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1 Introduction

The Ricci curvature tensor of an oriented Riemannian manifold M measures
the extent to which the volume of a geodesic ball on the surface differs from the
volume of a geodesic ball in Euclidean space. This statement is made precise
via the formula [1]:
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where w is the metric volume n-form for the metric tensor g defined on M and
Riemann normal coordinates are used. For the pseudo-Riemannian manifolds
of general relativity, the Ricci curvature tensor is typically approached from a
purely formulaic perspective by means of a trace of the Riemannian curvature
tensor. While this approach yields correct physical results in the form of the Ein-
stein equations, it does not lead to any meaningful geometric intuition. In this
paper, I show that Eq. 1 generalizes to four-dimensional pseudo-Riemannian
manifolds, quantitatively qualifying the statement that the Ricci curvature ten-
sor describes the extent to which a pseudo-Riemannian manifold in general
relativity differs from flat, Minkowski spacetime. I present images from the
Schwarzschild geometry to support this result pictorially and to lend geometric
intuition to the abstract notion of Ricci curvature for the pseudo-Riemannian
manifolds of general relativity.

2 Preliminary Definitions

The following definitions are taken from [1] and [2] unless otherwise noted.

Definition 1. A smooth manifold is a set M together with a specified C*°
structure on M such that the topology induced by the C*° structure is Hausdorff
and paracompact. M is called orientable if its tangent bundle T M is orientable.
An orientation for TM is also called an orientation for M. A smooth manifold
M together with an orientation for M is said to be an oriented manifold.

I will henceforth refer to a smooth oriented manifold simply as a manifold.

Definition 2. A scalar product or metric tensor on a real finite dimensional
vector space V is a nondegenerate symmetric bilinear form

g:VxV—=R.

Definition 3. A Riemannian metric tensor g is a nondegenerate, symmetric,
positive definite tensor field on a manifold M. The pair (M, g) is referred to as
a Riemannian manifold.

Definition 4. The index of a symmetric bilinear form g on 'V is the dimension
of the largest subspace W C V such that the restriction glw is negative definite.
The index is denoted ind(g).



Definition 5. A pseudo-Riemannian metric tensor g is a nondegenerate, sym-
metric tensor field with constant index on M. The pair (M, g) is referred to as
a pseudo-Riemannian manifold.

Note that for the case of a pseudo-Riemannian manifold in general relativity,
ind(g) = 1.

I now define the covariant derivative, which may be defined in several differ-
ent ways. In this section, I will give the most physically intuitive definition of
the covariant derivative, in terms of parallel transport [3].

Definition 6. Given a curve a()\) in M, the covariant derivative V,,T of a
tensor field T is defined by

T(O‘(e))pamllel—tmnsported to a(0) — T(a(0))
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Definition 7. A geodesic of a (pseudo)-Riemannian manifold is a curve «
such that Va(&)|a@) = 0 for all t. In other words, a geodesic is a curve that
parallel-transports its own tangent vector.

At this point, I wish to define the exponential map Exp,,, which takes an
element X of the tangent space T,, M and returns a point in M by following a
geodesic starting at m with initial tangent vector X. The Fundamental Theorem
of (pseudo)-Riemannian geometry establishes the existence of the Levi-Cevita
connection on every (pseudo)-Riemannian manifold [4], which allows me to give
an equivalent definition for a geodesic as a solution to the equation
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for any affine parameter A. By the existence and uniqueness of ordinary dif-
ferential equations, given m € M, X € T,,M, there exists a unique maximal
geodesic yx (A) such that yx(0) = m, dyx(d/d\)|o = X [5]. Thus, I may define
the exponential map according to

Exp,,,(X) = vx(1). (3)
I further define the notion of a coordinate vector field.

Definition 8. X is said to be a coordinate vector field at m if there exist
constants a', ...,a" such that in a neighborhood of m,
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Definition 9. The Riemann curvature tensor field R of a (pseudo)-Riemannian
manifold M is given in terms of the covariant derivative by

R(X,Y)=Vixy — [Vx,Vy].



for tangent vectors X, Y € TM. In local coordinates, one may define
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to be a coordinate expression of the Riemann curvature tensor.

Definition 10. The Ricci curvature tensor field Rog is given by
Rap = Z R
¥

Definition 11. Suppose that dim(M) = n. The metric volume form induced
by the metric tensor g is the n-form w such that wy, is the metric volume form
on TnM matching the orientation. If (U,x) is a positively oriented chart on

M, then
wly = /| det gldzt A ... A dz™.

Furthermore, all covariant derivatives of w vanish for a (pseudo)-Riemannian
manifold.

Note that much of the formalism of Riemannian geometry carries over to
the pseudo-Riemannian case. It comes as little surprise, therefore, that the
expansion of Eq. 1 applies to pseudo-Riemannian manifolds, as I will show in
the following section.

3 Taylor Expansion of the Metric Volume Form

The following proof closely parallels that of A. Gray in [1] in the Riemannian
case. In fact, no result up to and including Lemma 2.5 in [1] uses positive-
definiteness of the metric tensor, so I may take this lemma as a starting point
even in the case of pseudo-Riemannian manifolds:

Lemma 12. Take m € M and let X, € TM be coordinate vector fields that
are orthonormal at m. Then,

(V25X,)(m) + (V3o X )(m) = 3 (Rx,.x, Xo)(m) — 3 (Rx,x, Xa) ().

The remainder of the proof is essentially the same, but I must take extra care
in dealing with raised vs. lowered indices when dealing with pseudo-Riemannian
manifolds.

Let (M, g) be an analytic pseudo-Riemannian manifold of signature (n,1)
(i.e. ind(g)= 1, dim(M)= n + 1). Let w be the metric volume form, defined
in a neighborhood of m. Let X, ..., X,, denote coordinate vector fields that are
orthonormal at m, and let (2°,...,2™) be the corresponding normal coordinate
system (here 2° should be thought of as the time coordinate). Define

wo...n = wW(Xo, ooy X))
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Then there exists a power series expansion
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For the first-order term, I have

(Xawo,..n)(m) = (Vaw)(Xo, oo, Xp)(m) + Y (X0, 000, Va X, s Xn).
B=0

But, all covariant derivatives of w vanish, so the first term in the sum vanishes.

Furthermore, V,Xg = 0, so that the first-order term drops out altogether. For
the second-order term,
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Again, the first two terms of this sum vanish because all covariant derivatives
of w vanish. Furthermore, all first covariant derivatives V,.X, vanish because
the vector fields X, are coordinate vector fields. Hence, only second derivatives
contribute, so I am left with

n
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Here, I project onto the basis of coordinate vectors, yielding

1 n
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By definition of w, this vanishes unless v = =, so the sum collapses to
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By Lemma 12, I have

1(RXBXWAXO‘)(’rn).

(V25X,)(m) + (V3 X,)(m) = =3 (Rx,.x, Xo)(m) — 5



This yields,
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So indeed, I find

1 n
wo,.m=[1- g Z Ropz®z? + O(|z]?) | wo,...n(m). (5)
a,B=0

4 Application to the Schwarzschild Geometry

The Schwarzschild metric, which describes the geometry outside a spherical star
or black hole of mass M, is given by the line element,

oM oM\
ds® = — (1 - r) dt* + (1 - r) dr? +1%(d9* + sin 6de*)  (6)

in units where both the speed of light and the Newton gravitational constant
are set to 1, ¢ = G = 1. The Christoffel symbols for this geometry are given in
Appendix A. By spherical symmetry, analysis may be constrained to the z-y
plane by setting § = w/2. With this, the geodesic equation of Eq. 2 yields,

2t 2M oM\ ' at dr
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Given any point m = (t,r,7/2,¢), with r # 0,2M, these geodesic equations
induce a well defined exponential map from the tangent space T,,M to the
manifold M. We may further examine the geodesic balls that result from taking
the exponential map at m in all directions. In flat Minkowski space, these
geodesic balls are actually spheres. The images in Figure 1 show how geodesic
balls in the Schwarzschild geometry gradually deform from perfect spheres as
their radii increase.
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Figure 1: Geodesic balls outside r = 2M. Balls computed via the exponential
map at the point m = (0,5M,7/2,0) become more deformed as their radius
increases (7 = 0.1,0.5,1,2 and 3M, respectively).
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As expected, the small geodesic ball of radius 0.1M is approximately spher-
ical. As the radius increases to 3M, the balls become progressively more mis-
shapen. The images of Figure 2 tell a similar story, this time for geodesic balls
inside the “Schwarzschild radius” of r = 2M.
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Figure 2: Geodesic balls inside » = 2M. Balls computed via the exponential
map at the point m = (0, M,7/2,0) become more deformed as their radius
increases (7 = 0.01,0.05,0.1, and 0.3M, respectively), just as in the case for
r>2M.

In both sets of images, the geodesics slow down as they approach the Schwarzschild
radius, which may have been expected since r — 2M implies t — oo in the
Schwarzschild geometry. As r — 0,00, the geodesic ball comes to more of a
point. Given these images, it is not difficult to imagine that as the radius 7 of
a four-dimensional geodesic ball approaches 0 for any r # 0,2M, the volume of
the ball should approach %7‘(27'4 + O(77), in keeping with the results of §3 and
the fact that Ro3 = 0 for the Schwarzschild geometry (c.f. Appendix A).

5 Conclusion

I have shown that the Taylor expansion of the metric volume form in terms
of the Ricci curvature tensor applies to pseudo-Riemannian manifolds. This
expansion provides an intuitive way to understand the Ricci curvature tensor of
general relativity, quantifying the statement that the Ricci curvature measures



the extent to which a particular spacetime geometry differs from flat Minkowski
space.

I have verified this result pictorially in the case of the Schwarzschild geome-
try, demonstrating that small geodesic balls are nearly perfect spheres but that
they deform as the radius increases. Hence, the volume of such a geodesic ball
differs from the volume of a geodesic ball in Minkowski space by an increasing
amount as the radius of the ball increases.
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A Schwarzschild (Geometry

The Schwarzschild metric is given by the line element in Eq. 6. This metric
induces Christoffel symbols [6],

Iy, = (M/r*) 1 —=2M/r)"", Tl =1/r
IT = (M/r?)(1 —2M/r), F%:fcos&sinO
F;r:,(M/T2)(172M/T)*1’ Ff(b:l/r
Ihe = —(r—2M), FS¢ = cot §
v = —(r—2M) sin? 6. (8)

By Birkhoff’s theorem, the Schwarzschild metric is the unique spherically
symmetric solution to the vacuum Einstein field equations, Go3 = Ras = 0 [3].
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