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Abstract

We study the smash sum under the divisible sandpile model in Rd, in which each

point distributes mass equally to its neighbors. The smash sum as defined by an obsta-

cle problem is conjectured to be uniquely characterized by a set of eight axioms. We

prove several results that follow from the axioms and present two outlines sketching

approaches that we believe will show that the axioms uniquely characterize the smash

sum. We prove that a quadrature identity for superharmonic functions uniquely char-

acterizes the smash sum and conjecture that the identity can be proven by our axioms.

Using the known relationship between smash sums and Hele-Shaw flow, we outline

a method of proving that the axioms are a unique weak solution to the Hele-Shaw

problem.
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Figure 1.1: The smash sum of two squares with the overlap being a smaller square and the
smash sum of two overlapping circles. The red is where the toppled mass ends up in the
limit. Figures used with permission of Lionel Levine.

1 Introduction

The smash sum, A ⊕s B, has several definitions, and in this paper we will be focusing

on the divisible sandpile model. Intuitively, the divisible sandpile model begins with a

sandpile with finite mass with height greater than one on some area of the sandpile. We

want to topple the sandpile so that the height at each point is less than or equal to one.

It is natural to expect that the total mass is preserved, the initial sandpile is contained in

the toppled sandpile, and that the excess mass for where the height is greater than one to

be mostly near the boundary of the sandpile to which it is closest. Determining the final

sandpile is complicated, being defined as a solution to an obstacle problem. In this paper,

we conjecture that the set resulting from the toppling can be defined with a set of simple

axioms. We will begin by defining the smash sum under the divisible sandpile model as is

done in [4].

We will first define the smash sum on Zd and then extend the definition to Rd. The

divisible sandpile model uses continuous amounts of mass at each lattice point and the

total mass is finite. A point is full if it has mass at least one and a full point can topple by

keeping mass 1 for itself and distributing the excess equally to each of its 2d neighbors. If

we topple full points at each time step, then as time goes to infinity, each point has mass

≤ 1. This is proven in [4].

Given finite sets A,B ∈ Zd, with the mass at point x equal to 1A(x) + 1B(x), we would

1



like to get the limiting set that results from the toppling, the smash sum. We begin by

defining an odometer function

u(x) = total mass toppled from x

Since each neighboring point y ∼ x emits an equal amount of mass to each of its 2d

neighbors, the total mass x gains from its neighbors is 1
2d

∑
y∼x u(y). So we get that

∆u(x) = ν(x)− σ(x) (1.1)

where ∆ is the discrete Laplacian defined by ∆u(x) = 1
2d

∑
y∼x[u(y) − u(x)], σ(x) is the

initial amount of mass at x, and ν(x) is the final amount of mass at x.

To get the limiting shape we need to construct a function on Zd that has Laplacian

equal to σ − 1. Denote this function γ. An example of such a function γ, as seen in [4], is

γ(x) = −|x|2 −
∑
y∈Zd

g1(x, y)σ(y) (1.2)

where, in dimension d ≥ 3, the Green’s function g1(x, y) is the expected number of times a

simple random walk started at x visits y. In dimension d = 2, we replace Green’s function

with the recurrent potential kernel. |x| is the Euclidean norm. Then ∆(u+ γ) ≤ 0 on Zd

(i.e. u + γ is superharmonic). In fact, if we have a superharmonic function f ≥ γ then

f −γ−u is superharmonic on the finite domain D = {x ∈ Zd : ν(x) = 1} of full points and

non-negative on Dc. Thus, f−γ−u is non-negative everywhere by the minimum principle.

This proves the following lemma from [4].

Lemma 1.1. Let σ be a non-negative function on Zd with finite support. Then the odometer

function for the divisible sandpile started with mass σ(x) at each site x is given by

u = s− γ

where γ(x) = −|x|2 −
∑

y∈Zd g1(x, y)σ(y) and

s(x) = inf{f(x) : ∆f ≤ 0 on Zd, f ≥ γ}

is the least superharmonic majorant of γ.

This lemma can be reformulated as a least action principle. The following reformulation

is stated and proved in [4].
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Lemma 1.2 (Least Action Principle). Let σ be a nonnegative function on Zd with finite

support, and let u be its divisible sandpile odometer function. If u1 : Zd → R≥0 satisfies

σ + ∆u1 ≤ 1

then u1 ≥ u.

This lemma gives a method for extending the problem to Rd. Suppose σ is a function

of Rd which gives the initial mass at each point. By analogy to (1.2), the obstacle is defined

to be

γ(x) = −|x|2 −
∫
Rd
g(x, y)σ(y)dy (1.3)

where g(x, y) is Green’s function on Rd proportional to − log |x − y| in dimension d = 2

and to |x− y|2−d in dimension d ≥ 3. We set

s(x) = inf{f(x) : f continuous, superharmonic and f ≥ γ}.

A function f is superharmonic in Rd if it satisfies the mean value property that f(x) ≥
(1/v)

∫
B(x,v) fdy where B(x, v) is an open ball of volume v centered at x. It is a well known

result that if f ∈ C2 then the mean value property implies ∆f ≤ 0. The odometer function

for σ is u = s− γ and the final domain is

D = {x ∈ Rd : s(x) > γ(x)} (1.4)

This set D is the noncoincidence set for the obstacle problem with obstacle γ.

Definition 1.3. If A,B are bounded open sets in Rd with boundaries of volume 0, then

we define the smash sum of A and B as

A⊕s B = A ∪B ∪D (1.5)

where D is given by (1.4) and σ = 1A + 1B.

Throughout the paper we will be referring to the smash sum defined in Definition 1.3

as the actual smash sum or the smash sum defined by the obstacle problem.

If h is a superharmonic function on Zd, and σ represents the mass configuration for the

divisible sandpile then
∑

x∈Zd h(x)σ(x) only decreases when there is a toppling. Therefore,∑
x∈Zd

h(x)ν(x) ≤
∑
x∈Zd

h(x)σ(x)
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where ν is the final mass configuration.

We would like an analogous inequality for the domain D. To do so we require the

following proposition from [4].

Proposition 1.4. Let σ be a C1 function on Rd with compact support, such that L(σ−1(1)) =

0. Let D be given by (1.4). Then for any function h ∈ C1(D̄) which is superharmonic on

D, ∫
D
h(x)dx ≤

∫
D
h(x)σ(x)dx

Proposition 1.5. If σ has compact support, σ ≥ 1 on supp(u), and continuous almost

everywhere then ∫
D
h(x)dx ≤

∫
D
h(x)σ(x)dx

for all integrable superharmonic functions h on D, which is given by (1.4).

Proof. Fix ε > 0. σ is continuous almost everywhere so there exist C1 functions σ0, σ1 such

that σ0 ≤ σ ≤ σ1 with
∫
Rd(σ1 − σ0)dx < ε. We can approximate σ by σ̂ = (1/2)(σ0 + σ1)

Scaling by a factor of 1 + δ for δ < ε, we can make L(σ̂−1(1)) = 0, so σ̂ satisfies the

hypotheses of Proposition 1.4. Now applying Proposition 1.4, we get∫
D
h(x)dx ≤

∫
D
h(x)(1 + δ)σ̂(x)dx,

for all integrable superharmonic functions h on D. As ε→ 0, σ̂ → σ and δ → 0 giving us∫
D
h(x)dx ≤

∫
D
h(x)σ(x)dx (1.6)

Equation (1.6) is a quadrature inequality for D ∈ Rd. The smash sum given by Defini-

tion 1.3 satisfies this inequality because σ = 1A + 1B.

2 Definitions and Axioms

2.1 Definitions

Definition 2.1. The volume of a set A, denoted vol(A), is

vol(A) = L(A),
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where L is the d-dimensional Lebesgue measure.

Definition 2.2. A and B are equivalent, denoted ∼=, if

vol(A∆B) = vol((A ∪B)− (A ∩B)) = 0.

That is, their symmetric difference has volume zero.

Definition 2.3. The saturation of an open set A with respect to the volume measure is

defined to be

sat(A) =
⋃

B(x,v)∈G

B(x, v)

where G = {B(x, v) : vol(B(x, v)−A) = 0} with B(x, v) being open balls with center x ∈ Rd

and volume v ∈ R.

This means that to saturate A, we add all open balls B(x, v) such that vol(B(x, v)−A) =

0. The saturation of A contains A because A is open, so for all x ∈ A there exists

B(x, v) ( A. This results in a set that contains A, has the same volume as A, and cannot

be enlarged holding these two properties. We can choose a representative of the equivalence

classes to be the saturation with respect to the volume measure.

The definition of saturation immediately gives us the following proposition.

Proposition 2.4. A is saturated if and only if there exists B such that A = sat(B) or

sat(A) = A.

Proposition 2.5. A◦ ⊂ sat(A) ⊂ Ā

Proof. Let x ∈ A◦. A is open, so there exists an open ball B(x, v) ⊂ A. Clearly vol(B(x, v)−
A) = 0, so the x ∈ sat(A). To show the other inclusion suppose z ∈ B(y, v) such that z ∈
Āc. Because B(y, v) is an open set, there exists B(z, v′) ∈ B(y, v) such that B(z, v′) ∈ Āc.
This implies that vol(B(y, v) − A) > 0. Therefore, any open ball that we add to A to

saturate it must be contained in the closure, Ā. Thus, A◦ ⊂ sat(A) ⊂ Ā.

Corollary 2.6. If vol(∂A) = 0 then vol(A) = vol(sat(A)).

An alternative way of thinking about the saturation of an open set A is the largest set

open set that contains A and has the same volume.
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Proposition 2.7. If vol(∂A) = 0 then sat(A) = U where

U =
⋃

U⊃A,Uopen,vol(U)=vol(A)

U.

Proof. The union given above is clearly open. Let x ∈ U for some U ∈ U then there exists

B(x, v) ⊂ U . Since A ⊂ U and has the same volume, vol(B(x, v)−U) = vol(B(x, v)−A) = 0.

Therefore, x is in a ball used to saturate A.

Proposition 2.8. Suppose vol(∂A), vol(∂B) = 0. A ∼= B if and only if sat(A) = sat(B).

Proof. (⇒) A ∼= B gives us that vol(A) = vol(A ∪ B). So we have that A ⊂ sat(A) ⊂
sat(A∪B). By Proposition 2.7, we have that the saturation of a set is the largest open set

that contains A and has the same volume, so sat(A) = sat(A∪B). Similarly, we can show

that sat(B) = sat(A ∪B). Therefore, sat(A) = sat(B).

(⇐) sat(A)∆A ⊂ ∂A. Since vol(∂A) = 0, it follows that A ∼= sat(A). Similarly, we can

show that B ∼= sat(B). Since ∼= is an equivalence relation, A ∼= B.

2.2 Axioms

Let A = {sat(B) : vol(B) <∞, vol(∂B) = 0, B open} be the family of saturated bounded,

open sets in Rd with boundaries of volume zero. Let ⊕ be a function such that

⊕ : A×A → A .

We want to characterize the actual smash⊕s : A×A → A as defined in the introduction

with a set of axioms, which is the main conjecture of the paper.

Conjecture 2.9. If ⊕ : A×A → A satisfies the following axioms for A,B,C ∈ A

(1) A ∪B ⊆ A⊕B

(2) A⊕B = B ⊕A

(3) (A⊕B)⊕ C = A⊕ (B ⊕ C)

(4) vol(A⊕B) = vol(A) + vol(B)

(5) If p ∈ Rd then (A+ p)⊕ (B + p) = (A⊕B) + p

(6) If M is a d× d orthogonal matrix, then MA⊕MB = M(A⊕B)
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(7) If A is connected and B ⊂ A then A⊕B is connected.

(8) If An ↑ A, that is An ⊆ An+1 and ∪n≥1An = A, then An ⊕B ↑ A⊕B

then A⊕B = sat(A⊕s B), where ⊕s is the smash sum defined by Definition 1.3.

Throughout the paper we will refer to the axioms that ⊕ satisfies as Axioms (1) - (8).

Remark 2.10. We believe that Axiom (7) follows from the others and could be omitted.

We were not able to prove this, so it was left as an axiom.

3 Direct Consequences of the Axioms

Proposition 3.1. If A and B are disjoint sets (i.e. A ∩B = ∅) then A⊕B = A ∪B.

Proof. vol(A ∪ B) = vol(A) + vol(B) since A and B are disjoint. Since A ∪ B ⊆ A ⊕ B
are open sets with the same volume by axioms (1) and (4), it follows by properties of open

sets that A ∪B agrees with A⊕B up to measure 0.

Proposition 3.2. If B ⊆ C then A⊕B ⊆ A⊕ C

Proof. Let C1 = C− B̄, then A⊕ (B∪C1) ∼= A⊕C. By construction B and C1 are disjoint

so (A⊕B)⊕ C1
∼= A⊕ C. Then by Axiom (1), we have that A⊕B ⊂ A⊕ C.

Proposition 3.3. Suppose ⊕ satisfies axioms (1)-(8). If B(0, v) is an open ball centered

at 0 with volume v, then

B(0, v)⊕ B(0, v′) = B(0, v + v′).

Proof. If M is a d×d orthogonal matrix then by axiom (6) and the fact that a ball centered

at the origin is rotational invariant,

B(0, v)⊕ B(0, v′) = MB(0, v)⊕MB(0, v′) = M(B(0, v)⊕ B(0, v′)).

So we have that B(0, v)⊕B(0, v′) is rotationally invariant. The only sets that are rotation-

ally invariant about the origin and are connected (to satisfy Axiom (7)) are balls, implying

that

B(0, v)⊕ B(0, v′) = B(0, v + v′)

in order to satisfy Axiom (4).
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Figure 3.1: We are smashing a ball and annulus as in Proposition 3.5. The figure on the
left has mass 1 in the blue area and mass 2 in the green area. After the toppling occurs,
we get the ball on the right, where the red indicates how much the ball expanded.

Using Axiom (5) we get the following corollary.

Corollary 3.4. B(x, v)⊕ B(x, v′) = B(x, v + v′)

Proposition 3.5. If v1 ≥ v2 ≥ v3 then B(0, v1)⊕ [B(0, v2)−B(0, v3)] = B(0, v1 + v2− v3).

Proof. If M is a d × d orthogonal matrix then by axiom (6) and the fact that a ball and

an annulus centered at the origin are rotationally invariant,

B(0, v)⊕ [B(0, v2)− B(0, v3)] = MB(0, v)⊕M [B(0, v2)− B(0, v3)]

= M(B(0, v)⊕ [B(0, v2)− B(0, v3)])

So B(0, v)⊕ [B(0, v2)−B(0, v3)] is rotationally invariant. The only sets that are rotationally

invariant about the origin and are connected are balls, implying that

B(0, v1)⊕ [B(0, v2)− B(0, v3)] = B(0, v1 + v2 − v3)

Corollary 3.6. If v1 ≥ v2 ≥ v3 then B(x, v1)⊕ [B(x, v2)− B(x, v3)] = B(x, v1 + v2 − v3).

Proposition 3.7. If An ⊂ A and vol(An)→ vol(A), then ∪n(An ⊕B) ∼= A⊕B

Proof. By Proposition 3.2, An⊕B ⊂ A⊕B. By Axiom (4), volume is preserved so we also

have that vol(∪n(An ⊕B)) = vol(A⊕B). This implies that ∪n(An ⊕B) ∼= A⊕B.

Remark 3.8. Proposition 3.7 is a continuity result that is similar to Axiom (8). For all the

results in this section, we do not need to use Axiom (8). It might be possible to drop the

axiom, but we believe that it will be necessary in the Hele-Shaw flow approach to proving

Conjecture 2.9, so we leave it as an axiom.
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C

Figure 3.2: To prove Theorem 3.10 we tile C, which is in green, with cubes. We then
approximate the cubes in C with disjoint balls and use associativity. As the volume of
the cubes gets smaller and the number of balls approximating the cubes increases, this
approximation approaches C.

Using Proposition 3.7, we get the following corollary.

Corollary 3.9. If An ⊂ A and vol(An)→ vol(A), then sat (∪n(An ⊕B)) = sat(A⊕B)

We now prove that the operation defined by the axioms is unique.

Theorem 3.10. Fix ε > 0. If ⊕ and � both satisfy axioms (1)-(8) and A ⊕ B = A � B

when A ∈ A and B is an open ball with vol(B) < ε, then A⊕C = A�C for all A,C ∈ A.

Proof. Let Iδ = [0, δ] and let

Q = {Q : Q = (a1 + Iδ)× · · · × (ad + Iδ) s.t. ai ∈ Z}

be a family of cubes in Rd of volume δd that partition Rd. For any δ, there exists n(δ) <∞
of cubes are entirely contained in C. Let

P1(δ), . . . , Pn(δ)(δ) ( C

be the union of the cubes with volume δd, in Q, and entirely contained in C. As δ → 0,

vol
(
∪n(δ)
i=1 Pi(δ)

)
→ vol(C).

Let m be a decreasing function such that m(δ) → ∞ as δ → 0. For any δ, let U δi =

∪m(δ)
j=1 B

j
i ( Pi(δ) be the union of m(δ) disjoint open balls such that vol

(
U δi
)

= vol(Pi(δ))

as δ → 0. If δ < ε1/d, then Bj
i has volume less than ε.
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So we have
n(δ)⋃
i=1

(
U δi

)
⊂

n(δ)⋃
i=1

Pi(δ) ⊂ C

Let Cδ =
⋃n(δ)
i=1

(
U δi
)

so by Proposition 3.1 and associativity (Axiom (3)),

A⊕ Cδ = A⊕
(
U δ1 ⊕ · · · ⊕ U δn(δ)

)
= A⊕

(
B1

1 ⊕ · · ·B
m(δ)
1 ⊕ · · · ⊕B1

n(δ) ⊕ · · · ⊕B
m(δ)
n(δ)

)
=
(
A⊕B1

1

)
⊕
(
B2

1 ⊕ · · ·B
m(δ)
1 ⊕ · · · ⊕B1

n(δ) ⊕ · · · ⊕B
m(δ)
n(δ)

)
=
(
A�B1

1

)
⊕
(
B2

1 ⊕ · · ·B
m(δ)
1 ⊕ · · · ⊕B1

n(δ) ⊕ · · · ⊕B
m(δ)
n(δ)

)
...

= A�B1
1(δ) � · · ·Bm(δ)

1 (δ) � · · ·�B1
n(δ) � · · ·�B

m(δ)
n(δ)

= A�
(
U δ1 � · · ·� U δn(δ)

)
= A� Cδ

So when δ < ε1/d, A ⊕ Cδ = A � Cδ. Since δ → 0 implies n(δ) → ∞ and m(δ) → ∞,

vol(U δi ) → vol(Pi(δ)) and vol(
⋃n(δ)
i=1 Pi(δ)) → C. Therefore, vol(Cδ) → vol(C). Applying

Proposition 3.7 we get A�Cδ → A�C and A⊕Cδ → A⊕C, implying that A⊕C = A�C

for all A,C.

This theorem gives us that it is sufficient to prove that the axioms characterize the

smash sum for A,B ∈ A for vol(B) < ε, greatly simplifying the amount of work that needs

to be done.

4 Quadrature Approach

4.1 Quadrature Inequality Characterizes the Smash Sum

Theorem 4.1. Let A,B,D ∈ A such that A,B ⊆ D and∫
D
h(y)dy ≤

∫
A
h(y)dy +

∫
B
h(y)dy (4.1)

for all superharmonic, integrable on D functions where dy is the differential with respect

to the d-dimensional Lebesgue measure. Then we have that D ∼= A⊕s B.
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Proof. Taking h = 1, we get that the vol(D) ≤ vol(A) + vol(B) and when h = −1 that

vol(D) ≥ vol(A) + vol(B), so

vol(D) = vol(A) + vol(B)

We want any two domains D that satisfy (4.1) to be equivalent up to measure zero. To

do this we define the function

u(x) =

∫
A
g(x− y)dy +

∫
B
g(x− y)dy −

∫
D
g(x− y)dy

where g is Green’s function in Rd proportional to log |x − y| in dimension d = 2 and to

|x − y|2−d in dimension d ≥ 3. u(x) is well defined because A,B,D are bounded. Using

the fact that Green’s function satisfies ∆
∫
g(x− y)f(y)dy = −f(x), we get

∆u = −1A − 1B + 1D.

If we take h(x′) = g(x− x′) for a fixed x, we get that

∆h(x′) = ∆g(x− x′) = −δ0(x− x′) ≤ 0

So by the quadrature inequality (4.1), we have the u(x) ≥ 0.

The least action principle, Lemma 1.2, gives us that the odometer function w

w(x) = inf{v(x) : ∆v ≤ −1A(x)− 1B(x) + 1, v ≥ 0}

is a solution to the obstacle problem with obstacle γ such that ∆γ = 1A + 1B − 1. Clearly,

u(x) ∈ {v(x) : ∆v ≤ −1A(x)− 1B(x) + 1, v ≥ 0} we have w(x) ≤ u(x).

When x /∈ D then we have that h(y) = g(x− y) is harmonic on D. By the quadrature

property,
∫
D h(y)dy =

∫
A h(y)dy +

∫
B h(y)dy, implying that u(x) = 0 when x /∈ D. So we

have supp(u) ⊆ D̄.

Let C = {x ∈ Rd : w(x) > 0} ⊆ {x ∈ Rd : u(x) > 0} so C ⊆ supp(u). C is the

noncoincidence set for the obstacle problem with obstacle γ. Since A,B,C,D are open,

A,B,C ⊆ D and vol(D) = vol(A) + vol(B) = vol(A⊕s B), it follows that

A ∪B ∪ C = A⊕s B ∼= D.
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Theorem 4.1 gives us that the quadrature identity characterizes the smash sum. So a

path to proving that the axioms uniquely characterize the smash sum could be showing

that the axioms give the quadrature identity.

4.2 Outline to proving the Quadrature Identity from the Axioms

One path to showing that the axioms characterize the smash sum is to prove that the

axioms give us the quadrature inequality (4.1) for A arbitrary and B small. Then we can

appeal to Theorem 4.1 and Theorem 3.10 (which shows that the axioms define the smash

sum for A,C arbitrary if it exists for A arbitrary and B small) and prove Conjecture 2.9.

Lemma 4.2. Suppose B,C ⊂ A, u ≥ 0 and supp(u) ⊂ A. If 1C = 1B + ∆u then∫
C
h dx ≤

∫
B
h dx

for h ∈ C2(A), integrable on A, and ∆h ≤ 0.

Proof. ∫
C
h(x) dx =

∫
A
h(x)1C(x) dx

=

∫
A
h(x)(1B(x) + ∆u) dx

=

∫
B
h(x) dx+

∫
A

[∆h(x)]u(x) dx

The last equality comes from Green’s formula,
∫
A h∆u dx −

∫
A ∆hu dx =

∫
∂A h

∂u
∂n dS −∫

∂A
∂h
∂nu dS, because the boundary terms vanish. We have u ≥ 0 and ∆h ≤ 0, so∫

A[∆h(x)]u(x) dx ≤ 0, giving us
∫
C h dx ≤

∫
B h dx.

Conjecture 4.3. If C = (A⊕B)−A then there exists u ≥ 0 such that

1C = 1B + ∆u.

Conjecture 4.4. Suppose B,C ⊂ A, u ≥ 0 and supp(u) ⊂ A. If 1C = 1B + ∆u then

A⊕B = A⊕ C.

If we have can prove Conjectures 4.3 and 4.4 then Theorem 4.1 would follow. Suppose

12



that C = (A⊕B)−A. Then we have that A ∪ C = A⊕B so∫
A⊕B

h(x)dx =

∫
A
h(x)dx+

∫
C
h(x)dx.

By Conjecture 4.3 there exists u ≥ 0 such that supp(u) ⊂ A⊕B such that 1C = 1B + ∆u.

This allows us to use Lemma 4.2, which gives us that∫
A⊕B

h(x)dx =

∫
A
h(x)dx+

∫
C
h(x)dx ≤

∫
A
h(x)dx+

∫
B
h(x)dx.

5 Hele-Shaw Flow Approach

5.1 Hele-Shaw Flow

Hele-Shaw flow can be defined in Rd but we will describe it in R3 to give intuition for the

case that has physical meaning. Suppose we have two parallel flat planes parallel to the

plane x3 = 0 in R3 separated by distance h on the x3 axis. Hele-Shaw flow is the flow of

the fluid we inject into the gap at point z over time t. The case that is most relevant to

this problem is when there is an open set Ω0 of fluid between the planes, representing a

cylinder Ω0× [0, h]. If we inject fluid of volume ε into the gap at point z ∈ Ω0 then we have

that the Hele-Shaw flow results in Ω0 ⊕s B(z, ε). In fact, the actual smash sum is known

to behave exactly like Hele-Shaw flow for any open sets Ω0 and z. [4]

One approach to proving Conjecture 2.9 is to show that the axioms imply that the

sets behave as Hele-Shaw flow and then appeal to Theorem 3.10 to get that the axioms

uniquely characterize the actual smash sum. After stating the problem more precisely, we

will present a rough outline that we believe would show this is the case.

We now state the Hele-Shaw flow problem more formally. We begin by stating the

following Hele-Shaw equation

Ṽ = − h2

12µ
5 p. (5.1)

where Ṽ =
(

1
h

∫ h
0 V1dx3,

1
h

∫ h
0 V2dx3

)
, the integral mean of the reference velocity V =

(V1, V2), h is the distance between the two planes, µ is the fluid viscosity, and p is pressure.

Here Ṽ and p depend only on x1 and x2. The derivation of this equation from the Navier-

Stokes equation is omitted in this paper (see [2] for details).

Let Ω(t) be the bounded, open, simply connected set in the (x1, x2)-plane occupied by

the fluid at time t. We consider injection through a single well that is placed at the origin.

We assume that the source of the fluid is of constant strength Q. The dimensionless

13



Figure 5.1: Hele-Shaw flow when the blue circle is the initial set, Ω0, of liquid between the
parallel planes and we are injecting fluid at some point inside Ω0. The figure is from [2].

pressure p is scaled in order to have 0 correspond to the atmospheric pressure. We set

Γ(t) ≡ ∂Ω(t). Before any fluid is injected, at time t = 0, the domain is Ω(0) = Ω0. The

potential function p is harmonic in Ω(t)− {0} and

∆p = Qδ0(z), z = x1 + ix2 ∈ Ω(t) (5.2)

where δ0(z) is the Dirac distribution with support at the origin. The zero surface tension

dynamic boundary condition is

p(z, t) = 0 when z ∈ Γ(t) (5.3)

The resulting motion of the free boundary Γ(t) caused by the fluid injection is given by

the fluid velocity V on Γ(t). The normal velocity in the outward direction is

vn = V|Γ(t) · n(t)

where n(t) is the unit outer normal vector to Γ(t). We then rewrite this law of motion

in terms of the potential function and using (5.1) after a suitable rescaling we get the

kinematic boundary condition
∂p

∂n
= −vn, (5.4)

where ∂p
∂n = n · 5p is the outward normal derivative of p on Γ(t).
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Equations (5.2) - (5.4) are the Hele-Shaw problem.

5.2 Uniqueness of Weak Solutions of Hele-Shaw Flow

Definition 5.1. A solution to the Hele-Shaw problem, {Ω(t) : 0 ≤ t < ∞}, is said to be

weak if there exists a function u(z, t) such that

u ≥ 0

u(z, t) = 0 for z /∈ Ω(t)

1Ω(t) = 1Ω(0) + tδ0 + ∆u

where δ0 is Dirac’s distribution supported at the origin.

u(z, t) is related to the p and V in the strong solution by the Baiocchi transform,

replacing p in (5.2) with u(z, t) =
∫ t

0 p(z, τ) dτ . The relationship between u and V then

comes from (5.4).

Theorem 5.2. Given any bounded open set Ω0 there exists a unique weak solution {Ω(t) :

0 ≤ t < ∞} with Ω(0) = Ω0 (uniqueness in the strict sense that Ω(t) are required to be

saturated.

This theorem is proven in [2].

Conjecture 5.3. Ω(t) = A⊕ B(z, t) is a weak solution to the Hele-Shaw problem.

The idea is that we can prove from Axioms (1) - (8) the existence of a function u that

satisfies Definition 5.1. Then by Theorem 5.2 and Theorem 3.10 we have that the Axioms

uniquely characterize the actual smash sum.

5.3 Outline using Hele-Shaw Flow

We now outline an approach to proving Conjecture 5.3 that was proposed by Lionel Levine.

Let C∞0 be the set of smooth functions on Rd with compact support and let A,B ∈ A.

Lemma 5.4. If
∫
A φ dx =

∫
B φ dx for all φ in C∞0 , then A ∼= B.

Proof. Let D be a ball contained in B − Ā. Let φ be a smooth positive bump function

supported on D̄. Then

0 =

∫
A
φ dx <

∫
B
φ dx.
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This contradicts the hypothesis that
∫
A φ dx =

∫
B φ dx, so there is no such ball D. There-

fore, B− Ā is empty. Similarly, A− B̄ is empty. vol(∂A) = vol(∂B) = 0 because A,B ∈ A
so A ∼= B.

There is another characterization of Hele-Shaw flow with injection at z (See chapter 3

of [2] for details): Suppose Ωt for t ≥ 0 is a family of domains such that

d

dt

∫
Ωt

φ dx = ht(z) (5.5)

where ht is the harmonic extension of φ inside Ωt. Given Ω0 and solving the differential

equation (5.5) gives
∫

Ωt
φ dx =

∫
Ω0
φ dx+

∫ t
0 hs(z) ds. So by Lemma 5.4, Ωt is determined

up to measure zero.

The goal is to show from Axioms (1) - (8) that (5.5) holds when Ωt = A ⊕ Bt, where

Bt = B(z, t) is the ball of volume t centered at z. We want to show that (5.5) holds when z

is outside of Ωt. Then we need to prove that that the left side of (5.5) is a harmonic function

of z inside Ωt. To do this we want to establish an approximate mean value property for

the function

fAt (z) =

∫
A⊕B(z,t)

φ−
∫
A
φ.

We believe that the continuity axiom, Axiom (8), should give that in the limit as t goes

to 0 we can replace B(z, t) by a cube Q(z, t) of volume t centered at z for z ∈ A: that is,

(1/t)
(∫

A⊕B(z,t) φ−
∫
A⊕Q(z,t) φ

)
tends to 0 as t tends to 0.

Now we work on two scales: tiny (t) and small (s) with t < s. Suppose that t = s2.

We can write Bs as a smash sum in 2 ways:

(1) Bs = Bt ⊕ ...⊕Bt (with s/t summands)

(2) Bs = C1 ⊕ ...⊕Cm ⊕D where the Ci are disjoint cubes of volume t, and D = Bs−
(union of Ci) has small volume (going to 0 as t goes to 0). The number of summands m is

approximately s/t.

By (1) and associativity, fAs (z0) = fAt (z0) + fA⊕Bt
t (z0) + fA⊕Bt⊕Bt

t (z0) + ... (with s/t

summands)

The idea is to use the continuity axiom to show that the right side is close to (s/t)fAt (x0).

When we attempted to do this, we got that the difference was of order s instead of order

t, which we need.

When considering (2) and associativity,
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Figure 6.1: An example of Conjecture 6.3. We are smashing A, B, C with themselves. The
second row shows the smash sum with 2 summands, the third row with 3 summands, and
the fourth row with 4 summands. Figure used with permission from Lionel Levine.

fAs (z0) = fAt (z1) + fA+C1
t (z2) + ...(with m summands) +

∫
D
φ.

Using the continuity axiom, we want to approximate the right side by changing all

superscripts to A and disregard the last term because D has small volume. Then it should

become a Riemann sum approximating the integral (1/t)
(∫

Bs
fAt (z)

)
.

Then we should have an approximate equality fAt (z0) = (1/s)
(∫

Bs
fAt (z)

)
, which is

the mean value property we were looking for. The goal is to quantify the error and then

take s and t to 0 to show that the derivative in (5.5) exists and satisfies an exact mean

value property (hence is a harmonic function of z).

6 Conjectures

Conjecture 6.1. If A,B are bounded open sets, k ∈ R+, and ⊕ satisfies the axioms then

kA⊕ kB = k(A⊕B)

Conjecture 6.2. Let A be an arbitrary bounded open set and Cε ( A be small open set

with volume ε. If B(x, ε) is an open ball with volume ε centered at x, the center of mass of

Cε then

vol ([A⊕ Cε)∆(A⊕ B(x, ε)]) = o(ε)

We want to use Conjecture 6.2 in section 5.3 when we replace balls with cubes.
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A

C
B

Figure 6.2: If A,B,C are as in Conjecture 6.5, where C is a ball centered on the boundary
of A and B is a bigger ball centered on the boundary of A. The centers of B and C are
denoted by the black dot. Before the toppling takes place, the yellow and blue areas have
mass 1 and the green area has mass 2. After we take the smash sum of A and C, we
conjecture that most of the mass in (A⊕ C)−A is in B.

Conjecture 6.3. Let Cε be an open set with volume ε and center of mass x, then smashing

Cε to itself n− 1 times (i.e. there are n summands) then

vol[(Cε ⊕ · · · ⊕ Cε) ∆B(x, nε)] = o(nε)

Conjecture 6.4. Let A and C ( A be arbitrary open sets. Then for all x ∈ ∂A and for

all δ > 0, Y = {y ∈ (A⊕ C)−A : |x− y| < δ} such that vol(Y) > 0.

That is, the mass does not spread out from only one part of A. We believe that we

need this result to prove the following conjecture.

Conjecture 6.5. If A is an arbitrary open set and B is an open ball with center x ∈ ∂A
and volume ε, and C a small open ball with the same center as B with volume δ < ε satisfies

lim
δ↓0

vol([(A⊕ C)−A] ∩B)

δ
= 1.
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