of computations even further, one would like to simply look at the sequences
up to the action of the entire automorphism group, not simply the inner automorphisms. However, it is
a standard result that Aut(Sn) ∼= Sn for n 6= 6 and so for these groups one does not gain anything from
this [6]. In addition, even though A5 is not isomorphic to its automorphism group, Aut(A5) ∼= S5 is
not contained (p 6= 5) in the automorphism group of PSL(2,p), PGL(2,p) and so automorphisms on A5

cannot be extended in general to automorphisms on G [1]. Thus one cannot guarantee that all sequences
have been represented if only the automorphism classes of length 3 irredundant generating sequences in
H have been considered. Below is the computation to generate the sequences in H:

FindSeq:=function(G)

#G is eithe A5 or S4

local gens,g,A,H,C,c,test,D,rep,mylist;

gens:=[];

A:=Elements(G);

#Look at all the generating sets of G

C:=Combinations([1..Size(G)],3);
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mylist:=[];

for c in C do

test:=Set([A[c[1]],A[c[2]],A[c[3]]]);

#We do not need to consider two sequences if they are conjugate to each other.

D:=Set(Orbit(G,test,OnSets));

rep:=Elements(D);

rep:=rep[1];

mylist:=Union(mylist,[rep]);

od;

mylist:=Filtered(mylist,x->Size(Subgroup(G,Elements(x)))=Size(G));

for c in mylist do #Make sure this is an irredundant generating sequence

if (Size(Subgroup(G,[c[1],c[2]]))=Size(G)) then

continue;

fi;

if (Size(Subgroup(G,[c[1],c[3]]))=Size(G)) then

continue;

fi;

if (Size(Subgroup(G,[c[2],c[3]]))=Size(G)) then

continue;

fi;

Append(gens,[c]);

od;

return gens;

end;

The algorithm to determine if m(G) = 4 operates as follows. First, construct A5 and S4. Embed these
abstract groups into PSL(2,p) and get a list H1, H2, ...,Hn of conjugacy classes of subgroups isomorphic
to one of these maximal subgroups. Then, using the embedding maps, lift length three irredundant
generating sequences computed with the above program from S4 or A5 to the Hi. Finally, systematically
add all elements of order two and three to see if an irredundant length four sequence can be constructed.
If the end of the list of such elements is reached and no length 4 irredundant generating sequence has
been found, then such a sequence does not exist and so m(G) = 3. This computation has been carried
(See the appendix for the script) for all primes up to 300. The surprising result is that m(G) = 3 unless
p = 7, 11, 19 or 31. This leads to the following conjecture:

Conjecture 1. m(PSL(2,p)) = 3 unless p = 7, 11, 19 or 31. In these cases, m = 4.

There was not sufficient time before the deadline of this thesis to complete the proof (or provide a counter
example) of this conjecture. However, this work is ongoing and tools have been recently developed which
will hopefully allow for the proof or disproof of this statement.

Examples of length four irredundant generating sequences (lifted to SL(2,p) so one can see the ma-
trices) are below for (respectively) p = 7, 11, 19, 31:{(

4 6
3 3

)
,

(
5 4
4 2

)
,

(
0 4
5 0

)
,

(
0 6
1 0

)}
,

{(
0 5
2 1

)
,

(
8 1
1 3

)
,

(
1 8
8 10

)
,

(
4 8
2 7

)}
{(

4 7
3 15

)
,

(
1 18
2 18

)
,

(
18 14
8 1

)
,

(
2 8
16 17

)}
,

{(
3 30
10 28

)
,

(
25 27
17 6

)
,

(
17 1
20 14

)
,

(
1 8
23 30

)}
Note that all of these elements have zero trace and so each have order 2.

Using GAP, one can learn more about the length 4 irredundant generating sequences of PSL(2,p) for
p = 7, 11, 19, 31. Of primary interest are the total number of sequences and the number of orbits un-
der conjugation and by the action of the automorphism group, PGL(2,p). The computation, outlined
below, involves an extension of a program highlighted earlier. The FindSeq functions are used, with
the modification that all lifts of generating sequences that extend to length four irredundant generating
sequences are computed, not just (the first) one. The result is then conjugated by all the elements of
G = PSL(2,p). By construction, after removing duplicates, this list will comprise all such sequences.

30



#p is one of 7,11,19,31

A:=FindSeq2(p); #These functions are outlined elsewhere but have been modified

#to find all lifts of generating sequences that extend to length 4

#irredundant generating sequences, not just one.

A2:=FindSeq(p);

Append(A,A2);

G:=PSL(2,p);

B:=[];

for g in G do

for a in A do

Append(B,[[g*a[1]*g^-1,g*a[2]*g^-1,g*a[3]*g^-1,g*a[4]*g^-1]]);

od;

od;

Size(B);

C:=[];

for b in B do

Append(C,[Elements(b)]);

od;

C:=Set(C); #This removes duplicates

Size(C); #This is the total number of length 4 irredundant generating sequences.

D1:=OrbitsDomain(G,C,OnSets);

Size(D1); #This is the total number up to conjugation

D2:=OrbitsDomain(AutomorphismGroup(G),C,OnSets);

Size(D2); #This is the total number up to Automorphism

First, consider p = 7. Since p ≡ −1 mod 8, all irredundant generating sequences of length four must
contain two copies of S4 as maximal subgroups in the corresponding family of maximal subgroups in gen-
eral position. Under the algorithm for computing such sequences, the program produces eight sequences
of the maximal length. The elements are then conjugated by every element of G and duplicate sequences
are removed. This procedure should produce a list of all possible irredundant length four generating
sequences. There are 1344 sequences before removing duplicates, which results in the final result of 252
possible sequences. Every one of these sequences has all elements of order two. In fact, up to the action
of G on the sequences by element-wise conjugation, there are only two conjugacy classes of sequences.
Furthermore, this is the same number of orbits of these sequences under the action of the automorphism
group of G, PGL(2, 7).

Next, let p = 11. In this case, p ≡ +1 mod 10 and so all irredundant generating sequences of the
maximal length must contain two copies of A5 in the corresponding list of maximal subgroups in general
position. The raw number of sequences from the algorithm is 74. Before removing duplicates, there
are 48840 sequences. The net number of irredundant generating sequences of length four after removing
duplicates is 11935. Unlike for p = 7, not all the elements in these sequences have order two. However
in line with what was shown earlier, they do all have order two or three. Up to the action of G on
the sequences by conjugation, there are 22 conjugacy classes and under the action of the automorphism
group, there are 14 orbits.

The computation was also carried out for p = 19 and p = 31. All of these results are summarized
in the table below.

7 11 19 31
Length 4 irredundant generating sets: 252 11935 7695 14880

Conjugacy classes of sets 2 22 4 1
Automorphism classes of sets 2 14 3 1

The fact that for p = 31 there is only one automorphism class of length 4 irredundant generating
sequences was already known to Philippe Cara of The Vrije Universiteit Brussel [2].
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Chapter 3

The Replacement Property
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3.1 The Replacement Property

Before stating the definition of the replacement property, there will be some motivation with arguably
the nicest type of (abelian) group: a finite dimensional vector space. Let V be an n dimensional vector
space over the field F and let B = {v1, ..., vn} be a basis. Now, take any set A = {w1, ..., wm} of linearly
independent vectors in V . Then, a standard linear algebra result says that up to reordering of the vi,
{w1, ..., wm, v1, v2, ..., vn−m} is a basis of V . In Dummit and Foote, Theorem 3, Section 11.1 [7], this is
called A Replacement Theorem and is related to the classical The Steinitz Exchange Property. The idea
is to generalize this notion of replacing an element of a basis to arbitrary groups. Instead of looking at
bases, the generalization is generating sets. Also, instead of replacing many elements of the generating
set, the focus will be on replacing a single element. This leads to the following definition:

Definition 6 (Replacement Property). A group G satisfies the replacement property for the gener-
ating sequence s = (g1, ..., gk) if for any g in G, g not the identity, there exists an i so that s′ =
(g1, ..., gi−1, g, gi+1..., gk) generates G.

A group G is said to satisfy the replacement property for n if it satisfies the replacement property for
all sequences of length n = m(G). A variation on an argument of Tarski shows that if the replacement
property holds for the integer n, then we must have N = m(G) [3]. Why is the replacement property
useful? It turns out that the replacement property provides an excellent handle for studying generating
sequences of finite groups. For example, knowing if a group satisfies the replacement property can give
information about the generating sequence structure of the direct product of groups [3].

With the definition above, it is clear that vector spaces satisfy the replacement property because one can
take any basis and any nonzero vector to give a new basis with one of the basis elements replaced with
the chosen nonzero vector. As another example, consider S3. As was observed earlier, one can use one
transposition and one 3-cycle to generate the group. Given any other transposition, the initial one can
be replaced with the new one to produce a new generating sequence. Likewise, any 3-cycle can replace
the chosen one and still generate the group. A similar argument works for the sequences which have two
transpositions. In fact, we have the following theorem due to Dan Collins [3]:

Theorem 8. For all n, Sn satisfies the replacement property.

However, not all groups satisfy the replacement property. For example, consider G ∼= Q8, the Quaternion
Group. If we think of G as the elements {±1,±i,±j±k}, then it is clear that i, j is a generating sequence
of G. However, we cannot replace either of i or j in this sequence with −1 because i2 = j2 = −1 and
so {−1, i} is a proper subgroup of G. More generally if the Frattini subgroup of a group is nontrivial,
then the nontrivial non-generating elements will cause G to fail the replacement property. For Q8, {±1}
is the Frattini subgroup and so it fails the replacement property. One could modify the definition of
the replacement property to exclude such cases. Either way, there are examples of groups which are
Frattini free and still fail the replacement property. For p ≡ +1 mod 8, PSL(2,p) is such a group.
Before showing this, the definition of replacement property must be reworked slightly. This property has
been phrased in terms of generating sequences, but it can be restated in terms of certain sets of maximal
subgroups. To begin, the notion of a sequence of subgroups being in General Position is defined:

Definition 7 (General Position). Let I = {1, ..., n}. A sequence (H1, ...,Hn) of proper subgroups of a
finite group G are said to be in General Position if ∩i∈JHi ( ∩i∈KHi for all J,K ⊂ I and K ( J .

For example, if one has a sequence (H1, H2, H3) of proper subgroups, then they are in general position if

H1 ∩H2 ( H1, H2

H1 ∩H3 ( H1, H3

H2 ∩H3 ( H2, H3

H1 ∩H2 ∩H3 ( H1 ∩H2, H1 ∩H3, H2 ∩H3

It is not yet clear how this is related to the replacement property. Before making this connection, the
idea of subgroups in general position needs to be related to sequences. Let (M1, ...,Mn) be a sequence
of maximal subgroups of a finite group G and let (g1, .., gn) be a sequence of elements of G. These two
sequences are said to correspond to each other if gi 6∈ Mi for any i ∈ {1, ..., n} but gj ∈ Mi whenever
j 6= i. With this connection, there is a relationship between maximal subgroups in general position and
irredundant generating sequences [3]:
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Proposition 21. If (g1, ..., gn) is an irredundant generating sequence, then it corresponds to a sequence
of maximal subgroups (M1, ...,Mn) in general position.

Proof. Let Hi = 〈g1, ..., gi−1, gi+1, ..., gn〉. Since (g1, ..., gn) is an irredundant generating sequence, Hi

is a proper subgroup of G. Therefore, there exists a maximal subgroup Hi ≤ Mi. Note that gi 6∈ Mi,
since Mi is also a proper subgroup, but gj ∈ Mi for all j 6= i by construction. Therefore, (M1, ...,Mn)
corresponds to (g1, ..., gn). Now, one needs to show that the maximal subgroups are in general position.
By construction, for J ⊂ I = {1, .., n} then gj ∈ ∩i∈JMi if and only if j 6∈ J . Therefore, the subgroups
∩i∈JMi are all distinct as no two of them intersect {g1, ..., gn} in the same way.

Now that a relationship exists between irredundant generating sequences and maximal subgroups in
general position, one can construct a criteria on maximal subgroups for establishing the replacement
property. Using the same ideas as in the previous proposition, one can prove the following [3]

Proposition 22. Suppose s = (g1, ..., gn) is an irredundant generating sequence of a finite group G and
g ∈ G is an element for which s fails the replacement property. Then, there exists a sequence of maximal
subgroups of G corresponding to s such that g is in every Mi.

Proof. If s fails the replacement property for g, then for each i, the sequence (g1, ..., gi−1, g, gi+1, ..., gn)
generates a proper subgroup Hi of G. Pick a maximal subgroup Hi ≤ Mi. Then, (M1, ...,Mn) corre-
sponds to s by definition and furthermore, g ∈ ∩Mi by construction.

An equivalent (contraposition) statement that is more useful in practice is the following [3]:

Corollary 3. Suppose that s = (g1, ..., gn) is an irredundant generating sequence of the finite group G. If
every sequence of maximal subgroups (M1, ...,Mn) corresponding to g intersects trivially, then s satisfies
the replacement property.

Now, the necessary tools have been established to prove that for certain p, PSL(2,p) satisfies the replace-
ment property. This simple proof is due to Professor Keith Dennis. The statement looks very general,
but with the conjecture in the previous chapter, it seems like it only applies to four groups: PSL(2, 7),
PSL(2, 11), PSL(2, 19) and PSL(2, 31).

Proposition 23. Let G = PSL(2,p) and suppose that m(G) = 4. Then, G satisfies the replacement
property.

Proof. Let s = (g1, g2, g3, g4) be an irredundant generating sequence of length 4 and let (M1,M2,M3,M4)
be a corresponding sequence of maximal subgroups in general position. From Whiston and Saxl if m = 4,
then at least two of the Mi must be isomorphic to S4 or A5.

Let λ(H) be the number of primes in the prime decomposition of |H| (with multiplicities). For subgroups
Hi in general position, |Hi ∩ Hj | < |Hi| for i 6= j and so it must be that λ(Hi ∩ Hj) < λ(Hi). Since
|A5| = 60 = 22 × 3 × 5, λ(A5) = 4. Similarly, |S4| = 24 = 23 × 3 and so λ(S4) = 4 as well. If M4 is
isomorphic to S4 or A5, then λ(M1 ∩M4) ≤ 3, λ(M1 ∩M2 ∩M4) ≤ 2 and λ(M1 ∩M2 ∩M3 ∩M4) ≤ 1.
The aim is to show that this intersection is trivial, which is true if and only if λ(∩Mi) = 0. Therefore,
to find a contradiction, suppose that λ(∩Mi) = 1. Then, λ(M1 ∩M4) = 3 and λ(M1 ∩M2 ∩M4) = 2.

To begin, suppose that one of the Mi
∼= S4. Without loss of generality, suppose that M4

∼= S4. Then,
consider the sequence (M1 ∩M4,M2 ∩M4,M3 ∩M4) of subgroups in M4. The subgroups of S4 are
isomorphic to A4,D8,S3,Z2

2,Z4,Z3,Z2, {e}. The only ones with λ = 3 are A4 and D8. The intersec-
tion of any two of these will be a subgroup of A4 or D8 with λ = 2, of which there are only two: Z2

2 and Z4.

Before proceeding, a quick fact is needed about Z2
2 ≤ S4. Let V ≤ D8 ≤ S4 be isomorphic to a subgroup

Z2
2. It is a standard exercise to show that for G = S4, the derived subgroup [G,G] = A4 and the second

derived subgroup [[G,G], [G,G]] isomorphic to V . The derived series are all normal subgroups (in G)
and so V is normal in G. Since V sits inside a Sylow-2 subgroup (D8) and all the Sylow-2 subgroups
conjugate to each other, it must be that V sits inside each of the D8. The intersection of distinct D8

must therefore be V since 4 is the largest proper divisor of 8. Therefore, the intersection between any
two Mi ∩M4 must be this V . Intersecting the two will again result in V and so the groups are not in
general position. Therefore, all possible maximal subgroups intersect trivially and thus G satisfies the
replacement property.
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Next, suppose that one of the Mi
∼= A5. Without loss of generality, suppose that M4

∼= A5. Then,
consider the sequence (M1 ∩M4,M2 ∩M4,M3 ∩M4) of subgroups in M4. The subgroups of A5 are
isomorphic to A4,D10,Z5,S3,Z2

2,Z2, {e}. The only one with λ = 3 is A4. The intersection of any two of
these will be a subgroup of A4 with λ = 2, of which there is only one: Z2

2.

However, the claim is that two copies of A4 in A5 must intersect in a cyclic subgroup (including the
trivial group). Suppose instead that there are two subgroups H1, H2

∼= A4 that contain the same copy of
V . It was already discussed that V is normal in H1, H2 (and as the Sylow-2 subgroup, is unique). Note
that H1, H2 ≤ NA5

(V ). But, V cannot be normal in A5, because this is a simple group. On the other
hand, A4 is maximal. Therefore, H1 = H2 = NA5

(V ) ∼= A4. Thus, two distinct Hi cannot intersect in V
and so G satisfies the replacement property.

It turns out that PSL(2,p) does not satisfy the replacement property in general. The data in Appendix
B.1 leads to the following conjectured theorem:

Theorem 9. Let p be a prime with p ≡ +1 mod 8. Let G = PSL(2,p). If m(G) = 3, then G fails the
replacement property.

Proof. In order to show that G fails the replacement property, this proof produces an explicit example of
an element w ∈ G and a length three generating set {g1, g2, g3} such that replacing any gi by w will result
in a set which no longer generates G. The discussion will be grounded in the properties of elements in
the examples of Appendix B.1. The task is to extend these attributes to elements for any p ≡ 1 mod 8.
Since it is easier to work with matrices than with elements in PSL(2,p), often, elements in SL(2,p) will
be used instead of their projections into G. For the sake of clarity, capital letters will denote elements
in SL(2,p) and lower case letters will denote their projections in G = PSL(2,p).

Consider four elements in G, denoted a, b, c, w. If π : SL(2,p)→ G, is the canonical projection, then let
A,B,C,W be such that π(A) = a, π(B) = b, π(C) = c and π(W ) = w. Using the form of A,B,C,W as
in Appendix B.1 it will be shown that a, b, c, w have the required properties and that they exist for all
relevant primes. In particular, the claim is that {wa,wb, wc} is a length 3 irredundant generating set of
G, but the element w will be such that it cannot replace any of these elements to recover a generating
sequence. For r, s, t, u ∈ Fp let

A =

(
r s
s −r

)
B =

(
t u
u −t

)
W =

(
0 −1
1 0

)
(3.1)

Notice that W also came up in proving Dickson’s Theorem. Since A and B have determinant 1, r2 +s2 =
t2 + u2 = −1. Note that A,B and W are traceless. By Lemma 4, it must be that A,B and W have
order 4 and a, b and w have order 2. Furthermore, notice that

WA =

(
−s r
r s

)
WB =

(
−u t
t u

)
AW =

(
s −r
−r −s

)
BW =

(
u −t
−t −u

)
(3.2)

and so AW = −WA and similarly, BW = −WB. Since AW,AB are still traceless, aw and bw also have
order 2. Therefore, 〈a,w〉 = {a,w, aw, id} ∼= Z2 × Z2 and likewise, 〈b, w〉 ∼= Z2 × Z2. Now, generically
write

C =

(
α β
γ δ

)
(3.3)

where αδ − βγ = 1. The examples in the data show that c has order 2, so α + δ = 0. Furthermore,
Tr(WC) = +1 which by Lemma 4 means that the order of wc is 3. The product WC has the form

WC =

(
−γ −δ
α β

)
(3.4)

and so the condition that Tr(WC) = +1 becomes β−γ = +1. In the data, it appears that one can make
the choice β = 0 so that γ = −1. Furthermore since αδ − βγ = 1, β = 0 implies that α = δ−1 and since
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the trace of C is zero, α = −δ. Thus, α−1 = −α, or α has order 4 in Fp. Does such an element exist?
Since p ≡ 1 mod 8, 8|(p− 1), which is the order of the cyclic group F∗p. Therefore, F∗p has an element of
order 8 and so also has an element of order 4. Fix such an element and call it i. Then,

C =

(
−i 0
−1 i

)
(3.5)

Note that

w(cw)w−1 = wcww = wc (3.6)

However, since (cw)(wc) = 1,

w(cw)w−1 = (cw)−1 (3.7)

Therefore, 〈c, w〉 = 〈w,wc〉 = 〈x, y|x2 = y3 = 1, xyx−1 = y−1〉 ∼= S3. The last isomorphism in the
preceding sentence is due to a standard presentation of S3, for example given in Section 1.2 of [6]. The
next step is to show that 〈aw, cw〉 ∼= S4. The idea is to use the trace technology laid out in Theorem 4.
In order to apply the theorem, some nonzero traces are required. The trace of WA is 0 and the trace of
WC = +1. Therefore, the Theorem 4 only applies if WCWA has a particular trace. Multiplying these
elements gives rise to the following matrix:

WCWA =

(
−s− ir r − is
is −ir

)
(3.8)

so that tr(WCWA) = −s − 2ir. The required constraint from the Theorem is that (s + 2ir)2 = 2. If
this holds, then Theorem 4 says that 〈aw, cw〉 ∼= S4 if tr ([WA,WC]) = +1. Simple arithmetic using the
forms of A,C and W yields the following computation:

tr ([WA,WC]) = tr
[
(WA)(WC)(WA)−1(WC)−1

]
(3.9)

= tr [WAWCAWCW ]

= −tr
[
(AWC)2

]
= −2i2s2 + 4isr − r2 + 2i2r2

= 2s2 + 4isr − 3r2

Setting this expression equal to 1 and using the constraint that s2 + r2 = −1 (from the determinant),
one finds that

3s2 + 4isr − 2r2 = 0 (3.10)

which has solution

r =

(
i±
√

2

2

)
s (3.11)

and then inserting this back into s2 + r2 = −1, one arrives at

s2 = −2

9
± 4

9
i
√

2 =

[
1

3

(
2i±

√
2
)]2

(3.12)

and so the question has simply boiled down to the existence of an element ζ ∈ Fp such that ζ2 = 2 (and
p 6= 3, so 3−1 makes sense). It is a standard result in elementary number theory (c.f. [12]) that 2 has
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a square root if p ≡ ±1 mod 8 (fix one and call it
√

2). Therefore, all that is left to show in order to
apply Theorem 4 is for tr(WCWA) = −s − 2ir to have the correct form. Using the expressions for r
and s above, a quick computation shows that −s − 2ir =

√
2, as required by the theorem. Therefore,

〈wa,wc〉 ∼= S4. An analogous discussion shows that if one fixes s as one solution to Eq. 3.12, then picking
the other solution for u and constructing t as was done for r will give 〈wb,wc〉 ∼= S4 as well.

The strategy to demonstrate that w cannot replace wa,wb or wc will be to show that w is in the
subgroups generated by (maximal subgroups containing) 〈wa,wc〉, 〈wb,wc〉 and 〈wa,wb〉. The first step
in this process is to prove that 〈wa,wc〉 = 〈a, c, w〉. Note that

WAWC = −AWWC = AC (3.13)

and since (ac)(ca) = 1, ac, ca ∈ 〈wa,wc〉. Furthermore, since (wc)(cw) = (aw)(wa) = 1, cw,wc, aw,wa ∈
〈wa,wc〉. Now, take any element x ∈ 〈a, c, w〉. By construction, such an element can be written as a
string in the alphabet a, c, w, a−1 = a, c−1 = c, w−1 = w (no need to worry about uniqueness). Suppose
that x can be written with an even number of letters in the string. Then, this element is in 〈wa,wc〉
because every possible pairing of letters from the above alphabet is in 〈wa,wc〉. For example, consider
the word

x = awcwaccwawcw (3.14)

One can group these letters into pairs:

x = (aw)(cw)(ac)(cw)(aw)(cw) (3.15)

and then it is clear that every element in parenthesis is in 〈wa,wc〉. Instead of an even number of letters,
suppose that x can be written as a string with an odd number of letters from the alphabet. Then, one
can form x from a string in 〈wa,wc〉 by adding one of a, b, w. This is clear because if there are n letters
that make up x, then n− 1 will be an even number and so the substring of the first n− 1 letters will be
in 〈wa,wc〉 by the preceding argument. Thus, every element in 〈a, c, w〉 can be formed from an element
in 〈wa,wc〉 by adding one of a, c, w or id. This means that

|〈a, c, w〉| ≤ 4|〈wa,wc〉| (3.16)

However, from above, 〈wa,wc〉 ∼= S4 so |〈a, c, w〉| ≤ 96. Furthermore, by Dickson’s Theorem, S4 is
maximal in G and so no proper subgroup can contain 〈wa,wc〉. Therefore, either 〈a, c, w〉 = 〈wa,wc〉
or 〈a, c, w〉 = G. Since p ≡ 1 mod 8, p ≥ 17 so by Proposition 3, |G| ≥ 2448 > 96 and thus 〈a, c, w〉 =
〈wa,wc〉. By an analogous argument, 〈b, c, w〉 = 〈wb,wc〉. The last consideration is to study 〈wa,wb〉.
This group is generated by two elements of order 2 and so must be dihedral. To see how large it is, one
needs to know the order of wawb = awwb = ab. This amounts to computing the trace of AB, which is

tr(AB) = 2(rt+ su) = −8i/3 (3.17)

This is certainly not zero and a quick arithmetic computation shows that it is also not ±1 or ±
√

2.
Therefore, by Lemma 4 , the order of ab is more than 4 and so ab 6∈ S4. It is also clear that 〈wa,wb〉 6= G
because G is not dihedral. The final step before concluding is to show that 〈a, b, w〉 is a proper subgroup
of G. This procedure is similar to the one above by considering the index of 〈wa,wb〉 in 〈a, b, w〉. Since
wawb = ab ∈ 〈wa,wb〉, as before, every possible pair of letters in 〈a, b, w〉 is in 〈wa,wb〉 and therefore,
one arrives at the same bound as earlier:

|〈a, b, w〉| ≤ 4|〈wa,wb〉| (3.18)

Recall that 〈wa,wb〉 is dihedral. From Dickson’s Theorem, the largest dihedral subgroup of G has order
p+ 1. Therefore

37



|〈a, b, w〉| ≤ 4|〈wa,wb〉| ≤ 4(p+ 1) <
p(p+ 1)(p− 1)

2
(3.19)

Since for p ≥ 17, p(p− 1)/2 = 136. Let M be a maximal subgroup of G which contains 〈wa,wb〉. Since
〈a, b, w〉 is proper and contains 〈wa,wb〉, w ∈M .

Now, all the machinery is in place to conclude. The set {wa,wb, wc} will generate G because wb 6∈
〈wa,wc〉 and 〈wa,wc〉 is maximal, so the subgroup generated by all three elements, which contains a
maximal subgroup, must be all of G. Furthermore, it is clear that w cannot replace any of wa,wb, wc
because w is in the maximal subgroup containing each pair. Explicitly, the set {w,wb,wc} cannot
generate G because w ∈ 〈wb,wc〉 ∼= S4. The same holds for replacing wb. Finally, w cannot replace wc
because the maximal subgroup which contains 〈wa,wb〉 also contains w and so 〈w,wa,wb〉 ≤ M < G.
Therefore G fails the replacement property if m(G) = 3.
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Appendix A

GAP Scripts
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A.1 Applying Dickson’s Theorem

PSLMax:=function(p)

#This program returns all of the maximal subgroups of PSL(2,p) via Dickson’s Theorem.

local G,D,H,h,A,Q,out,q;

G:=PSL(2,p);

out:=[];

#Note that each element of out is of the form [Group,"StructureDescription"]

#First, get the max subgroups iso to D_{p-1}

if (p>12) then

D:=DihedralGroup(p-1);

H:=IsomorphicSubgroups(G,D);

for h in H do

A:=Image(h);

Q:=RightCosets(G,A); #This is a subroutine which generates \\

#the right cosets of A in G.

for q in Q do

Append(out,[[A^Representative(q),"D_{p-1}"]]);

od;

od;

fi;

#Second, get the max subgroups iso to D_{p+1}

if (not (p=7 or p=9)) then

D:=DihedralGroup(p+1);

H:=IsomorphicSubgroups(G,D);

for h in H do

A:=Image(h);

Q:=RightCosets(G,A);

for q in Q do

Append(out,[[A^Representative(q),"D_{p+1}"]]);

od;

od;

fi;

#Third, get the max subgroups iso to Z_p semi Z_{(p-1)/2}

D:=Representative(ConjugacyClassesMaximalSubgroups\\

(AutomorphismGroup(DihedralGroup(2*p)))[1]);

H:=IsomorphicSubgroups(G,D);

for h in H do

A:=Image(h);

Q:=RightCosets(G,A);

for q in Q do

Append(out,[[A^Representative(q),"Z_p semi Z_{(p-1)/2}"]]);

od;

od;

#Fourth, get the max subgroups iso to A5

if (p mod 10 = 1 or p mod 10 = 9) then

D:=AlternatingGroup(5);

H:=IsomorphicSubgroups(G,D);

for h in H do

A:=Image(h);

Q:=RightCosets(G,A);

for q in Q do

Append(out,[[A^Representative(q),"A5"]]);

od;
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od;

fi;

#Fifth, get the max subgroups iso to A4

if ((p mod 8 = 3 or p mod 8 = 5) and not(p mod 10 = 1 or p mod 10 = 9)) then

D:=AlternatingGroup(4);

H:=IsomorphicSubgroups(G,D);

for h in H do

A:=Image(h);

Q:=RightCosets(G,A);

for q in Q do

Append(out,[[A^Representative(q),"A4"]]);

od;

od;

fi;

#Finally, get the max subgroups iso to S4

if (p mod 8 = 1 or p mod 8 = 7) then

D:=SymmetricGroup(4);

H:=IsomorphicSubgroups(G,D);

for h in H do

A:=Image(h);

Q:=RightCosets(G,A);

for q in Q do

Append(out,[[A^Representative(q),"S4"]]);

od;

od;

fi;

return out;

end;

ConjugateSG:=function(H,g,G)

#Given a subgroup H of a group G and an element g\in G, this returns \\

#the conjugate subgroup of H in G by the conjugation of g.

local h,new;

new:=[];

for h in Elements(H) do

Append(new,[g^(-1)*h*g]);

od;

return Subgroup(G,new);

end;
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A.2 Computing m(PSL(2, p))

FindSeq:=function(p)

#This program finds all sequences of length 4 which contain an A5 as one\\

#of the associated maximal subgroups in General Position.

local G,gens,g,igens,ig,A5,H,elm,A,s,found,temp,c1,c2,n1,n2,temp2,h,a;

G:=PSL(2,p);

s:=Size(G);

A:=ConjugacyClasses(G);

A:=Elements(A);

A:=Filtered(A,x->((Order(Representative(x))=2) or (Order(Representative(x))=3)));

gens:=[];

igens:=[];

A5:=AlternatingGroup(5);

H:=IsomorphicSubgroups(G,A5);

#There are only 25 irredundant generating sets of A5 of length 3

#up to action of A5 by conjugation on itself. We then list them \\

#here and insert them one by one in PSL(2,p) and try to extend them. \\

gens:=Set([ [ (3,4,5), (2,3)(4,5), (1,2)(4,5) ], [ (3,4,5), (2,3)(4,5), (1,2)(3,4) ],

[ (3,4,5), (2,3)(4,5), (1,2)(3,5) ], [ (3,4,5), (2,3)(4,5), (1,3)(4,5) ],

[ (3,4,5), (2,3)(4,5), (1,4,5) ], [ (3,4,5), (2,3)(4,5), (1,4)(3,5) ],

[ (3,4,5), (2,3)(4,5), (1,5,4) ], [ (3,4,5), (2,3)(4,5), (1,5)(3,4) ],

[ (3,4,5), (2,3,4), (1,3,4) ], [ (3,4,5), (2,3,4), (1,4,3) ],

[ (3,4,5), (2,3,4), (1,5)(3,4) ], [ (3,4,5), (2,3,5), (1,2)(3,5) ],

[ (3,4,5), (1,2)(4,5), (1,3)(4,5) ], [ (3,4,5), (1,2)(4,5), (1,4)(3,5) ],

[ (3,4,5), (1,2)(4,5), (1,5)(3,4) ], [ (2,3)(4,5), (2,4)(3,5), (1,2)(4,5) ],

[ (2,3)(4,5), (2,4)(3,5), (1,2)(3,4) ], [ (2,3)(4,5), (2,4)(3,5), (1,2)(3,5) ],

[ (2,3)(4,5), (1,2)(4,5), (1,2)(3,4) ], [ (2,3)(4,5), (1,2)(4,5), (1,2)(3,5) ],

[ (2,3)(4,5), (1,2)(4,5), (1,3)(2,4) ], [ (2,3)(4,5), (1,2)(4,5), (1,4)(3,5) ],

[ (2,3)(4,5), (1,2)(4,5), (1,5)(3,4) ], [ (2,3)(4,5), (1,2)(3,4), (1,4)(2,5) ],

[ (2,3)(4,5), (1,2)(3,5), (1,5)(2,4) ] ]);

found:=[];

for a in A do

Print("Checking Order: ",Order(Representative(a)),"\n");

for h in H do

c1:=1;

c2:=1;

n1:=Size(gens);

n2:=Size(a);

#Find the image of the generating set

for g in gens do

Print(c1/n1,"\n");

c1:=c1+1;

igens:=[];

for elm in g do

ig:=ImagesRepresentative(h,elm);

Append(igens,[ig]);

od;

#Now, let’s systematically try adding in one of the elements of order 2

#for elm in a do #there will be more than one for order 3 considered
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#as well.

temp2:=ShallowCopy(igens);

Append(temp2,[elm]);

if (Size(Subgroup(G,temp2))=s) then

temp:=([temp2[1],temp2[2],temp2[3]]);;

if (Size(Subgroup(G,temp))=s) then

continue;

fi;

temp:=([temp2[1],temp2[2],temp2[4]]);;

if (Size(Subgroup(G,temp))=s) then

continue;

fi;

temp:=([temp2[1],temp2[3],temp2[4]]);;

if (Size(Subgroup(G,temp))=s) then

continue;

fi;

temp:=([temp2[2],temp2[3],temp2[4]]);;

if (Size(Subgroup(G,temp))=s) then

continue;

fi;

Append(found,temp2);

break;

fi;

od;

if (Size(found)>0) then

break;

fi;

od;

if (Size(found)>0) then

break;

fi;

od;

if (Size(found)>0) then

break;

fi;

od;

return found;

end;

The same script for S4 is very similar. The only replacement is for the generating sequences to lift.
These are replaced with the following:

#There are only 9 irredundant generating sets of S4 of length 3 up to \\

#action by Aut(S4)

gens:=Set([ [ (3,4), (2,3), (1,2) ], [ (3,4), (2,3), (1,2)(3,4) ],

[ (3,4), (2,3), (1,3) ], [ (3,4), (2,3), (1,3)(2,4) ],

[ (3,4), (2,3,4), (1,2)(3,4) ], [ (3,4),(2,3,4), (1,3,4) ],

[ (3,4), (2,3,4), (1,3)(2,4) ], [ (3,4), (2,3,4), (1,4,3) ],

[ (3,4), (2,3,4), (1,4)(2,3) ] ]);
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A.3 Converting Matrix Representations over Fp
decode:=function(n,p)

#Given GAPs representation of elements of F_p converts such a \\

#representation to one that is used to in Z_p

local i,m,gen;

gen:=PrimitiveRootMod(p);

if (n=0*Z(p)) then

return 0;

fi;

for i in [0..p] do

if ((Z(p)^i-n=0*Z(p))) then

m:=i;

#Print(i,"\n");

break;

fi;

od;

return gen^m mod p;

end;

decodeMat:=function(M,p)

#This function decodes a matrix

local Mout;

Mout:=[[0,0],[0,0]];

Mout[1][1]:=decode(M[1][1],p);

Mout[2][1]:=decode(M[2][1],p);

Mout[1][2]:=decode(M[1][2],p);

Mout[2][2]:=decode(M[2][2],p);

return Mout;

end;
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Appendix B

Data
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B.1 Replacement Property Computations

p=17

<a,b,c,w> PSL(2,17)

<a,b,w> D16

<a,c,w> S4

<b,c,w> S4

Intersection(<a,b,w>,<a,c,w>,<b,c,w>)=Z2

<a,w> C2 x C2

<b,w> C2 x C2

<c,w> S3

a [ [ 5, 12 ], [ 12, 12 ] ]

b [ [ 10, 1 ], [ 1, 7 ] ]

c [ [ 4, 0 ], [ 16, 13 ] ]

w [ [ 0, 16 ], [ 1, 0 ] ]

<a,b> D16

<a,c> D8

<b,c> D8

<wa,wb> D16

<wa,wc> S4

<wb,wc> S4

p=41

<a,b,c,w> PSL(2,41)

<a,b,w> D40

<a,c,w> S4

<b,c,w> S4

Intersection(<a,b,w>,<a,c,w>,<b,c,w>)=Z2

<a,w> C2 x C2

<b,w> C2 x C2

<c,w> S3

a [ [ 34, 14 ], [ 14, 7 ] ]

b [ [ 35, 39 ], [ 39, 6 ] ]

c [ [ 9, 0 ], [ 40, 32 ] ]

w [ [ 0, 40 ], [ 1, 0 ] ]

<a,b> D40

<a,c> D8

<b,c> D8

<wa,wb> D40

<wa,wc> S4

<wb,wc> S4

p=89

<a,b,c,w> PSL(2,89)

<a,b,w> D88

<a,c,w> S4

<b,c,w> S4

Intersection(<a,b,w>,<a,c,w>,<b,c,w>)=Z2

<a,w> C2 x C2

<b,w> C2 x C2

<c,w> S3

a [ [ 27, 31 ], [ 31, 62 ] ]

b [ [ 56, 45 ], [ 45, 33 ] ]

c [ [ 34, 0 ], [ 88, 55 ] ]

w [ [ 0, 88 ], [ 1, 0 ] ]

<a,b> D88

<a,c> D8

<b,c> D8

<wa,wb> D88

<wa,wc> S4

<wb,wc> S4

p=97

<a,b,c,w> PSL(2,97)

<a,b,w> D96

<a,c,w> S4

<b,c,w> S4

Intersection(<a,b,w>,<a,c,w>,<b,c,w>)=Z2

<a,w> C2 x C2

<b,w> C2 x C2

<c,w> S3

a [ [ 11, 84 ], [ 84, 86 ] ]

b [ [ 44, 87 ], [ 87, 53 ] ]

c [ [ 75, 0 ], [ 96, 22 ] ]

w [ [ 0, 96 ], [ 1, 0 ] ]

<a,b> D48

<a,c> D8

<b,c> D8

<wa,wb> D48

<wa,wc> S4

<wb,wc> S4
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