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Abstract

It’s natural to consider functions defined on the cells of certain fractals, such
as the triangles of the Sierpinski gasket. In this paper, we develop a spectral
decimation framework for functions defined on the cells of the Sierpinski
gasket. Using this, we show that the natural analogues of bandlimited func-
tions on the Sierpinski gasket are uniquely determined by their average value
functions on the cells. We also use spectral decimation in order to numeri-
cally approximate solutions of nonlinear PDE.

1 Introduction
When considering finite graph approximations of the Sierpinski Gasket (hereforth
denoted SG), we usually define functions on the vertices of the triangles in the
graphs. However, it’s natural to consider functions defined on the triangles them-
selves. We call such functions average values. Aside from appealing to our intu-
ition, average values on the graph approximations have domains that are approx-
imately two thirds the size of those for regular functions. Since the number of
vertices blows up exponentially, it would be computationally easier to do analysis
by looking at the average values instead of the usual functions.

In section 2, we outline some preliminaries regarding analysis on SG. In
section 3, we construct the eigenbasis of the cell graph Laplacian by means of
spectral decimation.

We then apply the spectral decimation tools that we developed in order to ex-
amine two different problems on SG: sampling theory and nonlinear partial dif-
ferential equations. In section 4, we prove an analog of the Nyquist-Shannon sam-
pling theorem on SG, which states that certain bandlimited functions are uniquely
determined by their average values. In section 5, we use the Gradient Newton
Galerkin Algorithm (GNGA) of Neuberger and Swift to approximate numerical
solutions to a nonlinear partial differential equation on the Sierpinski gasket, as
well as classify certain subspaces of solutions.

2 SG Preliminaries

2.1 Definition and Construction
Let q1, q2, q3 denote the vertices of an equilateral triangle. For the purposes of this
paper, q1 will be the left vertex, q2 will be the upper vertex, and q3 will be the right
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vertex. Define Fi : R2 → R2 by

Fi(x) =
1

2
(x− qi) + qi. (2.1)

for i = 1, 2, 3. SG is defined to be the unique nonempty compact set satisfying

SG =
3⋃
i=1

Fi(SG).)

We define a word of length n, (w1, ..., wn) to simply be an element of Zn3 .
Then, we say that Fw = Fwn ◦ ... ◦ Fw1 . If T is the unit equilateral triangle, the
m’th level approximation of SG is

⋃
|w|=m Fw(T ), where |w| is the number of

components in the word w.
With this approximation, we can discuss two sets of graph approximations of

SG. The first, the dyadic point graph, is the most intuitive. Given the m’th level
approximation of SG, the vertices of the dyadic point graph are the vertices of the
triangles of the m’th level approximation, and the edges are the edges on the m’th
level approximation. We denote these by βm.

Figure 1: The dyadic point graphs corresponding to the level 1 and level 2 approximations
of SG.

The other graph approximation we can use is the m’th level cell graph, which
we will denote Γm. The vertices of this graph represent the right-side-up triangles
of the m’th order approximation of SG. An edge between two vertices indicates
that two triangles share a corner in common. It’s important to note that no vertices
or edges are preserved when going from Γm to Γm+1. This is because the triangles
in the level m approximation of SG split into three separate triangles in the level
m+1 approximation, so no triangles are preserved in subsequent approximations.
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Figure 2: The cell graphs corresponding to the level 1 and level 2 approximations of SG.

In addition, when working with Γm, we assume that all function values are the
average values of functions on the smallest triangles on the dyadic point graphs.
Specifically, if a, b, c are values on the vertices of a small triangle on the dyadic
point graph, then the function value on Γm for the vertex corresponding to the
triangle is a+b+c

3
. We also assume that if x is the value of a vertex on Γm, and that

vertex splits into three vertices in Γm+1 with values d, e, f respectively, then the
values must satisfy

x =
d+ e+ f

3
. (2.2)

.

2.2 The Laplacian
We define the renormalized graph energy of a function u on the level m dyadic
point graph by

Em(u) =
3

2
5m

∑
x∼y

(u(x)− u(y))2, (2.3)

and we can similiarly define the bilinear form on the same level dyadic point graph
by

Em(u, v) =
3

2
5m

∑
x∼y

(u(x)− u(y))(v(x)− v(y)). (2.4)
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We can then define the energy of a function on SG (and the corresponding
bilinear form) by taking the limit as m → ∞. A function on SG that has finite
energy is said to be an element of dom E. It is not hard to prove the following:

Theorem 2.1. The set dom E modulo the constant functions is a Hilbert space
with respect to E(u, v).

With this notion of an inner product, we can then define the Laplacian on SG
by the following:

Definition 2.2. Let u ∈ dom E. Then ∆u = f for f continuous if

E(u, v) = −
∫
SG

fvdµ (2.5)

for all v ∈ dom E that are zero on the boundary of SG.

Note that if we replace SG with the unit interval I , where the dyadic point graphs
correspond to Pm, the m’th level path, dom E corresponds with H where H is
defined as usual. A quick exercise in integration by parts will then show that f
corresponds with u′′, so we can reasonably say that our definition of the Laplacian
in terms of integrals is indeed the same as the usual definition. Our definition has
the added benefit of ignoring the problem of a lack of smooth coordinates.

Nevertheless, we naturally think of derivatives in terms of difference quotients,
so it would be more intuitive to have a definition of the Laplacian in terms of a
difference quotient. We define the renormalized graph Laplacian of a function u
on Γm at vertex x to be

∆mu(x) =
3

2
5m

∑
x∼y

(u(y)− u(x)). (2.6)

Note that we can find the Laplacian of the entire function on Γm by writing u as a
column vector, which is possible as the function space of Γm is clearly isomorphic
to R3m . The Laplacian of u is thenLu, whereL = DTD, whereD is the difference
matrix of Γm.

With this familiar notion of a derivative in mind, it’s natural to ask whether
we can use it to get the Laplacian as defined by Equation (2.5). The following
suggests yes.

Theorem 2.3. Let ∆u = f. Then ∆mu converges uniformly to f . Conversely, if u
is integrable, and ∆mu converges uniformly to a continuous function f , then ∆u
exists and equals f .
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For a proof of this, see ([4]). Note that the theorem assumes, unlike us, that
the graph Laplacian isn’t defined at the corners. However, this doesn’t matter in
the limit, so we can keep our condition without worry.

3 Construction of an Eigenbasis on Γm

In order to investigate sampling and numerical PDE on SG, we need some sort of
eigenbasis. While software packages such as LAPACK can compute such a basis,
the output may not have any clear structure to it. In this section, we compute a
localized eigenbasis of Γm. By localized, we mean small support.

3.1 Spectral Decimation
Before we can give an explicit construction of the basis, we need some additional
tools that will allow us to transition between eigenfunctions on Γm and eigenfunc-
tions on higher level graphs. For βm, the vertex graph approximations of SG, such
a process exists and is known as spectral decimation. For the vertex graph, spec-
tral decimation gives a set of formulae which allows you to take an eigenfunction
on βm and extend it into at most two eigenfunctions on βm+1, each with different
eigenvalues. Using spectral decimation, we can obtain the Dirichlet and Neumann
spectra of SG in the limit. Spectral decimation is also used in the construction of
the eigenbasis for the vertex graphs.

Fortunately, an analogous set of formulae are available for Γm.

Theorem 3.1 (Spectral Decimation). Let u be an eigenfunction on Γm with eigen-
value λm. Then, u can be extended to at most two eigenfunctions on Γm+1 with
eigenvalues λ(1)m+1 and λ(2)m+1. Furthermore, for each λ(k)m+1, the corresponding ex-
tension is unique. Conversely, if u is an eigenfunction on Γm+1 with eigenvalue
λ
(1)
m+1 or λ(2)m+1, then u′, the function on Γm obtained by averaging the values of u

up one level is an eigenfunction with eigenvalue λm.
Also, if u is an eigenfunction on SG, then mean values of u give rise to um on

Γm that is an eigenfunction on Γm for large enough m.

The proof involves algebraic manipulation of equations stemming from graph
Laplacians. While we won’t give the complete derivation, we’ll outline how to
get the formulas given a few notational definitions. The derivation of the formulae
will clearly show existence and uniqueness up to eigenvalues.
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Consider the figure below. The picture on the left details a general subgraph
of the interior of Γm for m > 1 (The case for m = 1 can be obtained by simply
deleting the point labeled W and its corresponding edge connecting it to the tri-
angular group of vertices). We extend it to a corresponding general subgraph of
Γm+1 in the picture adjacent to it.

Figure 3: On the left, a general subgraph of Γm centered for an interior vertex X . On the
right, that subgraph extended down to Γm+1.

Let u(P ) denote the value of u at vertex P . Assume that u is an eigenfunction
with eigenvalue λm on Γm. So, for cell X , we have the equation

(3− λm)u(X) = u(W ) + u(Y ) + u(Z). (3.1)

Now, assume that u extends to an eigenfunction on Γm+1. This means that, for
vertex v1,

3(3− λm+1)u(v1) = u(v2) + u(v3) + u(vb) (3.2)
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and similarly for every vertex except possibly for v5, v9, and va, as one of them
might be a boundary vertex. By manipulating these equations for known interior
points, and using the mean value property (2.2) of the cell graph, we obtain

u(v1) =
3(4− λm+1)u(X) + 3u(W )

(3− λm+1)(5− λm+1)
(3.3)

and similarly for all of the other interior vertices. In other words, the value of the
extended eigenfunction on a vertex is a function of the vertex’s parent, the (differ-
ent) parent of the nearest neighboring vertex, and the eigenvalue of the extended
function. The (4 − λm+1) term acts as a weighting factor, which makes sense as
the value of the function at the parent cell should affect the value more.

To extend an eigenfunction on the boundary, we see in the above figure that if
Y is a boundary vertex on Γm, then v5 is a boundary vertex on Γm+1. To extend
u to an eigenfunction on Γm+1, we first observe that such an eigenfunction would
satisfy

(2− λm+1)u(v5) = u(v4) + u(v6). (3.4)

We then add u(v5) to both sides and apply (2.2to get

u(v5) =
3u(Y )

3− λm+1

. (3.5)

This is consistent with (3.3) as every vertex adjacent to v5 shares its parent cell,
so the only factors that should matter are the current eigenvalue and the value of
the function on the parent cell.

All that remains is to figure out what the λ(k)m+1 are. Again, there is no special
method needed to do this. By playing around the equations for interior points, and
using (3.1), we get the relation

λm = λm+1(5− λm+1), (3.6)

which has solutions

λm+1 =
5±
√

25− 4λm
2

. (3.7)

The ”at most two” in the theorem comes from (3.3) and (3.5). The equation
(3.7) produces two new eigenvalues via the quadratic formula as usual. However,
if one of these eigenvalues happens to be 3 or 5, the equations for continuation
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in the interior are no longer valid, so we cannot extend to eigenfunctions in these
cases.

3.2 The Basis
With spectral decimation in hand, we now have all of the tools that we need in
order to produce the basis. Our construction is recursive.

The basis for Γ1 is easily computed by inspection. It consists of a constant
function, a nonconstant function, and a rotation of the nonconstant function. The
constant function has eigenvalue 0, and the other two have eigenvalue 3.

Figure 4: The basis of Γ1 consists of the constant eigenfunction on the left and two rota-
tions of the eigenfunction on the right. The left eigenfunction has eigenvalue 0, whereas
the one on the right has eigenvalue 3.

Now, consider Γ2. We can create 5 basis elements by using the spectral dec-
imation equations derived above to extend the three elements of the basis of Γ1

down to Γ2. Note that (4.7) implies that the constant eigenfunction can only bi-
furcate into eigenfunctions with eigenvalues 0 and 5. However, (4.3) shows that
5 is a forbidden eigenvalue, so the constant eigenfunction can only extend to the
constant eigenfunction. The remaining elements of the basis are computed by
inspection, and are listed below. The first type is a ”battery chain” construction
around the hexagon in the graph. Start at a point that lies on the hexagon and place
the value−1. Then go around the hexagon clockwise, alternating between placing
the values 1 and −1 on vertices until every point on the hexagon is nonzero. The
second type is constructed by placing a 2 at one boundary vertex, −1 at its adja-
cent vertices,−1 at the adjacent vertices of the boundary point’s adjacent vertices,
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and 1 at the two remaining non-boundary vertices. The remaining elements of the
basis consist of one function of the first type, and the three rotations of the second
type.

Figure 5: The two types of basis elements for Γ2 that are not continued from Γ1. The left
has eigenvalue 5 whereas the right has eigenvalue 3.

In general, consider going from Γm−1 to Γm. Using spectral decimation, we
take the eigenbasis on Γm−1 and extend it to a linear independent set in with
cardinality 2 · 3m−1 − 1 on Γm, where every eigenfunction in the basis on Γm−1
extends to two eigenfunctions on Γm except for the constant function, which only
extends to the constant function.

We then look at the hexagons on Γm. Each hexagon corresponds to exactly
one upside-down triangle on the graph of the dyadic points of SG. A simple
argument shows that there are 1 + 3 + 32 + ... + 3m−2 = 3m−1−1

2
hexagon cycles

on Γm. We proceed as we did for the first type of non-extended eigenfunction on
Γ2: pick a hexagon and a vertex on it and assign it a value of −1, then continue
clockwise around the hexagon, alternating between 1 and−1 until every vertex on
the hexagon has a nonzero value. Do this for every hexagon on Γm to get 3m−1−1

2

eigenfunctions with eigenvalue 5.
We now consider the eigenfunctions with eigenvalue 3. First, we take each

vertex on the boundary of Γm and copy the appropriate rotation of the second type
of non-extended eigenfunction on Γ2 onto the corresponding copy of Γ2 on the
boundary of Γm, with the 2 being placed on the vertex on the boundary. This
yields three eigenfunctions. To get the remaining eigenfunctions, we consider the
3m−2 copies of Γ2 in Γm. Take two adjacent copies of Γ2, and consider the edge
connecting them. Assign a value of 2 to each of the vertices on the edge, and
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then repeat the construction of the second type of nonextended eigenfunction on
Γ2 twice. Refer to the figure below for the specific construction. An inductive
argument shows that there are 3m−1−3

2
eigenfunctions of this type, so we have a

total of 3m−1+3
2

eigenfunctions at level m with eigenvalue 3.

Figure 6: The type of eigenfunctions with eigenvalue 3 on level m that have no support
on the boundary

Counting the eigenfunctions that we have thus far, we see we have

2 · 3m−1 − 1 +
3m−1 − 1

2
+

3m−1 + 3

2
= 3m.

However, we can have at most 3m linear independent basis elements, so we have
necessarily constructed the eigenbasis.

4 Sampling Theory

4.1 Motivation and the Classical Result
Given that the cell graphs have, in the limit, two-thirds as many points as the usual
vertex graphs, it would be nice to know when we can work with the cell graph
instead of the vertex graph. In other words, we want to know when functions
on the usual graphs are uniquely determined by the corresponding average value
functions on the cell graph.

This problem is very similar to the Nyquist-Shannon sampling theorem, which
allows us to recover certain functions from a finite number of points. For the
purposes of the next theorem, assume that f is continuous.
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Theorem 4.1 (Nyquist-Shannon). If a function f contains no frequencies higher
thanB hertz, then f is uniquely determined by points spaced a distance of B

2
apart

from one another.

In other words, if f has a Fourier expansion that whose nonzero terms contain
frequencies that are at most B, then f can be reconstructed by sampling a count-
ably infinite number of points spaced out a distance B

2
from one another. In this

case, we say such f is bandlimited with bandlimit B. Note that f can be recon-
structed from these sampled points via a slowly converging, doubly infinite series
involving the sinc function.

4.2 The Result for SG
We begin with a definition.

Definition 4.2. A level m bandlimited function on Γm is a function that’s a linear
combination of the level m eigenfunctions without eigenvalue 6.

We then say that a bandlimited function in the general sense is a (finite) linear
combination of the level m bandlimited functions on Γm. While this definition
specifies that we’re working with graphs, we can analogously define level m ban-
dlimited functions and general bandlimited functions on SG by just continuing
the corresponding functions on Γm down to functions on SG.

We now define two averages. The discrete average on an m-cell C on βn for
n at least m is given by:

AC(u) =
1

3

∑
∂C

u

where ∂C refers to the boundary points to C. The continuous average is given by

BC(u) = 3m
∫
C

u.

We let A(u) and B(u) refer to the average value functions of u with respect to
the above averages. Recall that βm denotes the usual level m vertex graph. We
are now ready to state and prove the analog of the Nyquist-Shannon sampling
theorem.
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Theorem 4.3. On SG, bandlimited functions are uniquely determined by their
average values, where the average values can be taken in either the discrete sense
(A) or the continuous sense (B).

In order to prove the theorem, we need a technical lemma.

Lemma 4.4. Let u be an eigenfunction on βm−1 with eigenvalue λm−1 , and let u′

be its extension by spectral decimation to an eigenfunction on βm with eigenvalue
λm. Then A(u′) is an eigenfunction on Γm with eigenvalue λm.

The proof of this fact is a straightforward computation of the Laplacian at each
point of Γm, using the relation λm−1 = λm(5− λm).

We first prove the theorem in the discrete case, namely for the level m ban-
dlimited functions on βm with average AC as listed above. To do this, we first
show that the eigenbasis for Γm can be constructed by taking the average values
of eigenfunctions on βm. First, consider the 5-eigenfunctions. It’s clear that the
hexagon 1-cycles of Γm are in a 1-1 correspondence with the 1-cycles of βm. To
produce each of the 3m−1−1

2
5-eigenfunctions on Γm, simpy take the corresponding

5-eigenfunctions on βm and take their average values.
The construction of the 3-eigenfunctions on Γm is very similar. Take each

of the 3m−1+3
2

6-eigenfunctions on βm−1, extend them down via spectral decima-
tion (note that spectral decimation yields 2 and 3 as possible eigenvalues. 2 is
forbidden, so only the 3-eigenfunctions are preserved) and then take the average
values. There is again a 1-1 correspondence between the 3-eigenfunctions on βm
and those on Γm.

Now, consider a continued eigenfunction f ′ on Γm. This eigenfunction had
generation of birth m0 ≤ m for some m0 with either a a 3-eigenfunction or a
5-eigenfunction (we ignore the case when λm0 = 0 for obvious reasons) which
was subsequently extended to levelm by spectral decimation depending on the se-
quence of eigenvalues (λm0 , λm0+1, ..., λm. By the above, we know that the level
m0 eigenfunction A(u) on Γm0 corresponds to the average values of a function u
on βm0 . Now, consider the extension A(u)′ of A(u) defined by taking the aver-
age values of the corresponding u that’s extended down to a λm0+1-eigenfunction
on βm0+1 via spectral decimation. The above lemma implies that A(u)′ is an
eigenfunction with eigenvalue λm0+1, so we’ve extended a λm0-eigenfunction to
a λm0+1-eigenfunction. We can repeat this extension process a finite number of
times to get an eigenfunction A(g) on Γm corresponding to some g on βm. We
know that A(g) is a λm-eigenfunction, and we know by the above that the ex-
tensions from A(u) to A(g) are the same as those from A(u) to A(f) as spectral
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decimation guarantees uniqueness of the extension, so we have found the function
g on βm as desired.

We have then shown that we can construct every basis eigenfunction of Γm by
taking the average value of the cells of some Neumann eigenfunction that doesn’t
have eigenvalue 6 on βm. Hence, there is a natural surjection from the basis of the
bandlimited eigenfunctions on βm to the eigenbasis on Γm. However, there are 3m

elements of the basis of bandlimited functions on βm, which is the same number
of eigenbasis elements as the space in Γm, so this correspondence is a bijection.

This proves the theorem in the case that we’re talking about the discrete aver-
age AC . A straightforward computation of shows that AC is related to BC by a
multiplicative constant factor, so the above discrete proof will extend to the con-
tinuous case.

5 Nonlinear PDE on SG

5.1 Motivation
Let u be a function on SG such that ∆u = −f for a nonlinear function f(u, x).
Assuming arbitrary boundary conditions, in the case that f is linear, a unique
solution exists, and is given by:

u(x) =

∫
SG

G(x, y)f(y)dµ(y) + h(x). (5.1)

Here, G(x, y) is the Green’s function on SG, and h is the harmonic function
satisfying u|∂SG = h|∂SG (See ([2]) for the derivation).

Consider the case where f is nonlinear. The formula above then yields an
implicit relation which u must satisfy, but such a relation does not allow us to
obtain a solution. We are thus forced to consider other methods to solve the above
equation on SG.

In this section, we’ll restrict ourself to the case where f(u) = su+ u3, where
s is a bifurcation parameter. Our investigation will be purely numerical.
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5.2 The GNGA
5.2.1 The Energy Functional

The results of Theorem 2.2 suggest that solutions of the equation−∆u+f(u) = 0
on SG can be approximated by solutions of −Lu+ fm(u) = 0 on Γm for m large
enough. This means that we can approximate solutions of the nonlinear problem
on SG by looking at solutions of the nonlinear problem on Γm. Therefore, solving
the nonlinear problem on Γm will approximate solving the nonlinear problem on
SG. To solve the nonlinear problem on Γm, we consider the functional J : R3m →
R defined by

J(u) =
1

2
Du ·Du−

3m∑
i=1

F (ui). (5.2)

where F denotes the primitive of f and D is the previously mentioned adjacency
matrix. Note that as Γm has 3m vertices, its corresponding function space is iso-
morphic to R3m in the obvious way, which justifies our choice of domain. A
simple calculation yields:

J ′(u)(v) = −(−Lu+ f(u)) · v. (5.3)

This computation immediately yields the following theorem:

Theorem 5.1. Let u ∈ R3m . Then u is a critical point of J : R3m → R if and only
if u is a solution of −Lu+ f(u) = 0

This theorem tells us that all solutions of the nonlinear problem on Γm can be
found by applying a root finding algorithm to J ′.

5.2.2 The GNGA and Variants

Our algorithm of choice is the Galerkin Newton Gradient Algorithm (hereforth
abbreviated as GNGA) of Neuberger and Swift. The algorithm is essentially little
more than multivariable Newton’s method on J ′. Recall that for x ∈ Rn, Newton’s
method finds a solution of F (x) = 0 with an initial guess x0 and the following
iteration:

xn+1 = xn −DF (xn)−1F (xn). (5.4)
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Newton’s method is guaranteed to converge to a root provided that the initial guess
is within some sufficiently small neighborhood of said root. In the case of the
GNGA, F corresponds to J ′, and the derivative matrix DF corresponds to the
Hessian matrix of J .

We can limit the number of numerical differentiations and integrations needed
to do the GNGA as follows. Pick an orthonormal eigenbasis {ψj}3

m

j=1 of R3m

with respect to the linear transformation L. Then, with u =
∑3m

i=1 aiψi, the k’th
component of J ′(u) is given by

J ′(u)k = akλk − f(u) · ψk (5.5)

where λk is the eigenvalue corresponding to ψk. Such a choice of basis also gives
that the jk’th compoent of the Hessian matrix is

h(u)jk = λjδjk − diag(f ′(u))ψj · ψk, (5.6)

where f ′ is the derivative of f with respect to u.
We can use a modified version of the GNGA in order to compute bifurcation

diagrams for the difference equation. The tangent augmented GNGA (dubbed the
tGNGA) is a predictor-corrector continuation method: given a point on a solution
branch, we use a linear approximation to obtain a vector close to a root, and then
use a constraint to correct our prediction in order to get a root. We can estimate
the tangent vector at the current point pc = (ac, s) (ie the coefficient vector corre-
sponding to the basis with the current value of s affixed) by finding the previous
point po in the continuation and letting the unit tangent v = pc−po

||pc−po|| . The predicted
point is then pg = pc + δv, where δ is some scalar denoting the speed at which
we move along the branch. The correction constraint is κ = (p − pg) · v = 0, ie
the solution lies on the space normal to the tangent vector. This is guaranteed by
setting v = (∇aκ(a, s), ∂κ

∂s
(a, s)). With this constraint, we find the new solution

by solving both the initial equation for search direction in Newton’s method as
well as this constraint. If we let δ be small enough, we can compute a branch of
solutions by this tGNGA.

5.2.3 Processing Bifurcations

The signature of u is the number of negative eigenvalues of the Hessian of J .
In the case that we assume that solutions of the difference equation are nonde-
generate, then the signature equals the Morse Index, or the number of ”down”
directions at the critical point of J . If the Morse Index changes while traveling
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along a branch, then there must be a bifurcation point along the branch, ie a point
on the branch where it splits from one branch into multiple other branches.

If the Morse Index at po is k and the Morse Index at pc is k+ d, then we know
that a bifurcation point occurs somewhere between po and pc where the Hessian
is not invertible, ie where the r’th eigenvalue, where the eigenvalues are sorted in
ascending order, is 0. Here, r = k+ dd

2
e. In order to find the bifurcation point, we

apply the secant method. To do this, we let p0 = po, p1 = pc, and let β0 and β1 be
the r’th eigenvalue of the Hessian at p0 and p1. We can find the bifurcation point
via iteration. To do this, we let our guess point pg = pi − (pi−pi−1)βi

βi−βi−1
, and then use

the tGNGA to correct the guess. We keep iterating until we get a point with the
r’th eigenvalue sufficiently close to zero.

Once we find the bifurcation point, we need to choose the directions to search
for branches. The current method simply involves testing to see which direction
gives the most stable result (by stable, we mean least likely to jump off to a far
away branch) and then taking that direction. The directions tested are simply the
directions of the basis vectors.

5.3 Numerical Implementation
5.3.1 Construction of Γm

As is common with SG, our construction is recursive. We start with the unit equi-
lateral triangle, and recursively cut out smaller triangles until we get the desired
level m approximation. In order to mathematically represent the graph Γm, each
vertex is listed as an element of a Matlab structure array. Each element of the
array consists of four components: the coordinates of the vertices making up the
triangle, the edges of the triangle (represented by 1x2 arrays connecting the ver-
tices), the neighboring triangles, and the ID of the triangle. The first three entries
are self-explanatory. By the ID, we mean the word w corresponding to the ap-
propriate fixed point map that maps the unit equilateral triangle to the cell of the
m’th level approximation. The list of neighbors and the ID of the triangle are
vital for our implementation of the basis, whereas the other two entries are used
specifically for constructing contour plots.

5.3.2 The Basis

In order to construct the basis on Γm, we first need a few conventions. The column
vectors that represent the functions on Γm will be ordered by the lexicographical
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sorting of the cell IDs. For example, on Γ3, the first entry will be the value of the
function at cell 111, the second entry will be the value of the function at cell 112,
etc. We define the parent ID of the ID w to be the truncation to the first m − 1
entries of w. The notion of grandparent ID can be defined analogously.

For convenience, the non-spectral decimation eigenfunctions on Γ1 and Γ2

were hardcoded into the program. This was done so that our methods for con-
structing the eigenfunctions obtained by spectral decimation, as well as the eigen-
functions with eigenvalues 3 and 5 would not need any special exceptions written
into them. The methods used to obtain these functions are listed below. Each
construction assumes that the vector associated with the eigenfunction is initially
zero.

Afterwards, we then apply the Gram-Schmidt process to our basis in order
to get an orthonormal eigenbasis to use with the GNGA. A major disadvantage
of Gram-Schmidt is that its output is very much dependent on the order of its
input. To alleviate this, we pass the basis into Gram-Schmidt starting with the
most localized 5-eigenfunctions. This allows us to preserve some of the structure
of the initial basis.

Algorithm 1 Spectral Decimation
Compute two possible eigenvalues λ1, λ2
for Each eigenvalue that’s not 3 or 5 do

for Each v ∈ Γm do
Get both the ID and the parent ID
X ← value of the parent cell
if v is on the boundary then

u(v)← 3 ∗X/(3− λi)
else

Find w, the neighbor of v with a different parent ID
Find w’s parent ID
Y ← value of w’s parent cell
u(v)← 3 ∗ ((4− λi) ∗X + Y )/((3− λi)(5− λi))

end if
end for

end for
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Algorithm 2 3-Eigenfunctions
for Each v ∈ Γm do

if v has a neighbor with a different grandparent or v is on boundary then
u(v)← 2
v1, v2 ← neighbors of v that have the same grandparent
u(v1), u(v2)← −1
w1, w2 ← the neighbors of v1, v2 such that u(w1) = u(w2) = 0.
w1, w2 ← −1
for i = 1:2 do

for Each neighbor n of wi do
if u(n) = 0 then

if The neighbors of n all have the same grandparent then
u(n)← 1

end if
end if

end for
end for

end if
end for
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Algorithm 3 5-Eigenfunctions
for i = 0:m-2 do

baseArrayLength← 3m−i

for j = 1:3i do
s← 1
baseArray← rows (1 + j−1 * baseArrayLength) to j*baseArrayLength
of sorted IDs
for Each row in baseArray do

testIndex← (i+ 1)’st index of row
if the entries with index greater than i+1 differ from testIndex then

val← testIndex
Put the row in valArray

end if
end for
Sort the three valArrays
for Each valArray do

Get sorted list V of vertices corresponding to IDs in valArray
for j = 1:valArray do

v ← V (j)
u(v) = (−1)s

s← s+ 1
end for
Export u to list of eigenfunctions
Reset u to zero vector

end for
end for

end for
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5.4 Results and Symmetry
5.4.1 Introduction

With the basis in place, we can run the GNGA on Γm in an effort to approximate
solutions of the nonlinear equation on SG. However, when attempting to run
the algorithm on Γ3 and higher, we run into two critical problems hindering our
ability to do nonlinear analysis. For the purpose of this paper, eigenvalues are left
unscaled due to convenience.

Figure 7: A partial bifurcation diagram on Γ2. The plot is u(1) vs. s, where u(1) is the
value of the function on the left boundary point.

When looking at the above bifurcation diagram, we see that some of the branch
plots look fairly jagged, and that it’s fairly difficult to differentiate some branches
from one another. This stems from our method of predicting initial search direc-
tion. Recall from previous sections that we find the search direction at a bifurca-
tion point by merely testing which of the basis directions seems to work the best.
While this method works fine for bifurcation points with small changes in Morse
Index, it is known to fail for high changes in Morse Index. Experiments on higher
levels have shown bifurcation points have high jumps in Morse Index (for exam-
ple, a bifurcation point on Γ4 was shown to have a jump in Morse Index of 50).
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Because of this, we cannot expect reliable performance with our current method
of finding search direction, and the instability evident in the above bifurcation di-
agram supports this claim. Note that the instabilities are much more apparent for
partial bifurcation diagrams for higherm. However, these issues have caused such
bifurcation diagrams to be little more than bunches of squiggles, so such diagrams
were omitted.

The high changes in Morse Index imply that bifurcation diagrams for even
fairly low values of m will be quite complicated. Experiments on fairly good
hardware have lasted for hours without any sign of termination. This is due to the
large number of branches that are plotted and the large number of high multiplicity
bifurcation points that are present in the diagrams.

The above suggests that our ability to do nonlinear analysis is somewhat lim-
ited by our current methods. To fix the first issue, we can employ a method known
as the cGNGA ([5]). Our code currently contains an implementation of this, but
at the moment, our current method of finding search directions is much less unsta-
ble, suggesting that our cGNGA implementation is bugged. Because of this, we
cannot hope to process bifurcation points of high multiplicity at this time.

On the other hand, we can start to work towards ameliorating the issue of fol-
lowing a large number of branches. In order to do this, we need some notion of
equivalence of solutions. We could then use such a notion in order to determine
what branches to follow and which ones not to follow in our analysis. In order
to find a proper definition of equivalence, we need to examine the possible sym-
metries on Γm. This task is quite difficult given the possibility for many local
symmetries, not just symmetries with respect to D3. It doesn’t help that our analy-
sis of possible solution types is limited because of the lack of a working cGNGA;
in order to get possible ideas for definitions of equivalence, we need to see exam-
ples of solutions to analyze their symmetries. However, because a large chunk of
branches stem from bifurcation points of high multiplicity, we cannot guarantee
accurate analysis.

We can, however, examine branches that bifurcate from points of low multi-
plicity with confidence that our methods are accurate. Specifically, we can exam-
ine two groups of branches. Recall that bifurcation points on the u = 0 branch
(ie the ||u|| axis) occur at each of the eigenvalues on Γm. The branches that stem
from bifurcation points of multiplicity 1 or 2 are those obtained by taking the
eigenfunctions on Γ1 with λ = 3 and extending them down to eigenfunctions on
Γm by spectral decimation, and taking the eigenfunction on Γ2 with eigenvalue
5 and also extending down via spectral decimation. For the purposes of this pa-
per, we restrict our analysis to the two smallest positive eigenvalues on Γm, which
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are obtained by taking the eigenvalue 3 on Γ1 and extending it down via spectral
decimation, making sure that the eigenvalue gotten via (4.7) always comes from a
minus sign.

5.4.2 Analysis of the Branches from the Smallest Positive Eigenvalues

Before we look at the branches, we first make some adjustments to the basis.
We know from spectral decimation that there will be two elements of the basis
corresponding to the smallest positive eigenvalue. We modify these elements by
taking the even and odd projections corresponding to reflection about the vertex
q2, then replacing the current basis element with the projection with the highest
norm.

Figure 8: A bifurcation diagram on Γ3 for the smallest positive eigenvalues. There are
two primary branches: the dark blue branch with MI 2, and the light blue branch (and
daughters bifurcating off of it) with MI 3. The plot is ||u|| vs. s.

Consider the above bifurcation diagram for the smallest positive eigenvalues
on Γ3. As expected, there are two primary branches that bifurcate from the trivial
branch. The lower, dark blue branch is the one predicted by ([6]). This branch cor-
responds to the Morse Index 2 solution that changes sign exactly once. Solutions
on this branch are odd. There are no secondary bifurcations on this branch.

22



Figure 9: The CCN solution on Γ3.

In order to understand the more complicated branch, we first make some def-
initions. First, consider Γ2 as shown in Figure 2. It’s clear that Γ2 consists of
3 subgraphs connected to one another such that each subgraph is a copy of Γ1.
We say that bottom 2 Γ1 subgraphs are the ones on the left and right corners of
Γ2. On the next level, we see that Γ3 is composed of 3 subgraphs of Γ2, with
the bottom two being the left and right corners. Each of these Γ2 subgraphs have
2 Γ1 subgraphs on their left and right corners. From this, we say that Γ3 has 4
bottom Γ1 subgraphs, i.e. four subgraphs that lie adjacent to the bottom of the
triangle. We can recursively continue this analysis to conclude that Γm has 2m−1

Γm−k subgraphs on the bottom row.

Definition 5.2. Let ”+” denote evenness with respect to a D3 reflection, and let
”−” denote oddness with respect to a D3 reflection. A symmetry sequence of
length n on Γm is a list of n letters for n between 1 and m consisting of ”+” and
”−”, where the k’st letter denotes the corresponding symmetry on each of the
bottom 2k−1Γm−k subgraphs.

With this definition in hand, we can look at the behavior of the other sec-
ondary (i.e. non-CCN) branch. However, at the current moment, we have con-
flicting information. Our analysis on previously built C++ code suggests that the
following branch structure: each secondary branch corresponds to the following
pattern from the bottom: the first branch has symmetry sequence (+), the second
branch has trivial symmetry, the third branch has symmetry sequence (+,+), the
fourth branch has trivial symmetry. In general, every even numbered branch from
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the bottom has trivial symmetry, while every 2k − 1’st branch has a symmetry
sequence of k pluses. This pattern continues until we reach the last branch, which
has a symmetry sequence of m pluses. Our Matlab code suggest the branches all
have symmetry sequences whose first terms are all pluses and last terms are either
plus or minus. This discrepancy is likely due to our different methods of finding
the search direction at bifurcation points, as the Matlab code’s primary method of
finding search direction is different from the usual cGNGA.

Figure 10: A solution on Γ3 with symmetry sequence (+,+). For the corresponding
bifurcation diagram on the smallest positive eigenvalues of Γ3, this would correspond to
the third branch.

Nevertheless, our observations resulted in the following.

Proposition 5.3. Consider the set of symmetry sequences for Γm that consist of
”+” for all letters except possibly the last. Then each of the symmetry sequences
corresponds to a subspace of the function space of Γm that is invariant under the
map −Lu+ f(u) for f odd.

Proof outline: Obvious for Γ1. Assume this is true for Γm−1. Consider Γm; it
has 3 Γm−1 subgraphs. The invariance for each of the sequences on the edges not
connecting the Γm−1 subgraphs follows directly from the inductive assumption. It
remains to check the behavior at the edges connecting the subgraphs. The invari-
ance follows directly from the presence of the first letter in the sequence. Take
care to remember that the spaces of trivial symmetry are automatically invariant.
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Note that this result does not hold for any symmetry sequences that contain a
”−” but do not terminate afterwards. This can be seen by comparing the Lapla-
cians on the bottom row of Γm. Specifically, the two middle points will lack some
symmetry (the symmetry in question depending on the sequence).
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