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Abstract

It is a standard fact of linear algebra that all bases of a vector space have the same cardinality,
namely the dimension of the vector space over its base field. If we treat a vector space as an
additive abelian group, then this is equivalent to saying that an irredundant generating set for a
vector space must have cardinality equal to the dimension of the vector space. The same is not
true for groups in general. For example, even a relatively simple group like Z6 can be generated
by either 1 or 2 elements (〈1〉 = 〈5〉 = 〈2, 3〉 = 〈4, 3〉). This paper seeks to count the number of
irredundant generating sets for direct products of elementary abelian groups, which turns out to
be easily generalizable to finite nilpotent groups. We first define a function that counts partitions
of a disjoint union of sets such that each block of the partition . This function allows us to break
down the problem such that we need only consider the direct summands of the group. Since these
turn out to be finite vector spaces, we use linear algebraic methods to study their properties. By
combining formulas from each vector space with the function that counts special partitions, we are
able to count irredundant generating sets of the original group.
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Chapter 1

Introduction

Definition 1.0.1 Given a group, G, and a finite subset S ⊆ G, S is an irredundant generating
k-set of G if it satisfies the following properties:

1. |S| = k

2. 〈S〉 = G

3. ∀g ∈ S, 〈S \ g〉 � 〈S〉

A subset which satisfies condition 2 is generating, while a subset that satisfies condition 3 is
irredundant.

Let r(G) denote the smallest k such that there exist an irredundant generating k-set, and m(G)
denote the largest such k. If G is a vector space of dimension n, an irredundant generating set
is simply a basis. All bases of a vector space have the same cardinality, so r(G) = m(G) = n.
For a general group, however, it is usually the case that r(G) � m(G). Tarski’s irredundant basis
theorem [9] states that if r(G) ≤ k ≤ m(G), then there exist irredundant generating k-sets. We
would like to answer the question, “How many?”

Definition 1.0.2 Let φk(G) denote the number of irredundant generating k-sets of G.

If G is a finite vector space of dimension d over a field F, then φk(G) 6= 0 iff d = k, and in par-
ticular, is equal to 1

d! |GL(F, d)|. However, determining φk(G) turns out to be very tricky for groups
that are not vector spaces. One might think that a similarly easy result might hold for cyclic groups,
but this is not the case. Consider any cyclic group of square-free order, G = Zm,m = p1p2 . . . pn,
where pi, 1 ≤ i ≤ n, are distinct primes. Then φ1(G) counts the number of generators of G, which
are simply the integers (mod m) that are relatively prime to m. So φ1(G) = φ(m), where the φ on
the right is the Euler totient function.

At the other end of the spectrum, φn(G) = φ(m) as well. This follows from the direct decom-
position of G as Zp1 × · · · × Zpn . An element g ∈ G can then be written g = (g1, . . . , gn), gi ∈ Zpi ,
where the superscripts are merely indices, not powers. It is not hard to show that any irredundant
generating n-set of G can be written in the form g1, . . . , gn, where gi = (g1

i , g
2
i , . . . , g

n
i ) is such that

gji 6= 0 ⇐⇒ i = j. The number of irredundant generating n-sets of G is then the number of ways
to choose one non-zero element from each Zpi , which turns out to be φ(p1)φ(p2) . . . φ(pn) = φ(m).

Things become more complicated for 1 < k < n. This paper grew out of an attempt to find
φk(G) for such groups. It turns out that the lattice of subgroups of G ∼= Zp1 × · · ·×Zpn , pi distinct
primes, is isomorphic to Bn, the lattice of subsets of [n], and the problem of finding φk(G) is closely
related to finding the number of minimal k-covers of [n].
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Definition 1.0.3 Given [n] and a finite subset S ⊆ [n], S is a minimal k-cover of [n] if it
satisfies the following properties:

1. |S| = k

2.
⋃
s∈S s = [n]

3. ∀r ∈ S,
⋃
s∈S\r s ( G

The definitions for minimal covers and irredundant generating sets are very similar. The notion
of “minimal” corresponds to “irredundant”, while “cover” corresponds to “generating”. Let φk(n)
denote the number of minimal k-covers of [n]. Formulas for φk(n) are presented in [3] and [5],
although in different forms. We present here the formula from [3], since it is instructive for our
purpose:

Theorem 1.0.4

φk(n) =

n∑
i=k

(
n

i

){
i
k

}
(2k − k − 1)n−i (1.1)

where

{
n
k

}
are the Stirling numbers of the second kind.

A proof of the theorem, as well as some observations about its relation to φk(G) where G is
cyclic of square-free order, will be given as a corollary at the end of the thesis. Here, it suffices to
note that this theorem results from the following lemma:

Lemma 1.0.5

φk(n) =
∑
s⊆[n]

{
|s|
k

}
(2k − k − 1)n−|s| (1.2)

Roughly speaking, the Stirling numbers account for the “irredundant” property, while 2k−k−1
accounts for “generating”. This thesis formalizes and generalizes these two quantities and presents
an analogous formula for φk(G) when G is finite and is a direct product of elementary abelian
groups. This result is then easily extended to finite nilpotent groups, because the quotient of a
nilpotent group by its Frattini subgroup is a direct product of elementary abelian groups.

The outline of this thesis is as follows:
In Chapter 2, we present some basic definitions and properties of posets and lattices. We also

introduce the Möbius function as well as the technique of Möbius inversion.
Chapter 3 focuses on partition lattices and formulas associated with them. We will introduce a

generalization of partitions for disjoint unions of sets, which we call the product partition.
Chapter 4 is a study of finite vector spaces and their lattice of subspaces. We survey a few

q-analogues of combinatorial identities on sets that can be applied to vector spaces over Fq, where
q is a prime. We also study the nullspaces of linear transformations over these vector spaces, and
show that they can tell us “how dependent” a set of vectors is.

Chapter 5 starts by showing that a finite nilpotent group can be quotiented by its Frattini
subgroup to get a direct product of elementary abelian groups. We then combine the results from
Chapters 3 and 4 to obtain a formula for counting irredundant generating sets of this quotient.
This is presented in the main theorem, Theorem 5.3.5.

Chapter 6 generalizes the proof of the main theorem to give a formula for counting irredundant
generating sets in direct products of lattices. We will recover Theorem 1.0.4 as a corollary.

SAGE implementations and computational verification of some of the functions introduced in
this paper can be found at

http://sagenb.org/home/pub/4673/

http://sagenb.org/home/pub/4673/


Chapter 2

Posets, Lattices and the Möbius
Function

In this chapter, we summarize some standard combinatorial notions regarding posets, lattices, their
direct products, the Möbius function on a poset and Möbius inversion. A comprehensive treatment
of these topics can be found in standard combinatorics texts such as [8].

2.1 Basic Definitions

Definition 2.1.1 A poset, P , is a set with a binary relation (usually denoted ≤) that is

1. Reflexive: x ≤ x

2. Anti-symmetric: x ≤ y and y ≤ x =⇒ x = y

3. Transitive: x ≤ y and y ≤ z =⇒ x ≤ z

for all x, y, z ∈ P .

The least and greatest elements of P , if they exist, are denoted 0̂P and 1̂P , respectively. In this
thesis, all posets will be finite, and will contain 0̂ and 1̂ such that 0̂ 6= 1̂.

Definition 2.1.2 Given (P,≤P ), (Q,≤Q) posets, a poset homomorphism from P to Q is a
function f : P → Q that preserves order. i.e. for all x, y ∈ P ,

x ≤P y =⇒ f(x) ≤Q f(y)

A poset isomorphism is a bijection f : P → Q such that f−1 is also order preserving. i.e. for all
x, y ∈ P ,

x ≤P y ⇐⇒ f(x) ≤Q f(y)

Definition 2.1.3 Given (P,≤) a poset, the dual poset of P is the poset (P,≤∗) with order
relation ≤∗ defined by

x ≤∗ y ⇐⇒ y ≤ x

A poset is self-dual if it is isomorphic to its dual.

Definition 2.1.4 Given a poset P , a subposet of P is a subset S ⊆ P with the order relation ≤
induced by that of P :

x ≤ y ∈ S ⇐⇒ x ≤ y ∈ P

3
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Definition 2.1.5 For x, y ∈ P , we may also define the interval [x, y] := {z ∈ P |x ≤ z ≤ y},
which is a subposet of P . In this interval, 0̂[x,y] = x and 1̂[x,y] = y.

Definition 2.1.6 Given a poset, (P,≤), and elements x < y ∈ P , then y covers x if there does
not exist z ∈ P such that x < z < y. We denote this relation by xl y.

Definition 2.1.7 An element x ∈ P containing 0̂P is an atom if it covers 0̂P . Dually, an element
x ∈ P containing 1̂P is a coatom if it is covered by 1̂P . We denote by A(P ) and CoA(P ) the set
of atoms and coatoms of P , respectively.

Definition 2.1.8 A chain or linear order is a poset in which any two elements are comparable
i.e. a totally ordered set. A subset C ⊆ P is called a chain if C is a chain when regarded as a
subposet of P . The length of a chain is l(C) := |C| − 1. A chain in P is maximal if it is not
contained in any other chain in P .

The poset [n] = {1, 2, . . . , n} equipped with the standard ordering of integers is a chain of length
n− 1. We may thus also say that C is a chain if C is isomorphic to [n] where n = |C| − 1.

Definition 2.1.9 P is a graded poset if there exists a rank function, ρ : P → N such that

• x < y =⇒ ρ(x) < ρ(y)

• xl y =⇒ ρ(y) = ρ(x) + 1

If P contains 0̂P and is graded, it is convenient to set

ρ(0̂P ) = 0.

If P also contains 1̂P , we may define the rank of P to be

ρ(P ) := ρ(1̂P ).

If P is such that all maximal chains have the same length, then it turns out that ∀x ∈ P , all
maximal chains in the interval [0̂, x] have the same length. If we let ρ(x) := l(C), where C is any
maximal chain from 0̂ to x, then it is easy to see that ρ is a rank function on P . In fact, if P is
finite and contains both 0̂ and 1̂, then P is graded iff all maximal chains of P have the same length
[8].

Definition 2.1.10 A poset (L,≤) is a lattice if ∀a, b ∈ L

• ∃a ∨ b ∈ L such that a ∨ b ≥ a, b

• ∃a ∧ b ∈ L such that a ∧ b ≤ a, b

a ∨ b and a ∧ b are called the meet (or least upper bound) and join (or greatest lower bound),
respectively, of a and b.

If L is finite, then L contains 1̂L :=
∨
x∈L x and 0̂L :=

∧
x∈L x, respectively.

Definition 2.1.11 Let (L1,∧1,∨1) and (L2,∧2,∨2) be lattices, and let f : L1 → L2 be a poset
homomorphism. Then f is also a lattice-homomorphism if it preserves meets and joins. i.e.

f(x ∧1 y) = f(x) ∧2 f(y)

f(x ∨1 y) = f(x) ∨2 f(y)

One may check that a bijective lattice homomorphism is automatically a lattice isomorphism
(note that this is not true if we replace “lattice” with “poset”). For L a lattice, we may also define
the dual lattice, L∗, to be the lattice with ∧ and ∨ reversed.
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Definition 2.1.12 A semi-modular lattice is a finite graded lattice such that

∀x, y ∈ L, ρ(x) + ρ(y) ≥ ρ(x ∨ y) + ρ(x ∧ y)

Definition 2.1.13 L is atomistic if every element is the join of a set of atoms. Dually, L is
coatomistic if every element is the meet of a set of coatoms.

Definition 2.1.14 Γ is a geometric lattice if it is finite, atomistic and semi-modular.

The lattice of subsets, Bn, of a set [n], the lattice of subspaces, Bn(q) of Fnq , and the lattice of
partitions, Πn of [n] all turn out to be geometric lattices [8].

2.2 Direct Products

Given posets, P1, P2, . . . , Pn, we can also form their direct product in the following manner:

Definition 2.2.1 The direct product, P = P1, P2, . . . , Pn is the set P1×P2×· · ·×Pn equipped
with the order relation:

(x1, x2, . . . , xn) ≤ (y1, y2, . . . , yn) ⇐⇒ xi ≤ yi for all 1 ≤ i ≤ n

If P1, . . . Pn are posets with respective least and greatest elements 0̂i 6= 1̂i, then

0̂P := (0̂1, . . . , 0̂n)

1̂P := (1̂1, . . . , 1̂n)

are the least and greatest elements of P = P1 × · · · × Pn
Each Pi sits inside P = P1 × · · · × Pn as the subposet {x1} × · · · × Pi × · · · × {xn}, where xj is

any element of Pj . If each Pi contains 0̂i 6= 1̂i, we may define the following inclusions:

ιi : Pi → P, x 7→ (0̂1, . . . , x, . . . , 0̂n) (2.1)

Ii : Pi → P, x 7→ (1̂1, . . . , x, . . . , 1̂n) (2.2)

where the x is in the ith position.
It is easy to verify that for (x1, . . . , xn), (y1, . . . , yn) ∈ P , we have

(x1, . . . , xn)l (y1, . . . , yn) ⇐⇒ ∃i such that xi l yi and xj = yj ,∀j 6= i

Under the above definition of covering in P , we have:

A(P ) =

n⋃
i=1

ιi(A(Pi))

CoA(P ) =

n⋃
i=1

Ii(CoA(Pi))

Further, if P1, . . . Pn are graded, with respective rank functions ρi such that ρi(0̂i) = 0 for all i,
then P is graded, with rank function:

ρ(x1 . . . , xn) =

n∑
i=1

ρi(xi)
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2.3 The Möbius Function and Möbius Inversion

The Möbius function on a poset P with 0̂ and 1̂ is a map

µ : P × P −→ Z (2.3)

In fact, the range of the function can be any abelian group, but for our purposes, we set it to be Z.
The function is defined as the function that satisfies, for all x, y ∈ P :

µ(x, x) = 1 (2.4)∑
x≤z≤y

µ(x, z) = 0 (2.5)

∑
x≤z≤y

µ(z, y) = 0 (2.6)

(2.7)

This allows us to compute µ(x, y) recursively via either of the two formulas

µ(x, y) = −
∑

x≤z<y

µ(x, z), x < y (2.8)

µ(x, y) = −
∑

x<z≤y

µ(z, y), x < y (2.9)

The Möbius function is particularly useful when we let µ take values in Z because of the Möbius
inversion formula, which can be found in most combinatorics texts, including [8].

Proposition 2.3.1 (Möbius Inversion) Let P be a finite poset with 0̂, 1̂. Let f, g : P → F, where
F is a field. Then

g(x) =
∑
y≤x

f(y), for all x ∈ P (2.10)

if and only if

f(x) =
∑
y≤x

µ(y, x)g(y), for all x ∈ P (2.11)

Just as the Möbius function can be calculated recursively in two (equivalent) ways, the Möbius
inversion formula has an alternative form:

Proposition 2.3.2 Let P be a finite poset with 0̂, 1̂. Let f, g : P → F, where F is a field. Then

g(x) =
∑
y≥x

f(y), for all x ∈ P (2.12)

if and only if

f(x) =
∑
y≥x

µ(x, y)g(y), for all x ∈ P (2.13)

All we have changed is whether x or y is greater. Which formulation we use depends on what
we are trying to compute. Often, f is the function we want. The formulas tell us that if we know
either

∑
y≤x f(y) or

∑
y≥x f(y), then we have a formula for f .

It turns out that the Möbius function behaves nicely on direct products of posets.

Proposition 2.3.3 Let P1, . . . , Pn be posets with 0̂i, 1̂i, and Möbius functions µi. Let P = P1×· · ·×Pn.
Then for x = (x1, . . . , xn),y = (y1, . . . , yn), xi, yi ∈ Pi,

µ(x,y) =

n∏
i=1

µ(xi, yi) (2.14)

A proof can be found in most standard combinatorics texts or texts on lattices, including [8]
and [2].
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2.4 Linear Orders

We end of this chapter by giving an example of a direct product of posets, and its Möbius function.
This poset, however, is not a geometric lattice. First, we consider the linear order, [n].

Proposition 2.4.1 Let L = [n], then for x, y ∈ L,

µ(x, y) =

 1 if x = y
−1 if y = x+ 1

0 otherwise
(2.15)

We can form the direct product of n linear orders to obtain a set of n-tuples ordered by

(x1, . . . , xn) ≤ (y1, . . . , yn) ⇐⇒ xi ≤ yi,∀i

The Möbius function on this product is then:

µ
(
(x1, . . . , xn), (y1, . . . , yn)

)
=

{
(−1)

∑m
i=1(yi−xi) if 0 ≤ yi − xi ≤ 1 for all i
0 otherwise

Suppose we have functions f and g defined on [m1]× · · · × [mn] such that:

f(x1, . . . , xn) =

x1∑
i1=1

x2∑
i2=1

· · ·
xn∑
in=1

g(i1, . . . , in)

Then this is equivalent to:

f(x) =
∑

1≤y≤x

g(y)

where boldface indicates tuples, and 1 = (1, . . . , 1). We can then apply Möbius inversion on
[m1]× · · · × [mn] to obtain:

g(x) =
∑

1≤y≤x

µ(y,x)f(y)
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Chapter 3

Partitions

In this chapter, we study the lattice of partitions of [n], and then proceed to define a special kind
of partition on a disjoint union of sets.

3.1 Partition Lattices

Definition 3.1.1 A partition of [n] := {1, 2, . . . , n} is a collection, π := {B1, B2, . . . , Bk} of
non-empty subsets ∅ 6= Bi ⊆ [n] satisfying:

1.
⋃n
i=1Bi = [n]

2. ∀i 6= j, Bi ∩Bj = ∅

The subsets, Bi are called blocks, and the partition π is a k-partition if it contains k blocks. We
write |π| = k.

Definition 3.1.2 The lattice of partitions of an n-set, denoted Πn, is the set of partitions of [n]
with the ordering ≤ defined such that for partitions π = {B1, B2, . . . , Bk} and θ = {C1, . . . , Cl},

π ≤ θ ⇐⇒ ∀i ∈ [k],∃j ∈ [l] such that Bi ⊆ Cj

This is called the ordering by refinement. Under this ordering, the least element 0̂Πn is the
partition with n blocks, all of which are singletons, and the greatest element 1̂Πn is the partition
consisting of the single block [n]. The rank function on this lattice is:

ρ(π) := n− |π| (3.1)

Thus ρ(0̂Πn) = 0 while ρ(1̂Πn) = n− 1.

Theorem 3.1.3 Let

{
n
k

}
denote the number of k-partitions of an n-set. Then

{
n
k

}
=

1

k!

k∑
j=0

(−1)k−j
(
k

j

)
jn.

The numbers

{
n
k

}
are the Stirling numbers of the second kind. They count the number of

elements in Πn of rank n − k. A proof of the above formula can be found in most texts for
enumerative combinatorics, including [8].

9
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Next we determine the Möbius function on Πn for some fixed n. First we let µn := µ(0̂Πn , 1̂Πn).
Then from [8], we have that:

µn = (−1)n−1(n− 1)! (3.2)

For partitions θ ≤ π, if π = {B1, . . . , Bk} is such that each Bi is partitioned into ni blocks in θ,
then it is clear that:

[θ, π] ∼= Πn1
× · · · ×Πnk (3.3)

So µ(θ, π) = µn1
µn2

. . . µnk , and hence we see that determining µn for all n ∈ N is sufficient to
determine µ on any partition lattice.

3.2 The Product Partition

In the foregoing discussion, we see that direct products of partition lattices occur naturally as
sublattices of a single partition lattice. We introduce here a slightly different concept: the product
partition of a disjoint union of sets.

We start with an n-tuple, m = (m1,m2, . . . ,mn), and define sets Xi = {xi1, xi2, . . . ximi}, i ∈ [n]
such that |Xi| = mi. The mi’s are allowed to be zero, in which case Xi = ∅. We define also the
set:

Xm =

n⊔
i=1

Xi

which is simply the (disjoint) union of the Xi’s. Then |Xm| = |m| :=
∑n
i=1mi. We want to

consider k-partitions of Xm with the additional property that each block of the partition contains
at most one element from each Xi.

First we note that any ordinary partition, π, of Xm (with no restrictions) induces a partition
πi on Xi via

a, b ∈ Xi are in the same block in π =⇒ a, b ∈ Xi are in the same block of πi.

Alternatively, for each i ∈ [n], if B1, . . . , Bk are the blocks of π, define Bij := Bj ∩Xi, j ∈ [k]. Then

πi is the partition whose blocks are the non-empty Bij ’s.

Definition 3.2.1 Let Πmi denote the lattice of partitions of Xi for each i ∈ [n], and Π|m| be the
lattice of all partitions of Xm. Let Πm denote the direct product of partition lattices:

Πm := Πm1 ×Πm2 × · · · ×Πmn

Elements of Πmi and Π|m| are ordinary partitions. Elements π ∈ Πm,π = (π1, . . . , πn) are
tuples of partitions, and will be distinguished from ordinary partitions by being typeset in boldface.
We may also define the size of π, |π| :=

∑n
i=1 |πi|.

Proposition 3.2.2 The map:

Ψ : Π|m| −→ Πm

π 7−→ (π1, π2, . . . , πn)

where πi is the partition induced by π on each Xi, is a lattice homomorphism.

Proof. For π, τ ∈ Π|m|, let πi, τi denote the partitions induced by π, τ , resp., on Xi. It suffices to
show that ∀i, π ≤ τ =⇒ πi ≤ τi. If π ≤ τ , each block of π is contained in some block of τ . Let
Bi ⊆ Xi be a block of πi, then Bi = B ∩Xi for some block B of π. B ⊆ C for some block C of τ ,
so B∩Xi ⊆ C∩Xi. But C∩Xi is a block of τi, hence Bi is a subset of a block of τi, so πi ≤ τi.
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We are especially interested in partitions such that each block contains at most 1 element from
each Xi. This means that for each Xi, all its elements are in different blocks, hence the partition in-
duced on Xi is simply the least element of Πmi , which we denote by 0̂i. Let 0̂ := (0̂1, . . . , 0̂n) ∈ Πm.
We give such partitions of Xm a special name:

Definition 3.2.3 A partition π ∈ Πm is a product k-partition if |π| = k and Ψ(π) = 0̂.

We are interested in the number of such partitions. Since we are only interested in k-partitions,
let Πk

m denote the k-partitions in Πm.

Definition 3.2.4 {
m
k

}
:=

∣∣∣∣{π ∈ Πk
m

∣∣Ψ(π) = 0̂}
∣∣∣∣

In order to get a formula for

{
m
k

}
, we define a few auxiliary functions on the lattice Πm. For

π ∈ Πm,π = (π1, . . . , πn) let {
π
k

}
≥

:=

∣∣∣∣ {π ∈ Πk
m

∣∣Ψ(π) ≥ π
} ∣∣∣∣{

π
k

}
=

:=

∣∣∣∣ {π ∈ Πk
m

∣∣Ψ(π) = π
} ∣∣∣∣

Then it is clear that {
π
k

}
≥

=
∑
τ≥π

{
τ
k

}
=

(3.4)

so by Möbius inversion, {
π
k

}
=

=
∑
τ≥π

µ(π, τ )

{
τ
k

}
≥

(3.5)

Proposition 3.2.5 {
π
k

}
≥

=

{
|π|
k

}
Proof. The only requirement for π ∈ Πk

m to be such that Ψ(π) ≥ π = (π1, . . . , πn) is that each
block of each πi in π is contained in a block of π. We may thus treat each block of each πi as a
single element. π is then a partition on the set of blocks, and since there are |π| =

∑n
i=1 |πi| such

blocks, the number of such partitions is

{
|π|
k

}
.

Corollary 3.2.6 {
m
k

}
=
∑
0̂≤π

µ(0̂,π)

{
|π|
k

}
(3.6)

Proof. This follows by noting that {
m
k

}
=

{̂
0
k

}
=

(3.7)

Remark 3.2.7 When m = 1 = (1, 1, . . . , 1), then each Πmi = Π1, which consists of a single
element 0̂. So the product of Πmi ’s is also the single element, 0̂ = (0̂, . . . , 0̂). µ(0̂, 0̂) = 1, and
|(0̂, . . . , 0̂)| = n, giving {

1
k

}
=

{
n
k

}
(3.8)
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Chapter 4

Subsets and Subspaces of Fnq

In this chapter, we study the lattice of subspaces, Bn(q), of the finite vector space Fnq . We also
attempt to enumerate subsets of Fnq with certain properties. First, however, we introduce the lattice
of subsets, Bn, of the set [n], which will turn out to have close connections to Bn(q).

Definition 4.0.8 The lattice of subsets of [n], denoted Bn, is the set of subsets of [n] with the
following properties:

• x ≤ y ⇐⇒ x ⊆ y

• x ∨ y = x ∪ y

• x ∧ y = x ∩ y

• ρ(x) = |x|

For x, y ∈ Bn such that x ≤ y, there is a bijective correspondence between subsets of y that
contain x and subsets of y−x. It is not hard to see that this bijection is indeed a lattice isomorphism,
so the interval [x, y] ∼= Bk, where

k = |y − x| = |y| − |x| = ρ(y)− ρ(x). (4.1)

Because [x, y] ∼= Bk, we need only determine the Möbius function on Bn for all n ∈ N. Let
µn := µBn(0̂, 1̂), then in [8], we find that

Proposition 4.0.9
µn = (−1)n

The observation that [x, y] ∼= Bk, where k = ρ(y)− ρ(x) leads to the easy corollary:

Corollary 4.0.10 Let x, y ∈ Bn be such that x ≤ y, then

µBn(x, y) = (−1)ρ(y)−ρ(x)

Remark 4.0.11 If f, g are functions from Bn to some field, F, and are such that

f(x) =
∑
y⊆x

g(y) (4.2)

then Möbius inversion on Bn gives:

g(x) =
∑
y⊆x

(−1)|y|−|x|f(y) (4.3)

which is the principle of inclusion-exclusion. Thus Möbius inversion can be thought of as a gener-
alization of the principle of inclusion-exclusion.

13
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We turn our attention now to Bn(q).

Definition 4.0.12 Let q be a prime. The lattice of subspaces of the vector space Fnq , denoted
Bn(q), is the set of subspaces of Fnq with the following properties:

• x ≤ y ⇐⇒ x is a subspace of y

• x ∨ y = Span(x, y)

• x ∧ y = x ∩ y

• ρ(x) = dimFq (x)

Since subspaces and quotients of Fnq are isomorphic to Fkq for some k ≤ n, any interval of Bn(q)
is isomorphic to Bk(q) for some k ≤ n. In particular, if x ≤ y, then the interval [x, y] is isomorphic
to Bk(q) where

k = dimFq (y/x) = dimFq (y)− dimFq (x) = ρ(y)− ρ(x). (4.4)

As was the case for Bn, the fact that [x, y] ∼= Bk(q) for some k means we need only determine
µn,q := µBn(q)(0̂, 1̂) for all n ∈ N. We have from [8]:

Proposition 4.0.13

µn,q = (−1)nq(
n
2) (4.5)

This leads to the easy corollary:

Corollary 4.0.14

µBn(q)(x, y) = (−1)ρ(y)−ρ(x)q(
ρ(y)−ρ(x)

2 ) (4.6)

4.1 q-Analogues

It turns out that many properties of Bn(q) are analogous to properties of Bn. Indeed, if we ignore
what it means, letting q → 1 in many formulas for Bn(q) give us formulas for Bn. Such formulas are
called q-analogues. We present some examples that are relevant to our problem. Where possible,
we will mention what a formula counts in the limit q → 1. An interesting treatment of some
applications of q-analogues can be found in [4].

Definition 4.1.1 The q-integer of n is

(n)q :=
qn − 1

q − 1
= 1 + q + · · ·+ qn−1

Proposition 4.1.2 The number of elements of rank 1 in Bn(q) is (n)q.

Proof. The rank 1 elements of Bn(q) are the 1-dimensional subspaces of Fnq . There are qn − 1
non-zero elements in Fnq , and each 1-dimensional subspace is generated by q − 1 of these non-zero

elements, so there are qn−1
q−1 = (n)q such subspaces.

Remark 4.1.3 When q → 1, the elements of rank 1 in Bn are simply the singletons, of which
there are n = (n)1.

Definition 4.1.4 The q-factorial of n is

(n)q! :=

{
1 if n = 0

(n)q × (n− 1)q × · · · × (1)q otherwise
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Unfortunately, the q-factorial does not count any nice quantity of Fnq or Bn(q). The normal
factorial counts the number of permutations of [n]. This may be interpreted as the number of
automorphisms of [n] i.e. the number of bijections from [n] to itself. We might thus expect
(n)q! to count the number of automorphisms of Fnq . Automorphisms of Fnq are invertible linear
transformations from Fnq to itself. These are precisely the elements of GL(n, q), whose cardinality
is a multiple of (n)q!.

Proposition 4.1.5

|GL(n, q)| = (n)q! · φ(q)n · q(
n
2)

Proof. The size of GL(n, q) is the number of n × n matrices over Fq with linearly independent
columns. The first column can be any non-zero vector in Fnq , of which there are qn− 1. The second
column can be any vector in Fnq that is not in the span of the vector in the first column. The
first column spans a 1-dimensional subspace with q elements, so there are qn − q choices for the
second column. Subsequently, the number of vectors that can be placed in the (i+ 1)th column is
the number of vectors of Fnq that are not in the span of the first i columns. These i columns span

an i-dimensional subspace with qi elements, so the number of choices for the (i + 1)th column is
qn − qi = qi(qn−i − 1), and so on. The number of matrices with independent columns is thus:

(qn − 1)× (qn − q)× · · · × (qn − qn−1) = (qn − 1)× (qn−1 − 1) · q × · · · × (q − 1) · qn−1 (4.7)

Recalling that (k)q = qk−1
q−1 , the above becomes:

(n)q · φ(q)× (n− 1)q · φ(q) · q × · · · × (1)q · φ(q) · qn−1 = (n)q! · φ(q)n · q1+2+···+(n−1) (4.8)

Noting that 1 + 2 + · · ·+ (n− 1) =
(
n
2

)
yields the result.

Corollary 4.1.6 The number of ordered bases of Fnq is (n)q! · φ(q)n · q(
n
2).

Proof. This follows from noting that the columns of an invertible n × n matrix over Fq form an
ordered basis of Fnq , and vice versa.

A basis of Fnq is a maximally independent subset of Fnq . In order to see what this might be
analogous to in the case q → 1, we need to define a notion of “independece” for [n]. We define a
more general notion of “independence” on Bn(q):

Definition 4.1.7 A k-tuple (x1, . . . , xk), xi ∈ Bn(q) is independent if

∀i,

∨
j 6=i

xj

 ∧ xi = 0̂ (4.9)

Otherwise, it is called dependent.

Remark 4.1.8 For general k, the definition above allows the xi’s to be subspaces of any dimension,
but when k = n, each xi must be a 1-dimensional subspace.

Definition 4.1.9 A k-tuple (x1, . . . ,xk),xi ∈ Fnq is independent if
(
〈x1〉, . . . , 〈xk〉

)
is independent.

Otherwise it is dependent.

It is easy to see that for elements of Fnq , the notions of linear independence and independence
as defined above coincide. We have seen that the proof of Proposition 4.1.5 gives:

Proposition 4.1.10 The number of independent n-tuples with entries from Fnq is

(n)q! · φ(q)n · q(
n
2).
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When q = 1, k = n, an independent n-tuple of Fn1 is simply an n-tuple whose entries (from [n])

are all distinct. The proposition says there are (n)1! ·φ(1)n · 1(n2) = n! such n-tuples, which is what
we expect.

A slight modification of the proof of Proposition 4.1.5 yields:

Proposition 4.1.11 The number of independent n-tuples with entries from Bn(q) is

(n)q! · q(
n
2).

Proof. As we remarked above, all entries must be 1-dimensional subspaces. The proof is similar
to that of Proposition 4.1.5, with columns corresponding to entries in the n-tuple. But for each
1-dimensional subspace, its φ(q) non-zero elements generate the same subspace, so the number of
choices for each entry should be divided by φ(q).

Remark 4.1.12 When q → 1, a tuple of elements from [n] or of rank 1 elements from Bn is
independent exactly when all entries of the tuple are distinct. The number of independent n-tuples
with entries from either [n] or Bn is thus n!.

We have seen two analogues for the quantities counted by n!, both of which take the form (n)q!
with some extra factors. These extra factors cancel out in the q-analogue of the binomial coefficient:

Definition 4.1.13 The q-binomial coefficient is(
n

k

)
q

=
(n)q!

(k)q!(n− k)q!

Proposition 4.1.14 The number of elements of rank k in Bn(q) is
(
n
k

)
q
.

Proof. Elements of rank k in Bn(q) are simply the k-dimensional subspaces of Fnq . Each k-
dimensional subspace of Fnq can be specified by choosing a basis for it. Using a similar argument
as the proof of Proposition 4.1.5, the number of ways to choose k linearly independent vectors in
Fnq is:

(qn − 1)× (qn − q)× · · · × (qn − qk−1) =
(qn − 1)× (qn − q)× · · · × (qn − qn−1)

(qn − qk)× (qn − qk+1)× · · · × (qn − qn−1)

=
(n)q! · φ(q)n · q1+2+···+(n−1)

(n− k)q! · φ(q)n−k · qk+(k+1)+···+(n−1)
(4.10)

But each k-dimensional subspace is isomorphic to Fkq , and will be specified by any k linearly

independent vectors of Fkq . The number of k linearly independent vectors that give the same

subspace is (k)q! · φ(q)k · q1+2+···+(k−1), which is given by setting k = n in Proposition 4.4.4.
Dividing by this number gives:

1

(k)q! · φ(q)k · q1+2+···+(k−1)
· (n)q! · φ(q)n · q1+2+···+(n−1)

(n− k)q! · φ(q)n−k · qk+(k+1)+···+(n−1)
=

(n)q!

(k)q!(n− k)q!

=

(
n

k

)
q

If we want to consider the number of ways to choose k independent elements from Fnq , we can
count the number of ways to choose a k-dimensional subspace of Fnq , and multiply this by the
number of ways to choose an unordered basis from that subspace.
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Proposition 4.1.15 The number of ways to choose k independent elements from Fnq is(
n

k

)
q

(k)q!

k!
· φ(q)k · q(

k
2).

Proof.
(
n
k

)
q

is the number of ways to choose a k-dimensional subspace and (k)q! · φ(q)k · q(
k
2) is

the number of ordered bases for that subspace. Dividing by k! gives us the number of unordered
bases.

Remark 4.1.16 When q → 1, the number of ways to choose k independent elements from [n] is
the number of ways to choose k distinct elements from [n] i.e.

(
n
k

)
1

=
(
n
k

)
, which agrees with our

intuition.

4.2 Irredundancy and Essentiality

We have defined the notion of independence in a lattice, which is a generalization of linear inde-
pendence in a vector space. Here, we define a slightly different notion:

Definition 4.2.1 A k-tuple (x1, . . . , xk), xi ∈ Bn(q) is irredundant if

∀i, xi �

∨
j 6=i

xj

 .

Otherwise, it is called redundant.

Definition 4.2.2 An k-tuple (x1, . . . ,xk),xi ∈ Fnq is irredundant if

∀i,xi /∈ 〈xj , j 6= i〉 .

Otherwise, it is redundant.

Alternatively, (x1, . . . ,xk),xi ∈ Fnq is irredundant if (〈x1〉, . . . , 〈xk〉) is irredundant. It is easy
to see that an independent tuple is always irredundant. The converse is true for tuples of atoms:

Proposition 4.2.3 Let S = (x1, . . . , xk), xi ∈ A
(
Bn(q)

)
be a k-tuple of atoms. Then

S is independent ⇐⇒ S is irredundant.

If the xi’s are not atoms, the converse no longer holds, as a tuple of irredundant subspaces with
dimensions greater than 1 might intersect in a common subspace of lower rank. Tuples of elements,
however, correspond to tuples of atoms, so irredundance and independence for tuples of elements
are equivalent. From here on, unless stated otherwise, k-tuples will be understood as having entries
in Fnq , not Bn(q). We will also refer to the linear span of the entries of a k-tuple as simply the span
of the k-tuple.

In a k-tuple of elements, it might be the case that for some i but not all, we have xi /∈
〈
xj , j 6= i

〉
.

If the tuple is such that xi /∈
〈
xj , j 6= i

〉
for some i, the tuple is redundant and dependent. But not

all redundant tuples are equally redundant, and neither are the entries of a redundant tuple. We
want to single out the entries for which the irredundancy condition holds.

Definition 4.2.4 Given a tuple (x1, . . . ,xk),xi ∈ Fnq , an entry xi is essential if

xi /∈ 〈xj , j 6= i〉

An index i ∈ [k] for which xi is essential is called an essential index.
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Note that the essentiality of an entry is defined relative to the tuple it belongs to. With this
definition, a tuple is irredundant iff all its elements are essential. We may now classify tuples by
their essential entries:

Definition 4.2.5 Given a k-tuple (x1, . . . ,xk),xi ∈ Fnq , its essential index set is the set of
essential indices:

ε(x1, . . . ,xk) := {i|xi is essential} ⊆ [k] (4.11)

From the previous section, if k ≤ n, the number of k-tuples whose essential index set is the
whole of [k] is (

n

k

)
q

(k)q!

k!
· φ(q)k · q(

k
2).

We want to generalize this by counting the number of k-tuples whose essential index set is some
subset I ⊆ [k]. Further, we are only interested in k-tuples that span a subspace of dimension n, so
we must have k ≥ n.

Definition 4.2.6 For I ⊆ [k], let Fnq (k, I) denote the number of k-tuples of elements from Fnq
that span Fnq , and whose essential index sets are exactly I.

Clearly Fnq (k, I) depends only on the cardinality of I and not on I itself. If |I| = i, then
Fnq (k, I) = Fnq (k, [i]). We modify our function such that it depends only on i:

Definition 4.2.7 For i ≤ k, let Fnq (k, i) denote the number of k-tuples of elements from Fnq that
span Fnq , and whose essential index sets are exactly [i].

We shall develop the formulas needed to calculate Fnq (k, i) in Section 4.4.

4.3 Dual Spaces

Before we proceed, we recall a few definitions and results concerning the dual space, V ∗ of a vector
space V . All vector spaces we consider will be finite dimensional.

Definition 4.3.1 Given a vector space, V , over a field F, a linear functional of V is a linear
map

f : V → F

Linear functionals are often represented as row vectors, while the vectors they act upon (i.e.
the vectors of V ) are represented as column vectors. The action of a linear functional f on a vector
v is given by the matrix product fv, where f is a row vector and v is a column vector. Writing
linear functionals as row vectors makes it obvious that the set of linear functionals on V is in fact
a vector space.

Definition 4.3.2 Given a vector space, V , the dual space of V , denoted V ∗ is the space of all
linear functionals on V .

We distinguish the linear functionals

f i : V → F, f i(ej) = δij , (4.12)

where ej are the standard basis (column) vectors of V with a 1 in the jth place and 0 everywhere
else. We may then write the f i’s as (row) vectors with a 1 in the ith place and 0 everywhere else.
These f i’s form a basis of V ∗.

We are especially interested in subspaces of linear functionals that vanish on subspaces of V .

Definition 4.3.3 Let U be a subspace of V , then the annihilator of U is the subspace of V ∗

Uo := {f ∈ V ∗|f(v) = 0 for all v ∈ U}
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This notion applies dually to subspaces of V ∗:

Definition 4.3.4 Let U∗ be a subspace of V ∗, then the annihilator of U∗ is the subspace of V

U∗o := {v ∈ V |f(v) = 0 for all f ∈ U∗}

If V is finite dimensional, then for U ⊆ V and U∗ ⊆ V ∗,

Uoo ∼= U (4.13)

U∗oo ∼= U∗ (4.14)

and we may identify Uoo with U and U∗oo with U∗.
If u1, . . . , uk is a basis of U∗ ⊆ V ∗, then any f ∈ U∗ can be expressed as a linear combination

of these basis elements, and it is easy to see that for a given v ∈ V ,

f(v) = 0 for all f ∈ U∗ ⇐⇒ ui(v) = 0 for all i ∈ [k]. (4.15)

This gives us:

U∗o = {v ∈ V |ui(v) = 0 for all i ∈ [k]}

=

k⋂
i=1

{v ∈ V |ui(v) = 0}

=

k⋂
i=1

kerui (4.16)

We may let the ui’s be rows of a matrix, T , and treat T as a linear transformation from V to
itself. Since the rank of T is equal to the dimension of the row-span of T , we have

rank T = dimU∗ (4.17)

Further,

kerT = {v ∈ V |T (v) = 0}
= {v ∈ V |ui(v) = 0 for all i ∈ [k]}
= U∗o (4.18)

Then by the rank-nullity theorem, rank T + dim kerT = dimV , so

dimU∗ + dimU∗o = dimV (4.19)

Replacing U∗ by Uo for some subspace U ⊆ V , and recalling the identification Uoo = U , we get
the dual version of this statement:

dimUo + dimU = dimV (4.20)

Let V = Fnq , and let V ∗ = Fn∗q be its dual space. Both are n-dimensional vector spaces over
Fq, hence are isomorphic. If we define B∗n(q) to be the lattice of subspaces of V ∗, then Bn(q) is
isomorphic to B∗n(q), via

∗ : U 7→ U∗ (4.21)

where U∗ is the subspace of Fn∗q whose elements, as row-vectors, are transposes of the elements of
U , as column vectors.

However, we also have an isomorphism from Bn(q) to the dual of B∗n(q), given by the annihilator:

o : U 7→ Uo (4.22)

This is an isomorphism from Bn(q) to the dual of B∗n(q) in that we have
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Proposition 4.3.5 For all x, y ∈ Bn(q),

(x ∨ y)o = xo ∧ yo (4.23)

(x ∧ y)o = xo ∨ yo (4.24)

Proof. Let {x1, . . . ,xk}, {y1, . . . ,yl} be bases of x and y, respectively. Then

xo = {f ∈ Fn∗q |f(xi) = 0 for all i ∈ [k]}

=

k⋂
i=1

{f ∈ Fn∗q |f(xi) = 0}

=

k⋂
i=1

〈xi〉o (4.25)

Likewise, yo =
⋂l
i=1〈yi〉o. Since {x1, . . . ,xk,y1, . . . ,yl} is a basis of x ∨ y, we have

(x ∨ y)o =

(
k⋂
i=1

〈xi〉o
)
∩

(
k⋂
i=1

〈xi〉o
)

= xo ∧ yo (4.26)

which proves the first statement. For the second statement, we use the isomorphism from Bn(q) to
B∗n(q) and apply the first statement to x∗, y∗ ∈ B∗n(q):

(x∗ ∨ y∗)o = x∗o ∧ y∗o (4.27)

Since xo, yo are elements of B∗n(q), we get:

(xo ∨ yo)o = xoo ∧ yoo (4.28)

Taking the annihilator of both sides, and recalling the identification xoo = x, ∀x ∈ Bn(q), we get

xo ∨ yo = (x ∧ y)o.

Recall that for x ∈ Bn(q), q 6= 1, we have ρ(x) = dimx. This allows us to rewrite (4.20) as

ρ(xo) + ρ(x) = n. (4.29)

Remark 4.3.6 An analogue of the “annihilator” for the case where q → 1 is the set-complement
of subsets of [n]. If we define

o : U 7→ [n] \ U (4.30)

where U ⊆ [n], then o : Bn → B∗n is a lattice isomorphism, where B∗n is the lattice dual of Bn. One
may check that all the results regarding the annihilator apply to Bn.

4.4 Nullspaces and Essentiality

We now return to the problem of deriving a formula for Fnq (k, i). To achieve this, we require some
linear algebraic properties of Fnq . Since the set [n] is not a vector space, the results described in
this section will not hold when we let q → 1. We will assume in this section that q is prime.
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If we let x ∈ Fnq be written as column vectors,

x =

x1

...
xn

 ,

we may treat a k-tuple, T = (x1, . . . ,xk), as a matrix whose columns are the entries of the tuple:x11 · · · xk1

...
. . .

...
x1n · · · xkn

 .

Such a matrix can be treated as a linear transformation, T : Fkq → Fnq , and we may speak of its
linear algebraic properties. One particular feature of interest is its nullspace, kerT . It turns out
that many properties of (x1, . . . ,xk) as a k-tuple may be written as properties of its nullspace! In
the rest of the section, we use T to denote a k-tuple as well as the matrix and linear transformation
associated to it.

Proposition 4.4.1 The k-tuple, T , spans Fnq ⇐⇒ kerT has dimension k − n (over Fq).

Proof. The tuple T spans Fnq iff the rank of T is n. By the rank-nullity theorem, this happens iff
kerT has dimension k − n.

Recall the linear functionals
f i : Fkq → Fq, f i(ej) = δij ,

Since each f i has rank 1, ker f i is a (k − 1)-dimensional subspace of Fkq .

Proposition 4.4.2 For i ∈ [k], T a k-tuple (with entries in Fnq ),

i ∈ ε(T ) ⇐⇒ kerT ⊆ ker f i.

Proof. The ith column, xi, of T = (x1, . . . ,xk),xj ∈ Fnq is essential iff it is not in the span of the
other columns of T . This is equivalent to saying

∀a1, . . . , ak ∈ Fq,
k∑
j=1

ajxj = 0 =⇒ ai = 0 (4.31)

which may also be written:

T

a1

...
ak

 = 0 =⇒ ai = 0 (4.32)

This gives us
i ∈ ε(T ) ⇐⇒ ∀a ∈ kerT, ai = 0. (4.33)

But the set of vectors a ∈ Fkq such that ai = 0 is precisely ker f i, yielding the result.

As a corollary, we get a characterization of ε(T ):

Corollary 4.4.3 For i ∈ [k], T a k-tuple, [i] = ε(T ) iff

kerT ⊆
∧
j∈[i]

ker f j

and ∀l /∈ [i],

kerT 6⊆
∧

j∈[i]∪l

ker f j
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Proof. This follows easily from Proposition 4.4.2, and noting that the negation of the condition in
the Proposition gives:

i /∈ ε(T ) ⇐⇒ kerT 6⊆ ker f i. (4.34)

We have completely characterized the tuples, T , that are counted by Fnq (k, i) in terms of their

nullspaces, kerT . For a fixed subspace, N ⊆ Fkq the number of matrices, T , such that kerT = N is
determined only by the dimension of N .

Proposition 4.4.4 For N ⊆ Fkq , dimN = k − n, the number of n × k matrices T such that
kerT = N is

(n)q! · φ(q)n · q(
n
2)

Proof. By the rank-nullity theorem, dim kerT = k − n =⇒ rank T = n. The rank of T is the
dimension of its column span, which is equal to the dimension of its row span. Since T has n rows,
these n rows must form a basis of the n dimensional row span of T . Proposition 4.1.5 shows that

the number of such ordered bases (of Fnq ) is (n)q! · φ(q)n · q(
n
2).

All that remains is to count the number of nullspaces, N ⊆ Fkq such that kerT = N =⇒ ε(T ) = [i].

From Corollary 4.4.3, such an N must be contained in
∧
j∈[i] ker f j , but not in any

∧
j∈[i]∪l ker f j

for l /∈ [i]. The subspaces ker f j have the following property:

Lemma 4.4.5 For all I ⊆ [k], |I| = i,

dim

∧
j∈I

ker f j

 = k − i

We will prove this lemma by proving a more general statement about collections of subspaces
that have this property:

Definition 4.4.6 A collection of s maximal subspaces, V1, . . . , Vs ⊂ Fkq , s ≤ k, is in general
position if ∀I ⊆ [s], |I| = i,

dim

∧
j∈I

Vj

 = k − i.

Proposition 4.4.7 A collection, V1, . . . , Vs, of maximal subspaces of Fkq are in general position
iff ∀I ⊆ [s], |I| = i,

dim

∨
j∈I

V oj

 = i.

Proof. By (4.20), dim
(∧

j∈I Vj

)
+ dim

(∧
j∈I Vj

)o
= k. Applying Proposition 4.3.5, we get:

∧
j∈I

Vj

o

=
∨
j∈I

V oj , (4.35)

which yields the proposition.
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The lemma is proved by observing that (ker f j)o = 〈f j〉 and that the f j ’s are linearly indepen-
dent, so

dim

∨
j∈I

(ker f j)o

 = dim
〈
f j |j ∈ I

〉
= i. (4.36)

Let d = k−i, V =
∧
j∈[i] ker f j , then V is isomorphic to Fdq and for any l /∈ [i], Vl :=

∧
j∈[i]∪l ker f j

is isomorphic to a (k − i − 1)-dimensional (maximal) subspace of V . In fact, Vi+1, . . . , Vk are in
general position. We want to count the number of subspaces, N ⊆ V , such that dimN = k−n ≤ d
and N is not contained in any Vl.

Definition 4.4.8 Fix n ≥ k, let V = Fnq and let V1, . . . , Vn be a collection of maximal subspaces

in general position. Let

s
n
k

{

q

denote the number of k-dimensional subspaces of Fnq that are not

contained in any Vi.

Remark 4.4.9 Note that this definition does not depend on the maximal subspaces chosen,
since any collection of maximal subspaces can be transformed into any other by a suitable linear
transformation.

We introduce a few auxiliary functions in order to apply Möbius inversion on Bn.

Definition 4.4.10 For a subspace U ⊂ V , let

σ(U) :=
{
i ∈ [n]

∣∣U ⊆ Vi}
For I ⊆ [n], let

fk⊇(I) :=
∣∣{U ⊆ V |dimU = k, σ(U) ⊇ I}

∣∣
fk=(I) :=

∣∣{U ⊆ V |dimU = k, σ(U) = I}
∣∣

Then fk⊇(I) =
∑
J⊇I f

k
=(J ), so by Möbius inversion on Bn, we have

fk=(I) =
∑
J⊇I

µn(I,J )fk⊇(J )

=
∑
J⊇I

(−1)|J |−|I|fk⊇(J ) (4.37)

Since

s
n
k

{

q

counts the number of k-dimensional subspaces, U , such that σ(U) = ∅, we get:

s
n
k

{

q

= fk=(∅)

=
∑
J

(−1)|J |fk⊇(J ) (4.38)

All that remains is to find fk⊇(J ):

Lemma 4.4.11

fk⊇(I) =

(
n− |I|
k

)
q

Proof. The intersection
⋃
i∈I Vi is a subspace of dimension n − |I|, and fk⊇(I) counts the number

of ways to choose a k-dimensional subspace of
⋃
i∈I Vi

∼= Fn−|I|q with no other restrictions.
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Corollary 4.4.12 s
n
k

{

q

=

n∑
j=0

(−1)j
(
n

j

)(
n− j
k

)
q

Proof. This lemma together with (4.38) gives the formula:

s
n
k

{

q

=
∑
J

(−1)|J |
(
n− |J |

k

)
q

But since each summand depends only on |J |, we may sum over |J | = j. There are
(
n
j

)
subsets of

cardinality j, so multiplying by this factor gives the corollary.

Putting all of this together, we get (finally):

Theorem 4.4.13

Fnq (k, i) = (n)q! · φ(q)n · q(
n
2) ·

s
k − i
k − n

{

q

Proof. We want the number of matrices, T , such that ε(T ) = [i]. By Corollary 4.4.3, this is equiv-
alent to counting the number of matrices whose nullspaces satisfy the conditions in the Corollary.
Corollary 4.4.12 gives the number of such nullspaces, and for a fixed nullspace, Proposition 4.4.4
gives the number of matrices with this nullspace.

Remark 4.4.14 A key part of the derivation of Fnq (k, i) involved transferring the problem from

Fnq to the dual space of Fkq and the lattice Bk(q). This suggest that an analogous formula for the
case where q → 1 might be found using the lattice Bk instead of Bn, and using the set-complement
in place of the annihilator.



Chapter 5

Finite Nilpotent Groups

Finally, we return to our original problem: finding the number of irredundant generating k-sets
of finite nilpotent groups. Nilpotent groups are “almost abelian”, and this property allows us to
reduce the problem to that of finding irredundant generating sets of groups that are direct products
of elementary abelian groups.

5.1 The Lattice of Subgroups

A lot of information about a group can be found through its lattice of subgroups. In this section,
we develop the necessary results concerning the lattice of subgroups of G that we will need to find
φk(G).

Definition 5.1.1 The lattice of subgroups, L(G), of a group G is the set of subgroups of G
equipped with ≤,∧,∨ such that for x, y ∈ L(G),

• x ≤ y ⇐⇒ x is a subgroup of y

• x ∨ y = 〈x, y〉

• x ∧ y = x ∩ y

Definition 5.1.2 The Frattini subgroup of G, denoted Φ(G), is the intersection of all maximal
subgroups of G.

Dually, we may consider the minimal subgroups of a group. These are the subgroups of prime
order.

Definition 5.1.3 The Frattini dual of G, denoted Ψ(G), is the subgroup generated by all the
minimal subgroups of G.

Definition 5.1.4 An element g ∈ G is a non-generator if it can be removed from any generating
set without destroying the generating property.

The Frattini subgroup is of particular interest to us because of the following proposition:

Proposition 5.1.5 Φ(G) is the set of non-generators of G.

Proof. Suppose g ∈ G is a non-generator, but g /∈ Φ(G). Then there is some maximal subgroup
M < G such that g /∈ M . Let {g1, . . . , gn} be a generating set of M . Then since M is maximal
and g /∈ M , {g, g1, . . . , gn} is a generating set of G, and further, g cannot be removed from this
set without destroying the generating property. This contradicts our assumption that g is a non-
generator, and shows that the set of non-generators is contained in Φ(G).
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Suppose now that g ∈ Φ(G) but g is not a non-generator. Then there is some generating set,
S = {g, g1, . . . , gn}, such that S\g does not generate G, so S\g must be contained in some maximal
subgroup M < G. But g ∈ Φ(G), the intersection of all maximal subgroups of G; in particular,
g ∈M , so S generates some subgroup of M , which is a proper subgroup of G. This contradicts our
assumption that S generates G, and shows that Φ(G) is contained in the set of non-generators.

Proposition 5.1.6 Let G be finite, and let S ⊆ G. Then S irredundantly generates G iff the
image of S in G/Φ(G) irredundantly generates G/Φ(G).

Proof. Let S = {g1, . . . gn} ⊆ G, and let S̄ = {g1Φ(G), . . . gnΦ(G)} ⊆ G/Φ(G) be the image of S
in G/Φ(G). It is easy to see that S generates G =⇒ S̄ generates G/Φ(G). Contrapositively, if S
does not generate G, then 〈S〉 ⊆ M ( G, for some maximal subgroup, M . In particular, ∃g ∈ G
such that g /∈ M , so g /∈ Φ(G), and in the quotient gΦ(G) /∈ 〈S̄〉, so S̄ does not generate G/Φ(G).
This shows that S generates G ⇐⇒ S̄ generates G/Φ(G).

But in fact, this is sufficient to show that S is irredundant generating ⇐⇒ S̄ is irredundant
generating. Indeed, suppose S is irredundant generating but S̄ is not irredundant (although still
generating). Then some proper subset of S̄ is generating, and the preimage of this proper subset is
a proper subset of S which is generating, which contradicts our assumption that S is irredundant
generating. Similarly, if S̄ is irredundant generating, but S is not irredundant, then some proper
subset of S is generating. The image of this proper subset of S is a proper subset of S̄ that is
generating, which contradicts the assumption that S̄ is irredundant.

Corollary 5.1.7 For G finite nilpotent,

φk(G) = |Φ(G)|kφk
(
G/Φ(G)

)
(5.1)

Proof. Let S = {g1Φ(G), . . . , gkΦ(G)} be an irredundant generating set in G/Φ(G). Then there
are |Φ(G)|k irredundant generating sets of G whose image in G/Φ(G) is S. By the proposition, this
accounts for all irredundant generating k-sets of G.

It is also obvious that the proposition gives:

Corollary 5.1.8 For G finite nilpotent,

r(G) = r(G/Φ(G)) (5.2)

m(G) = m(G/Φ(G)) (5.3)

Given groups G,H, we may form the direct product G ×H and ask how L(G ×H) is related
to L(G) and L(H). A comprehensive discussion of the properties of L(G × H), and a proof of
Proposition 5.1.10 may be found in [7].

Definition 5.1.9 Two groups, G,H are relatively prime if they have no non-trivial common
quotient. i.e. if ∃N EG and M EH such that G/N ∼= H/M , then both quotients are trivial.

Proposition 5.1.10 If G,H are relatively prime, then L(G×H) = L(G)× L(H).

For our purposes, it suffices to know the following special case:

Proposition 5.1.11 Let G,H be such that (|G|, |H|) = 1. Then L(G×H) = L(G)× L(H).

This proposition is a direct consequence of the following lemma.

Lemma 5.1.12 Let G,H be such that (|G|, |H|) = 1. Let (g1, h1), . . . , (gk, hk) be elements of
G×H. Then 〈

(g1, h1), . . . , (gk, hk)
〉

= 〈g1, . . . , gk〉 × 〈h1, . . . , hk〉
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Proof. It is obvious that〈
(g1, h1), . . . , (gk, hk)

〉
≤ 〈g1, . . . , gk〉 × 〈h1, . . . , hk〉 (5.4)

The opposite inclusion follows from the Chinese Remainder Theorem. Since (|G|, |H|) = 1, we have
that for all i ∈ [k],

(
o(gi), o(hi)

)
= 1. By the Chinese Remainder Theorem, for each i ∈ [k], ∃n ∈ N

such that

n ≡ 1 (mod o(gi))

n ≡ 0 (mod o(hi)).

This gives
(gi, hi)

n = (gi, id) (5.5)

for all i ∈ [k], so
〈
(g1, h1), . . . , (gk, hk)

〉
contains〈

(g1, id), . . . , (gk, id)
〉

= 〈g1, . . . , gk〉 × { id}. (5.6)

By a similar argument applied to the hj ’s, we have that

{id} × 〈h1, . . . , hk〉 ≤
〈
(g1, h1), . . . , (gk, hk)

〉
. (5.7)

Since 〈g1, . . . , gk〉×{id} and {id}×〈h1, . . . , hk〉 together generate 〈g1, . . . , gk〉×〈h1, . . . , hk〉, we get
the opposite inclusion 〈

(g1, h1), . . . , (gk, hk)
〉
≥ 〈g1, . . . , gk〉 × 〈h1, . . . , hk〉 (5.8)

which yields the lemma.

This Lemma shows that all subgroups of G × H are of the form A × B, where A ≤ G and
B ≤ H, so the ground set of L(G ×H) is equal to that of L(G) × L(H). It is easy to check that
≤,∧,∨ are preserved as well, hence Proposition 5.1.11 holds. We will use this proposition to prove
a few properties about G×H, when (|G|, |H|) = 1.

Proposition 5.1.13 If L(G×H) = L(G)× L(H), then Φ(G×H) = Φ(G)× Φ(H).

Proof. Maximal subgroups of G are coatoms of L(G), so Φ(G) =
∧
CoA(L(G)). If x1, . . . , xk

are coatoms of L(G), and y1, . . . , yl are coatoms of L(H), then the coatoms of L(G) × L(H) are
(x1, H), . . . , (xk, H), (G, y1), . . . , (G, yl). Since L(G×H) = L(G)× L(H),∧

CoA(L(G×H)) = (x1, H) ∧ · · · ∧ (xk, H) ∧ (G, y1) ∧ · · · ∧ (G, yl)

= (Φ(G), H) ∧ (G,Φ(H))

= (Φ(G),Φ(H)).

The Frattini subgroup of a group is always normal, so we may form the quotient G/Φ(G). If
L(G×H) = L(G)× L(H), then since Φ(G×H) = Φ(G)× Φ(H), we have

Corollary 5.1.14
(G×H)/Φ(G×H) = (G/Φ(G))× (H/Φ(H)).

Proposition 5.1.15 If L(G×H) = L(G)× L(H), then Ψ(G×H) = Ψ(G)×Ψ(H).

Proof. Minimal subgroups of G are atoms of L(G), so Ψ(G) =
∨
A(L(G)). Replacing coatoms by

atoms, and ∧ by ∨ in the proof of Proposition 5.1.13 gives the result.
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Recall that r(G) and m(G) are the cardinalities of the smallest and largest irredundant gen-
erating sets of G, respectively. We want to know the relation of r(G × H) and m(G × H) to
r(G), r(H),m(G),m(H) when L(G ×H) = L(G) × L(H). First, we reformulate the notion of an
irredundant generating set in L(G).

Definition 5.1.16 Given a lattice, L, and a finite subset S ⊆ L, S is an irredundant generating
k-set of L if it satisfies the following properties:

1. |S| = k

2.
∨
S = 1̂L

3. ∀x ∈ S,
∨(

S \ x
)
�
∨
S

A subset that satisfies condition 2 is generating, while a subset that satisfies condition 3 is irre-
dundant.

It is easy to see that {g1, . . . , gk} is an irredundant generating k-set of G iff {〈g1〉, . . . , 〈gk〉} is an
irredundant generating k-set of L(G). Then r(G) and m(G) are the cardinalities of the smallest and
largest irredundant generating sets of L(G) consisting of cyclic subgroups of G. This qualification
is necessary as not all subgroups of G are cyclic.

We now prove some results concerning r(G × H) and m(G × H) in the special case where
L(G×H) = L(G)× L(H). A more general and comprehensive treatment can be found in [1].

Proposition 5.1.17 If L(G×H) = L(G)× L(H), then r(G×H) = max{r(G), r(H)}.

Proof. Let k = r(G), l = r(H), and let {〈g1〉, . . . , 〈gk〉} and {〈h1〉, . . . , 〈hl〉} be irredundant gener-
ating sets of L(G) and L(H), respectively. Without loss of generality, let us suppose that k ≥ l.
Then {(

〈g1〉, 〈h1〉
)
, . . . ,

(
〈gl〉, 〈hl〉

)
,
(
〈gl+1〉, 〈id〉

)
, . . . ,

(
〈gk〉, 〈id〉

)}
is an irredundundant generating k-set of L(G×H). This shows that r(G×H) ≤ max{r(G), r(H)}.

To get the opposite inequality, suppose {(〈g1〉, 〈h1〉), . . . , (〈gn〉, 〈hn〉)} is an irredundant gener-
ating set of L(G × H). Then {〈g1〉, . . . , 〈gn〉} is a generating set of L(G) so n ≥ r(G). Similarly,
n ≥ r(H), so n ≥ max{r(G), r(H)}. This completes the proof.

There is a similar result form(G×H), which is true regardless of whether L(G×H) = L(G)×L(H).

Proposition 5.1.18 (Collins [1]) For G,H finite groups,

m(G×H) = m(G) +m(H)

Proof. Let k = m(G), l = m(H), and let {g1, . . . , gk} and {h1, . . . , hl} be irredundant generating
sets of G and H, respectively. Then

{(g1, id), . . . , (gk, id), (id, h1), . . . , (id, hl)}

is an irredundant generating sequence of G×H, so m(G×H) ≥ m(G) +m(H).

The opposite inequality is harder. We refer readers to [1] for a proof of the fact that if N EK
for some group K, then

m(K) ≤ m(K/N) +m(N).

The proposition follows by letting N = G× {id} and K = G×H.
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5.2 Generators in Nilpotent Groups

Definition 5.2.1 Given G and subgroups H,K ≤ G, their commutator, [H,K], is the subgroup
generated by all h−1k−1hk for all h ∈ H, k ∈ K.

Definition 5.2.2 G is a nilpotent group if there exists a finite series of subgroups

{1} = G0 ≤ G1 ≤ · · · ≤ Gn = G

such that [G,Gi+1] ≤ Gi for all i. Such a series is a finite central series.

Definition 5.2.3 The commutator subgroup of G is the subgroup G′ := [G,G].

The commutator subgroup gives a measure of how non-abelian a group is. More formally, we
have the following standard result from group theory:

Proposition 5.2.4 Let N EG be a normal subgroup of G. Then G/N is abelian ⇐⇒ N ≥ G′.

The following characterizes finite nilpotent groups. A proof, along with a more comprehensive
characterization, can be found in [6].

Theorem 5.2.5 Let G be finite. Then the following are equivalent:

1. G is nilpotent

2. Φ(G) ≥ G′

3. G is a direct product of p-groups

Corollary 5.2.6 Let G be finite nilpotent. Then G/Φ(G) is abelian. In fact,

G/Φ(G) ∼= Zm1
p1 × · · · × Z

mn
pn (5.9)

where pi are distinct primes.

Proof. By the second characterization, Φ(G) ≥ G′, so G/Φ(G) is abelian. By the third charac-
terization, we can write G = P1 × · · · × Pn, where Pi are pi-groups for distinct primes, pi. From
Proposition 5.1.13, Φ(G) = Φ(P1)× · · · × Φ(Pn), so we get:

G/Φ(G) = P1/Φ(P1)× · · · × Pn/Φ(Pn).

The Frattini quotient of a p-group is an elementary abelian group, yielding the result.

Since Zmp is a vector space, r(Zmp ) = m(Zmp ) = m. IfG is nilpotent, andG/Φ(G) ∼= Zm1
p1 ×· · ·×Z

mn
pn ,

where pi are distinct primes, then Propositions 5.1.17 and 5.1.18 together with Corollary 5.1.8 give

r(G) = max{m1, . . . ,mn}
m(G) = m1 +m2 + · · ·+mn. (5.10)

Corollary 5.1.7 reduces the problem of finding φk(G) to that of finding φk(G/Φ(G)). We thus
turn our attention to direct products of elementary abelian groups.
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5.3 Direct Products of Elementary Abelian Groups

For the rest of the chapter, fix n and the n-tuples p = (p1, . . . , pn),m = (m1, . . . ,mn) where
pi are distinct primes, and mi ∈ N. Let G = Gm

p := Zm1
p1 × · · · × Z

mn
pn , where pi are distinct

primes. Elements of G will be written g = (x1, . . . ,xn), where xi ∈ Zmipi (here and elsewhere, the
superscripts are merely indices, not exponents). We want to know when a set {g1, . . . , gk} ⊆ G is
an irredundant generating set .

Let C = {g1, . . . , gk}, gi = (x1
i , . . . ,x

n
i ) ∈ G. By Lemma 5.1.12, C is generating iff for all j ∈ [n],

〈xj1, . . . ,x
j
k〉 = Zmjpj . (5.11)

Next we want to determine when g1, . . . , gk is irredundant. We reintroduce essentiality:

Definition 5.3.1 Let C = {g1, . . . , gk}, gi = (x1
i , . . . ,x

n
i ) ∈ G. An entry xji is essential in C if

xji /∈
〈
xjl , l ∈ [k], l 6= i

〉
.

Then the following characterization of irredundant sets of G should be obvious:

Proposition 5.3.2 {g1, . . . , gk} ⊆ G is irredundant iff each gi contains at least one essential
entry.

In fact, we can get a more useful characterization.

Definition 5.3.3 For C = {g1, . . . , gk} ⊆ G, let Xj ⊆ Zmjpj denote the set of essential entries
that are from Znjpj , and let Bi ⊆

⊔n
j=1X

j denote the essential entries that are entries of gi. Let

X(C) := Xm =
⊔n
j=1X

j be the set of essential entries, and B(C) := {B1, . . . , Bk} be the corre-
sponding collection of essential subsets of gi.

Proposition 5.3.4 C = {g1, . . . , gk} ⊆ G is irredundant ⇐⇒ B(C) is a product k-partition of
X(C).

Proof. If {g1, . . . , gk} ⊆ G is irredundant, then each gi contains at least one essential entry, so
Bi 6= ∅. All essential entries must belong to some gi, so {B1, . . . , Bk} is a k-partition of

⊔n
j=1X

j .

Further, each group element, gi, has as its entries only one element from each Zmjpj , making this
partition a product k-partition. Conversely, if {B1, . . . , Bk} is a product k-partition of

⊔n
j=1 j, then

Bi 6= ∅ for all i, so each gi contains an essential element, hence {g1, . . . , gk} ⊆ G is irredundant.

This proposition is the crux of this thesis. It links the results of Chapter 3 and 4, and allows us
to write the main theorem of this paper:

Theorem 5.3.5

φk(G) =
∑

0≤e≤m

{
e
k

} n∏
j=1

1

ej !
Fmjpj (k, ej)

To prove the theorem, we will use the following lemma:

Lemma 5.3.6 Let E = (x1, . . . ,xe),xj ∈ Zmp be an independent e-tuple. The number of k-tuples
(of elements of Zmp ) whose essential index set is [e], and whose initial tuple of e entries are exactly
E is:

1(
m
e

)
p
(e)p!φ(p)ep(

e
2)
Fmp (k, e)



31

Proof. Fmp (k, e) is the number of k-tuples whose essential index set is [e]. For any e-tuple of
independent elements, the number of these k-tuples whose initial segments are exactly that e-tuple
is the total number of k-tuples divided by the number of ways to choose the initial e-tuple:

1(
m
e

)
p
(e)p!φ(p)ep(

e
2)
Fmp (k, e)

Proof of theorem. By Proposition 5.3.4, we may construct irredundant generating k-sets in the
following manner:

1. From each Zmjpj , choose an independent ej-set of elements, Xj , where ej ≤ mj .

2. Choose a product k-partition, {B1, . . . , Bk}, of Xe :=
⊔n
j=1X

j and write these Bi as rows of

a matrix such that if an essential entry is from Zmjpj , then it is in the jth column of matrix.
Leave all other entries empty.

3. For all j ∈ [n], fill in the empty entries of the jth column such that the resulting column
generates Zmjpj , but the only essential entries in the column are those that were entered in the
previous step.

4. Let g1, . . . gk be the rows of the resulting matrix. Then {g1, . . . , gk} is an irredundant gener-
ating k-set of G.

The first two steps may be swapped, by first fixing some e = (e1, . . . , en), choosing a product k-
partition of Xe (with elements xji as placeholders), and then choosing independent elements from
Zmjpj to be the elements of Xe. This allows us to sum over 0 ≤ e ≤ m, and for each e, there are{
e
k

}
product k-partitions. By Proposition 4.1.15, for each of these partitions, there are

n∏
j=1

(
mj

ej

)
pj

(ej)q!

ej !
· φ(pj)

ej · pj(
ej
2 )

ways to choose an independent ej-set of elements. Note that these are sets, not tuples, since the
product partition will take care of the ordering of these elements. Using the lemma, there are

n∏
j=1

1(
mj
ej

)
pj

(ej)pj !φ(pj)ejpj
(ej2 )

Fmjpj (k, ej)

ways to fill in the non-essential entries of the matrix. Multiplying these two expressions, the number
of irredundant generating k-sets for a particular product k-partition is

n∏
j=1

1

ej !
Fmjpj (k, ej).

This proves the theorem.

The theorem also tells us the possible sizes for an irredundant generating set of G. Let k be the

cardinality of an irredundant generating set of G. If |e| ≤ |m| < k, then

{
e
k

}
≤
{
|e|
k

}
= 0, so we

must have k ≤ |m|. On the other hand, F
mj
pj (k, ej) is a multiple of

s
k − ej
k −mj

{

pj

, which is zero if

k −mj < 0, so we must have mj ≤ k for all j. Thus, we get (5.10) as a corollary of the theorem.
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Chapter 6

Generalization to Direct Products
of Lattices

This chapter generalizes the proof of the main theorem, to obtain a formula for counting the number
of irredundant generating sets in direct products of lattices, provided we know certain facts about
the lattices that make up the direct product. As a corollary, we will obtain the formula for φk(n).
Throughout, we will assume our lattices are finite, and contain 0̂ and 1̂.

6.1 Irredundance and Essentiality in Lattices

We have already defined irredundance for Bn(q). Here we define irredundance and essentiality for
arbitrary lattices.

Definition 6.1.1 Let L be a finite lattice. A k-tuple (x1, . . . , xk), xi ∈ L is irredundant if

∀i, xi �

∨
j 6=i

xj

 .

Otherwise, it is called redundant.

Definition 6.1.2 Given a tuple (x1, . . . , xk), xi ∈ L, an entry xi is essential if

xi �

∨
j 6=i

xj


An index i ∈ [k] for which xi is essential is called an essential index. The essential index set
of a tuple is the set of its essential indices.

As was the case with Bn(q), a subset of L is irredundant iff all its members are essential. We
want to count irredundant generating sets of L, but first we have to define what it means to generate
L.

Definition 6.1.3 A subset {x1, . . . , xk} ⊆ L generates L if
∨k
i=1 xi = 1̂.

An irredundant generating k-set of L is thus a subset of cardinality k that is irredundant and
generates L, and φk(L) will denote the number of such k-sets. We will find a formula for φk(L)
when L = L1 × · · · × Ln. We recall one last definition before presenting the theorem.
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Definition 6.1.4 For i ≤ k, let FL(k, i) denote the number of k-tuples of elements from L that
generate L, and whose essential index sets are exactly [i].

Theorem 6.1.5 Let L = L1 × · · · × Ln. Let mj denote the size of the largest irredundant subset
of Lj, and let m = (m1, . . . ,mn). For ease of notation, let Fj := FLj . Then

φk(L) =
∑

0≤e≤m

{
e
k

} n∏
j=1

1

ej !
Fj(k, ej)

The proof of the theorem follows the same construction as the proof of Theorem 5.3.5.

Definition 6.1.6 For C = {x1, . . . ,xk} ⊆ L,xi = (x1
i , . . . , x

n
i ), xji ∈ Lj , an entry xji is essential if

it is essential in the tuple (xj1, x
j
2, . . . , x

j
k). Let Xj ⊆ Lj denote the set of essential entries that are

from Lj , let ej = |Xj |, and let X(C) = Xe =
⊔n
j=1X

j . Let Bi ⊆ X(C) denote the essential entries
that are entries of xi, and let B(C) = {B1, . . . , Bk}.

Proposition 6.1.7 C = {x1, . . . ,xk} ⊆ L is irredundant ⇐⇒ B(C) is a product k-partition of
X(C).

The proof is essentially the same as that of Proposition 5.3.4. With this proposition, we are
able to construct irredundant generating k-sets of L in the following manner:

1. From each Lj , choose an irredundant ej-set of elements, Xj , where ej ≤ mj .

2. Choose a product k-partition, {B1, . . . , Bk}, of Xe :=
⊔n
j=1X

j and write these Bi as rows

of a matrix such that if an essential entry is from Lj , then it is in the jth column of matrix.
Leave all other entries empty.

3. For all j ∈ [n], fill in the empty entries of the jth column such that the resulting column is
a tuple that generates Lj , but the only essential entries in the column are those that were
entered in the previous step.

4. Let x1, . . . ,xk be the rows of the resulting matrix. Then x1, . . . ,xk is an irredundant gener-
ating k-set of L.

Once again, we may swap the first two steps, deciding instead to first choose a partition of an

arbitrary set Xe =
⊔n
j=1X

j , and then assigning elements from Lj to be the elements of Xj .

{
e
k

}
gives the number of such product k-partitions. Fj(k, ej) counts the number of k-tuples whose
essential index sets are some fixed set with cardinality ej . This set is specified by the product
k-partition. We divide by ej ! because the partition takes care of the ordering of essential elements.
Once the essential elements are partitioned, each block is distinguished by the essential elements it
contains. Summing over e, which specifies the number of essential entries from each Lj , we get the
theorem.

6.2 Minimal k-covers

We now apply this theorem to count minimal k-covers of [n]. This application is based on the
following standard combinatorial fact which can be found in [8]:

Proposition 6.2.1

Bn ∼= B1 × · · · ×B1 = (B1)n
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B1 is the poset consisting of only two elements, 0̂ � 1̂. The lattice isomorphism sends a subset
s ⊆ [n] to the element (s1, . . . , sn), where

sj =

{
1̂ if j ∈ s
0̂ otherwise

(6.1)

If we write 0, 1 instead of 0̂, 1̂, then this is just the characteristic function, where the 1’s tell us which
elements are in s. Under this isomorphism, a minimal k-cover of [n] is precisely an irredundant
generating k-set of (B1)n.

In B1, there is only one irredundant subset, {1̂}, so mj = 1 for all j ∈ [n]. As we saw in Remark

3.2.7, if e ≤ m consists of only 0s and 1s, then

{
e
k

}
=

{
|e|
k

}
. Next, a k-tuple of elements from

B1 consists of only 0̂ or 1̂. It generates iff there is at least one entry that is 1̂, and it does so
irredundantly iff there is exactly one entry with 1̂. Let F (k, i) = FB1

(k, i), then F (k, 1) = 1, since
all other entries must be 0̂, and F (k, 0) = 2k − k− 1, since of the 2k ways to fill a k-tuple with 0̂ or
1̂, one of them does not generate (the one with all 0̂s), and k of them generate irredundantly (the
ones with a 1̂ in one entry and 0̂s everywhere else). And of course, 1

0! = 1
1! = 1.

Putting all this together, we get

φk(n) =
∑

0≤e≤m

{
e
k

} n∏
j=1

1

ej
F (k, ej)

=
∑

0≤e≤m

{
|e|
k

} n∏
j=1

(2k − k − 1)1−ej

=
∑

0≤e≤m

{
|e|
k

}
(2k − k − 1)n−|e|

=
∑

0≤i≤n

(
n

i

){
i
k

}
(2k − k − 1)n−i (6.2)

where the last equation follows from letting |e| = i, and noting that there are
(
n
i

)
tuples for each i.

This proves Theorem 1.0.4.

6.3 Cyclic Groups of Squarefree Order

Let m = p1p2 . . . pn, where pi are distinct primes. Then G = Zm is a cyclic group of square-free
order, and is isomorphic to

Zp1 × · · · × Zpn . (6.3)

Each Zpi , has {id},Zpi as its only subgroups, so L(Zpi) is the poset with two elements, 0̂ � 1̂,
which is simply the lattice B1. L(G) is thus isomorphic to Bn, so

φk(L(G)) = φk(n). (6.4)

To get φk(G), we compute

F 1
pi(k, 0) = (k)pi − k (6.5)

F 1
pi(k, 1) = φ(pi) (6.6)
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which, when plugged into Theorem 5.3.5 gives

φk(G) =
∑

0≤e≤1

{
e
k

} n∏
j=1

F 1
pj (k, ej)

=
∑

0≤e≤1

{
|e|
k

} n∏
j=1

((
(k)pj − k

)1−ej
φ(pj)

ej

)
. (6.7)

Note that φ(2) = 1, and (k)2 − k = 2k − k − 1, so if we set pj = 2 for all j, we recover the
formula for φk(n).

The similarity between φk(n) and φk(G), for G = Zp1 × · · · ×Zpn , pi’s distinct primes , was the
original inspiration for this thesis. In fact, using ideas similar to (and simpler than) those presented
in this thesis, we may define a polynomial:

fn,k(x1, . . . , xn) =
∑
α

(
1

knα

{
nα
k

} ∏
αi∈α

(
k

αi

))
xα (6.8)

where nα is the number of entries of the n-tuple, α = (α1, . . . , αn), that are equal to 1, and
xα = xα1

1 xα2
2 . . . xαnn . We get the nice result:

φk(n) = fn,k(1, 1, . . . , 1)

= fn,k
(
φ(2), φ(2), . . . , φ(2)

)
(6.9)

φk(G) = fn,k
(
φ(p1), φ(p2), . . . , φ(pn)

)
. (6.10)
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