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This project will focus on the analysis of problems in mechanics, control theory, and robotics
from the perspective of dynamical systems theory. Within mechanics, we will focus on the equilib-
rium and stability properties of thin elastic structures, and we will use these results to model the
behavior of toys such as a Slinky. Within control theory, we will study problems in optimal control,
inverse optimal control, and ensemble control. Within the field of robotics, we will focus on the
problem of automated manipulation for deformable objects and on the problem of simultaneously
controlling many robots with a limited number of signals. Finally, within dynamical systems theory,
we will study the connections between stability and optimality and how optimality can be used to
model collective motion.

Students participating in this project should have strong backgrounds in linear algebra and
ordinary differential equations. Previous experience with computer programming, optimization,
classical mechanics, or control theory will be helpful, but is not required. The problems we will
solve can be tailored to students’ expertise, and the problems can be computational, analytical,
or a mix of both. Below are descriptions of potential topics that students can explore during this
project.

Mechanics

• Stability of thin elastic structures

Thin structures, such as a one-dimensional wire or a two-dimensional piece of paper, often
respond in a nonlinear manner to external forces. This nonlinear response can result in
phenomena such as buckling, creasing, crumpling, and other instabilities. Although engineers
have spent centuries attempting to prevent instability, a recent trend has emerged in which
these phenomena are exploited, a transition some have called Buckliphobia to Buckliphilia
[1]. To fully utilize these nonlinear phenomena, a deeper understanding of the circumstances
under which they occur is needed. This portion of the project will focus on finding conditions
under which thin elastic structures can and cannot experience instabilities.

• Mechanics of toys

The same toys that fascinate children can be equally fascinating to mathematicians. Explain-
ing how a Slinky forms its iconic arch shape [2], how a toy “popper” jumps off a table [3],
and how small magnetic spheres can be formed into long chains [4] requires mathematical
tools such as optimization and differential equations. This portion of the project will focus
on understanding the mechanics of toys. If you have a favorite toy that you would like to
spend the summer modeling, bring it with you!
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Control

• Inverse optimal control

Optimization problems typically provide you with a cost function and ask you to find the
choice that results in the lowest cost. On the other hand, an inverse optimization problem
provides you with choices that are optimal and asks you to find the function that is being
optimized. Once the cost function is recovered, it can be used to make optimal choices in
future situations. Inverse optimal control is a type of inverse optimization problem in which
the optimal choices are time-dependent trajectories. This portion of the project will focus on
developing analytical and computational tools for solving inverse optimal control problems.

• Ensemble control

Suppose you are given a dynamical system that contains many agents. These agents could
be robots, cars, arial vehicles, etc. The motion of each agent is dictated by signals sent by
you to the agent. Also suppose that there are some small differences between how the agents
respond to your signal. For example, if you tell all the agents to move left 1 meter, some
agents may move 0.9 meters, while others may move 1.1 meters. Ensemble control asks the
following question: Is it possible to make the agents behave in a desired way while sending
the same signal to all agents? This portion of the project will focus on developing methods
to solve ensemble control problems and on applications in which ensemble control arrises.

Robotics

• Robotic manipulation of deformable objects

Look inside any factory that uses robots to handle and assemble parts, and you’re likely to
see the robots interacting with objects that are nearly rigid. What you’re less likely to see are
robots interacting with objects that experience large deformations. Robotic manipulation of
deformable objects appears to be challenging because the robot must reason about the infinite
number of shapes the object can take. This portion of the project will focus on characterizing
the set of all possible shapes of a deformable object and on developing methods that allow
robots to efficiently manipulate a deformable object into a desired shape.

• Steering robots by moving their targets

This problem is closely related to the ensemble control problem described above. However,
rather than sending signals to the agents, suppose the agents move in the direction of a nearby
target. What type of behavior can we generate by moving the target? With only one target,
this problem is not very interesting, since it can be shown that all agents typically approach
the same location [5]. Now suppose there are two targets that we can move, and the agents
move in the direction of the nearest target. What behavior can be generated? Is it possible
to maintain a minimum separation between each of the agents? This portion of the project
will explore these and similar questions.

Dynamics

• Collective motion

Flocks of birds, schools of fish, and swarms of insects are capable large-scale coordinated
motion, sometimes called collective motion, even though each individual is only able to see
what their nearby neighbors are doing. Heuristic models of this behavior have been proposed,
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which rely on assumptions about the goals of each individual in the swarm [6]. Is it possible
that each individual is acting in a way that optimizes a cost function? This portion of the
project will study how collective motion can be modeled from an optimization viewpoint and
how the choice of cost function influences the behavior of the swarm.

• The relationship between stability and optimality

Stability is a property of dynamical systems in which trajectories that begin close to each
other remain close. Optimality is a property of dynamical systems in which trajectories are
minimizers of some cost function. This portion of the project will explore the relationships
between these two properties. Questions we will ask include: What is the relationship between
stability and optimality of fixed points in a dynamical system? Are there conditions under
which stability can provide information about the optimality of a trajectory? Conversely,
are there conditions under which optimality can provide information about the stability of a
trajectory?
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