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1 Introduction

The Ricci curvature tensor of an oriented Riemannian manifold M measures
the extent to which the volume of a geodesic ball on the surface differs from the
volume of a geodesic ball in Euclidean space. This statement is made precise
via the formula [1]:

ω1,...,n =

1− 1
6

n∑
i,j=1

Rij(m)xixj +O(|x|3)

ω1,...,n(m) (1)

where ω is the metric volume n-form for the metric tensor g defined on M and
Riemann normal coordinates are used. For the pseudo-Riemannian manifolds
of general relativity, the Ricci curvature tensor is typically approached from a
purely formulaic perspective by means of a trace of the Riemannian curvature
tensor. While this approach yields correct physical results in the form of the Ein-
stein equations, it does not lead to any meaningful geometric intuition. In this
paper, I show that Eq. 1 generalizes to four-dimensional pseudo-Riemannian
manifolds, quantitatively qualifying the statement that the Ricci curvature ten-
sor describes the extent to which a pseudo-Riemannian manifold in general
relativity differs from flat, Minkowski spacetime. I present images from the
Schwarzschild geometry to support this result pictorially and to lend geometric
intuition to the abstract notion of Ricci curvature for the pseudo-Riemannian
manifolds of general relativity.

2 Preliminary Definitions

The following definitions are taken from [1] and [2] unless otherwise noted.

Definition 1. A smooth manifold is a set M together with a specified C∞

structure on M such that the topology induced by the C∞ structure is Hausdorff
and paracompact. M is called orientable if its tangent bundle TM is orientable.
An orientation for TM is also called an orientation for M . A smooth manifold
M together with an orientation for M is said to be an oriented manifold.

I will henceforth refer to a smooth oriented manifold simply as a manifold.

Definition 2. A scalar product or metric tensor on a real finite dimensional
vector space V is a nondegenerate symmetric bilinear form

g : V × V → R.

Definition 3. A Riemannian metric tensor g is a nondegenerate, symmetric,
positive definite tensor field on a manifold M . The pair (M, g) is referred to as
a Riemannian manifold.

Definition 4. The index of a symmetric bilinear form g on V is the dimension
of the largest subspace W ⊂ V such that the restriction g|W is negative definite.
The index is denoted ind(g).
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Definition 5. A pseudo-Riemannian metric tensor g is a nondegenerate, sym-
metric tensor field with constant index on M . The pair (M, g) is referred to as
a pseudo-Riemannian manifold.

Note that for the case of a pseudo-Riemannian manifold in general relativity,
ind(g) = 1.

I now define the covariant derivative, which may be defined in several differ-
ent ways. In this section, I will give the most physically intuitive definition of
the covariant derivative, in terms of parallel transport [3].

Definition 6. Given a curve α(λ) in M , the covariant derivative ∇uT of a
tensor field T is defined by

∇uT |α(0) = lim
ε→0

T (α(ε))parallel-transported to α(0) − T (α(0))

ε
.

Definition 7. A geodesic of a (pseudo)-Riemannian manifold is a curve α
such that ∇α̇(α̇)|α(t) = 0 for all t. In other words, a geodesic is a curve that
parallel-transports its own tangent vector.

At this point, I wish to define the exponential map Expm, which takes an
element X of the tangent space TmM and returns a point in M by following a
geodesic starting at m with initial tangent vector X. The Fundamental Theorem
of (pseudo)-Riemannian geometry establishes the existence of the Levi-Cevita
connection on every (pseudo)-Riemannian manifold [4], which allows me to give
an equivalent definition for a geodesic as a solution to the equation

d2xα

dλ2
+
∑
β,γ

Γαβγ
dxβ

dλ

dxγ

dλ
= 0 (2)

for any affine parameter λ. By the existence and uniqueness of ordinary dif-
ferential equations, given m ∈ M , X ∈ TmM , there exists a unique maximal
geodesic γX(λ) such that γX(0) = m, dγX(d/dλ)|0 = X [5]. Thus, I may define
the exponential map according to

Expm(X) = γX(1). (3)

I further define the notion of a coordinate vector field.

Definition 8. X is said to be a coordinate vector field at m if there exist
constants a1, ..., an such that in a neighborhood of m,

X =
∑
α

aα
∂

∂xα
.

Definition 9. The Riemann curvature tensor field R of a (pseudo)-Riemannian
manifold M is given in terms of the covariant derivative by

R(X,Y ) = ∇[X,Y ] − [∇X ,∇Y ].
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for tangent vectors X,Y ∈ TM . In local coordinates, one may define

〈Xδ, RXαXβ
Xγ〉 = Rδαβγ

to be a coordinate expression of the Riemann curvature tensor.

Definition 10. The Ricci curvature tensor field Rαβ is given by

Rαβ =
∑
γ

Rγαγβ .

Definition 11. Suppose that dim(M) = n. The metric volume form induced
by the metric tensor g is the n-form ω such that ωm is the metric volume form
on TmM matching the orientation. If (U, x) is a positively oriented chart on
M , then

ω|U =
√
|det g|dx1 ∧ ... ∧ dxn.

Furthermore, all covariant derivatives of ω vanish for a (pseudo)-Riemannian
manifold.

Note that much of the formalism of Riemannian geometry carries over to
the pseudo-Riemannian case. It comes as little surprise, therefore, that the
expansion of Eq. 1 applies to pseudo-Riemannian manifolds, as I will show in
the following section.

3 Taylor Expansion of the Metric Volume Form

The following proof closely parallels that of A. Gray in [1] in the Riemannian
case. In fact, no result up to and including Lemma 2.5 in [1] uses positive-
definiteness of the metric tensor, so I may take this lemma as a starting point
even in the case of pseudo-Riemannian manifolds:

Lemma 12. Take m ∈ M and let Xα ∈ TM be coordinate vector fields that
are orthonormal at m. Then,

(∇2
αβXγ)(m) + (∇2

βαXγ)(m) = −1
3

(RXαXγ
Xβ)(m)− 1

3
(RXβXγ

Xα)(m).

The remainder of the proof is essentially the same, but I must take extra care
in dealing with raised vs. lowered indices when dealing with pseudo-Riemannian
manifolds.

Let (M, g) be an analytic pseudo-Riemannian manifold of signature (n, 1)
(i.e. ind(g)= 1, dim(M)= n + 1). Let ω be the metric volume form, defined
in a neighborhood of m. Let X0, ..., Xn denote coordinate vector fields that are
orthonormal at m, and let (x0, ..., xn) be the corresponding normal coordinate
system (here x0 should be thought of as the time coordinate). Define

ω0,..,n ≡ ω(X0, ..., Xn).
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Then there exists a power series expansion

ω0,...,n = ω0,...,n(m)+
n∑
α=0

(Xαω0,...,n)(m)xα+
1
2

n∑
α,β=0

(XαXβω0,...,n)(m)xαxβ+O(|x|3).

(4)
For the first-order term, I have

(Xαω0,...,n)(m) = (∇αω)(X0, ..., Xn)(m) +
n∑
β=0

ω(X0, ...,∇αXβ , ..., Xn).

But, all covariant derivatives of ω vanish, so the first term in the sum vanishes.
Furthermore, ∇αXβ = 0, so that the first-order term drops out altogether. For
the second-order term,

1
2

n∑
α,β=0

(XαXβω0,...,n)(m)xαxβ =
1
2

n∑
α,β=0

(∇α∇βω)(X0, ..., Xn)(m)xαxβ

+
n∑

α,β,γ=0

(∇αω)(X0, ...,∇βXγ , ..., Xn)(m)xαxβ

+ 1
2

n∑
α,β,γ,δ=0

ω(X0, ...,∇αXγ , ...,∇βXδ, ..., Xn)(m)xαxβ .

Again, the first two terms of this sum vanish because all covariant derivatives
of ω vanish. Furthermore, all first covariant derivatives ∇αXγ vanish because
the vector fields Xγ are coordinate vector fields. Hence, only second derivatives
contribute, so I am left with

1
2

n∑
α,β=0

(XαXβω0,...,n)(m)xαxβ =
1
2

n∑
α,β,γ=0

ω(X0, ...,∇2
αβXγ , ..., Xn)(m)xαxβ .

Here, I project onto the basis of coordinate vectors, yielding

=
1
2

n∑
α,β,γ,ν=0

〈Xν ,∇2
αβXγ〉ω(X0, ..., Xγ−1, Xν , Xγ+1, ..., Xn)(m)xαxβ .

By definition of ω, this vanishes unless ν = γ, so the sum collapses to

=
1
2

n∑
α,β,γ=0

〈Xγ ,∇2
αβXγ〉ω0,...,n(m)xαxβ .

By Lemma 12, I have

(∇2
αβXγ)(m) + (∇2

βαXγ)(m) = −1
3

(RXαXγXβ)(m)− 1
3

(RXβXγXα)(m).
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This yields,

1
2

n∑
α,β=0

(XαXβω0,...,n)(m)xαxβ = 1
2

n∑
α,β,γ=0

〈Xγ ,−1
3
RXαXγ

Xβ〉ω0,...,n(m)xαxβ

= − 1
6

n∑
α,β,γ=0

Rγαγβω0,...,n(m)xαxβ

= − 1
6

n∑
α,β=0

Rαβω0,...,n(m)xαxβ .

So indeed, I find

ω0,...,n =

1− 1
6

n∑
α,β=0

Rαβx
αxβ +O(|x|3)

ω0,...,n(m). (5)

4 Application to the Schwarzschild Geometry

The Schwarzschild metric, which describes the geometry outside a spherical star
or black hole of mass M , is given by the line element,

ds2 = −
(

1− 2M
r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2(dθ2 + sin2 θdφ2) (6)

in units where both the speed of light and the Newton gravitational constant
are set to 1, c = G = 1. The Christoffel symbols for this geometry are given in
Appendix A. By spherical symmetry, analysis may be constrained to the x-y
plane by setting θ = π/2. With this, the geodesic equation of Eq. 2 yields,

d2t

dλ2
+

2M
r2

(
1− 2M

r

)−1
dt

dλ

dr

dλ
= 0

d2r

dλ2
+
M

r2

(
1− 2M

r

)(
dt

dλ

)2

−M
r2

(
1− 2M

r

)−1(
dr

dλ

)2

−(r−2M)
(
dφ

dλ

)2

= 0

d2φ

dλ2
+

2
r

dr

λ

dφ

dλ
= 0 (7)

Given any point m = (t, r, π/2, φ), with r 6= 0, 2M , these geodesic equations
induce a well defined exponential map from the tangent space TmM to the
manifold M . We may further examine the geodesic balls that result from taking
the exponential map at m in all directions. In flat Minkowski space, these
geodesic balls are actually spheres. The images in Figure 1 show how geodesic
balls in the Schwarzschild geometry gradually deform from perfect spheres as
their radii increase.
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Figure 1: Geodesic balls outside r = 2M . Balls computed via the exponential
map at the point m = (0, 5M,π/2, 0) become more deformed as their radius
increases (τ = 0.1, 0.5, 1, 2 and 3M , respectively).
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As expected, the small geodesic ball of radius 0.1M is approximately spher-
ical. As the radius increases to 3M , the balls become progressively more mis-
shapen. The images of Figure 2 tell a similar story, this time for geodesic balls
inside the “Schwarzschild radius” of r = 2M .

Figure 2: Geodesic balls inside r = 2M . Balls computed via the exponential
map at the point m = (0,M, π/2, 0) become more deformed as their radius
increases (τ = 0.01, 0.05, 0.1, and 0.3M , respectively), just as in the case for
r > 2M .

In both sets of images, the geodesics slow down as they approach the Schwarzschild
radius, which may have been expected since r → 2M implies t → ∞ in the
Schwarzschild geometry. As r → 0,∞, the geodesic ball comes to more of a
point. Given these images, it is not difficult to imagine that as the radius τ of
a four-dimensional geodesic ball approaches 0 for any r 6= 0, 2M , the volume of
the ball should approach 1

2π
2τ4 + O(τ7), in keeping with the results of §3 and

the fact that Rαβ = 0 for the Schwarzschild geometry (c.f. Appendix A).

5 Conclusion

I have shown that the Taylor expansion of the metric volume form in terms
of the Ricci curvature tensor applies to pseudo-Riemannian manifolds. This
expansion provides an intuitive way to understand the Ricci curvature tensor of
general relativity, quantifying the statement that the Ricci curvature measures
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the extent to which a particular spacetime geometry differs from flat Minkowski
space.

I have verified this result pictorially in the case of the Schwarzschild geome-
try, demonstrating that small geodesic balls are nearly perfect spheres but that
they deform as the radius increases. Hence, the volume of such a geodesic ball
differs from the volume of a geodesic ball in Minkowski space by an increasing
amount as the radius of the ball increases.
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A Schwarzschild Geometry

The Schwarzschild metric is given by the line element in Eq. 6. This metric
induces Christoffel symbols [6],

Γttr = (M/r2)(1− 2M/r)−1 , Γθrθ = 1/r

Γrtt = (M/r2)(1− 2M/r) , Γθφφ = − cos θ sin θ

Γrrr = −(M/r2)(1− 2M/r)−1 , Γφrφ = 1/r

Γrθθ = −(r − 2M) , Γφθφ = cot θ

Γrφφ = −(r − 2M) sin2 θ. (8)

By Birkhoff’s theorem, the Schwarzschild metric is the unique spherically
symmetric solution to the vacuum Einstein field equations, Gαβ = Rαβ = 0 [3].
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