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Properties of Generating Sets of Finite Groups

by
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We now provide a few more details about the prerequisites for the REU in group theory,
where to find additional information about the mathematics and a little about the me-
chanics and goals of our program. In addition, we give a detailed version of the topics
and types of questions that will be considered.

Further Information

Students in the project should have a solid background in basic linear algebra and ab-
stract algebra. For example, the first six chapters of the textbook by Dummit and Foote,
Abstract Algebra, 3rd edition, Wiley, would be more than adequate for the required back-
ground in group theory. For example, section 5.2 defines the term elementary divisors

which appears below and in one standard description of the decomposition of finite
abelian groups as direct products of cyclic groups. The same book also has several
chapters on linear algebra (Chapters 10, 11, 12) but they’re at a level higher than we
expect most students to have seen.

The basic ideas for some of the specific topics we discuss below are worked out in detail
in the 2010 Cornell Senior Thesis of Daniel J. Collins.

In particular, references for most of the other topics discussed can be found in the thesis
as well.

Basic Goals and Mechanics

During the summer students will learn several topics in group theory they’ve probably
not seen before by directly working with these new ideas, both theoretically and com-
putationally. In fact, one usually finds that writing programs helps one understand the
mathematics in a much more concrete way than ones does when only trying to prove
theorems. Conversely even small theoretical gains many times have substantial con-
sequences computationally which in return allows the study of even larger and more
complicated examples. This makes it much more likely that one is getting a true pic-
ture of what is going on rather than only seeing the parts of the subject which are small
enough and simple enough to do by hand or with unsophisticated tools.

Those students accepted to participate in the program will receive further information
including a set of notes by Dan Collins covering most of the needed background in group
theory as well as a development of some of the topics described below.

http://www.math.cornell.edu/m/sites/default/files/imported/Research/SeniorTheses/2010/collinsThesis.pdf
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Previous programming experience will be an advantage as we study these topics by ex-
perimenting computationally. Many explicit examples in a number of different situations
can be given this way. Tutorials on programming will be given and a number of example
programs will be provided. The computer algebra systems GAP and Magma will be
our main tools. GAP is freely available for all operating systems. MAGMA requires a
license and is available on Math Department computers. Currently Magma is provided
to all US universities by the Simons Foundation.

A separate computer lab containing Linux workstations will be available for Cornell
REU students. The students in this project will have access to a number of machines
including remotely accessing larger machines.

We’ll start this project with a small collection of computational tools, theorems, and
questions. Our goal is to significantly enlarge the contents of each of these collections.
The research program will not be fixed, but will develop according to the interests and
skills of the participants. An abundance of problems at many different levels of difficulty
will be considered. This is a relatively new area of study with a real possibility of
progress on problems at the edges of current research. New discoveries are likely to lead
to publication.

A Brief Description of the Mathematics

Let G be a finite group. Any subset s = { g1, ..., gn } of G generates a subgroup that
we denote H = 〈 g1, . . . , gn 〉 . We say s is irredundant (or independent) if every proper
subset of s generates a proper subgroup of H . Let r(G) be the smallest size of a
generating set of G , m(G) the largest size of an irredundant generating set, and i(G)
the largest size of any irredundant set. Clearly r(G) ≤ m(G) ≤ i(G) .

Exercise 1. Use the elementary divisor and primary decompositions of an abelian group
to calculate r(G) , m(G) , and i(G) for a finite abelian group G . Determine precisely
when r(G) = m(G) for G a finite abelian group.

Exercise 2. Construct a group G where m(G) < i(G) as follows. Let q = pn for
p a prime. Let Fq be a finite field with q elements. Recall that the multiplicative

group F
∗

q is cyclic of order r = q − 1 . Let G = Fq
+
⋊ Fq

∗ be the semi-direct product
where the multiplicative group acts on the additive group by multiplication. Show that
r(G) = 2 . Show that the additive group is a simple Fq

∗ -module (i.e., considered as a
module over the group ring Fp[Fq

∗] ; that is, it has no proper non-trivial submodules).
Suppose r is a prime (e.g., q = 32 , r = 31 ). Show that m(G) = 2 as well. Note that
i(G) = n (at least n is clear; use that the module is simple to show it is exactly n ).
Conclude that it is not necessarily the case that any irredundant set can be extended to
an irredundant generating set. Next try to compute m(G) and i(G) in general.

A finite dimensional vector space G over the integers mod p where p is prime (the
unique field with p elements, Fp = Zp ) is just an elementary abelian p -group, and an
irredundant generating set is just a basis. Some properties in this case are:

http://www.gap-system.org/
http://magma.maths.usyd.edu.au/magma/
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(1) any two bases have the same number of elements,

(2) every irredundant set is contained in some basis,

(3) every generating set contains some basis,

(4) for any basis and any non-trivial element of G , there is some element of the basis
that can be replaced by the given element to yield a new basis for G ,

(5) every element of a basis has prime order,

(6) given two ordered bases there exists a unique automorphism of G that takes one to
the other; so |Aut(G)| is the number of distinct bases of G .

Irredundant generating sets for arbitrary finite groups have very few of these properties.

Exercise 3. All but one of these 6 properties fail to hold for some finite group G .
Find examples for the 5 that fail. For the one remaining property that always holds,
give a proof. These are easy to do.

Nevertheless for a given group, a study of how closely irredundant generating sets are to
having these properties provides a useful framework to guide their study. We list here
a few general results.

Tarski’s Theorem

For example the first theorem in the subject, due to Tarski, asserts that there are no
gaps between the sizes of irredundant generating sets: For any k , r(G) ≤ k ≤ m(G) ,
there exists an irredundant generating set with k elements.

One interesting problem is to determine the numbers r(G) , m(G) , and i(G) . In 1936
P. Hall gave a method of computing r(G) using the Möbius function of the lattice of
subgroups of the finite group G . This method turns out to be fairly efficient and works
well computationally for groups of small size. More recently D. Collins found a formula
for m(G) in terms of the Möbius function. However, computationally the formula turns
out to be quite inefficient. The formulas of Hall and Collins actually determine more,
namely the number of irredundant generating sequences of a specific length. It’s thus
conceivable that there might be simpler methods to determine r(G) and m(G) without
determining how many there are of the given length at the same time. For solvable
groups there is an alternate method to compute m(G) in terms of a chief series for G
that is also efficient computationally. As yet no such method is known for determining
m(G) for non-solvable groups in terms of a chief series for the group. As yet there is
no easy way to determine i(G) .

Several other results can be obtained from Tarski-like arguments, which are very simple:
Given a fixed irredundant generating set, one just measures distances between elements,
sets, sequences, etc. in a group by counting the number of operations (multiplications by
single elements of the given generating set) used to go from one to the other. Explicitly,
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given an irredundant generating set B and an element g ∈ G write g as a product of
elements of B but use only positive exponents on the elements of B . For this particular
representation of g as a product, the sum of the exponents is called the length of g (with
respect to this representation as a product). We then define ℓB(g) to be the minimum
of the lengths of g taken over all possible ways of representing g as a product as just
described. One can then use this function ℓ to define distances between elements, sets
of elements, or sequences of elements in G , but in several different ways. In Tarski’s
original paper he uses the same kind of idea to define the notion of distance, but in yet
another way. However all methods are based on counting the number of multiplications
used. It seems very likely that there are other results which may be proven by using
variations on Tarski’s original idea. This is certainly an area which deserves further
study.

The Frattini Subgroup

The Frattini subgroup, Φ(G) , of a group G is the set of elements that are non-generators
(that is, can be removed from any set that generates yielding a set that still generates).
This subgroup can also be described as the intersection of all maximal subgroups of
the group. In many situations it plays a trivial role, that is, it is straightforward to
describe what happens for G in terms of what happens for G/Φ(G) . Sometimes below
we describe what happens in the Frattini-free case (i.e., Φ(G) = 1 ) to simplify the
statements. Section 6.1 of the book of Dummit and Foote and in particular the exercises
(page 199) provide a lot of information on the properties of the Frattini subgroup. If
one also knows something about ring theory, then one should see the analogy between
the behavior of the Frattini subgroup and the Jacobson radical.

The Replacement Property

An irredundant generating sequence s satisfies the replacement property if for any ele-
ment g not equal to 1 , there exists some element of s which when replaced by g , gives
a new generating set s′ for G . The group G satisfies the replacement property for k if
all irredundant generating sets of size k satisfy the replacement property. If G satisfies
the replacement property, then it’s easy to see that Φ(G) = 1 .

For vector spaces a standard result (appearing in many developments of linear algebra
in earlier years) called the Steinitz Exchange Property asserts that for any basis B of a
vector space V and any independent subset S of V , there exists a subset of B which
when replaced by S yields a basis for V . Our replacement property differs in two ways:
we replace only one element, and the resulting new set generates G but isn’t necessarily
irredundant.

Using the same (Tarski) type of argument, one can show that there may be a weak
version of the Steinitz Exchange Property, but ONLY for sets of size m(G) : If G has
the replacement property for all irredundant generating sets of size k , then k = m(G) .

Many finite groups have the replacement property for m(G) : vector spaces, Frattini-
free abelian groups, the symmetric groups and many small non-abelian simple groups.



Cornell SPUR 2018 5 Group Theory

However, many Frattini-free solvable groups do not, with the Frobenius group of order
20 (Hol(Z5) = Z5 ⋊ Aut(Z5)≈Z5 ⋊ Z4 ) being the smallest. One can give an explicit
characterization of the solvable groups having the replacement property, but very little is
known about the non-solvable case. An example of a simple group where the replacement
property does not hold is PSL(2,Z17) .

Geometry

One can determine the behavior of these functions on the direct product of groups.
Both m and i are additive, for example, m(G ×H) = m(G) +m(H) . A theorem of
Gaschütz gives a simple but more complicated formula for r(G×H) . If further, both
groups satisfy the replacement property, then the irredundant generating sets of length
m(G×H) = m(G) +m(H) are obtained by taking the union of the images (under the
natural maps) of irredundant generating sets of maximal length for G and H . Only
in special cases (e.g., direct products of simple groups or solvable groups) is this formula
known more generally. This will be one of the problems we study.

The behavior of these functions under semi-direct products or more complicated ex-
tensions is not understood very well, especially in the non-solvable case. Examples of
specific questions are

• Find a nice description for length-m(G) irredundant generating set in An ,

• Determine m(G) exactly and find a nice description for length-m(G) irredundant
generating sets in various PSL(n, q) ,

• Determine m(G) in other simple group families (or for sporadic groups), and find
nice descriptions for length-m(G) irredundant generating sets there.

• Determine a recursive way to find and count length-m(G) irredundant generating
sets for solvable groups.

Until recently, it would have been very difficult to make much progress on problems of
this type without a great deal of background in group theory. However, a new approach
which in essence is geometric in nature provides computationally very efficient ways to
quickly determine all irredundant generating sequences of any length for any finite group.
It seems likely that such ideas will also provide efficient means for proving theorems, but
much is still to be worked out. For example, it is now easy to prove the previously
unknown m(M11) = 5 where M11 denotes the smallest sporadic simple Mathieu group.
Such arguments are given by relating m(G) to i(M) for all maximal subgroups M of
G as is suggested by the work of Whiston:

m(G) ≤ 1 + max { i(M) | M maximal in G } .

Thus, computationally at least, one should determine both m(G) and i(G) together
recursively. We develop a more subtle version of the preceding inequality that depends
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on the existence of certain families of m(G) maximal subgroups of G which are in
what is called general position. The latter is in essence a geometric condition and
will be one of the main topics of study. Results for small groups suggests that one
conceivable interpretation of the computation is that it gives an explicit version of the
Möbius function computation: the terms have been grouped together in a natural way
so that all of the cancellations from the negative values of the Möbius functions have
already occurred and what is left is a sum of positive terms.

Homogeneous Covers

If one considers universal mapping properties such as are possessed by bases of vec-
tor spaces (the last property in our original list), bases (irredundant generating sets)
of groups do not always have that property. Let G be any finite group and n an
integer with n ≥ r(G) . Define the n -th homogeneous cover of G to be the group
H(n,G) = Fn/K where K is the intersection of all of the kernels of the surjective
homomorphisms from the free group of rank n onto G . Note that each generating
sequence of G of length n gives rise to such a kernel. The groups H = H(n,G) that
arise by this construction are called homogeneous of rank n . They can be described in
several equivalent ways:

• H satisfies a certain universal mapping propery,

• Aut(H) acts transitively on the set of generating sequences of H of length n ,

• the presentations for H with respect to any basis of size n are identical.

For G finite abelian, then H(n,G)≈(Ze)
n where e = exp(G) is the exponent of G .

For G = A5 we have H(2, A5)≈(A5)
19 . The exponent 19 occurs in the last example

because there are 19 orbits of the group Aut(A5) = S5 acting in the natural way on
the ordered pairs of generators (i.e., ordered bases of size 2 ) of A5 . More generally for
any non-abelian simple group S and any integer n ≥ r(S) = 2 , there exists a certain
unique integer-valued function f(n) (which depends on S ) such that H(n, S)≈Sf(n) .
This last result is a consequence of work of P. Hall around 1936. These and related
questions were investigated by Neumann and Neumann and were the motivation for the
result of Gaschütz mentioned earlier. In fact, essentially the same construction appears
in a standard proof that any finitely generated residually finite group is hopfian. The
ordinary quaternion group Q8 of order 8 has this property, as do all of the non-abelian
p groups of order p3 which have exponent p (that is, all non-identity elements have
order p ).

Exercise 4. Prove the statement about abelian homogeneous groups of rank n . Verify
that the groups of order p3 mentioned are the only non-abelian groups of this order
which are homogeneous of rank 2 .

The homogeneous cover of G is given as the subdirect product of a number of copies of
G and hence has properties that are very much like those of G . For example, H(n,G)
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is solvable if and only if G is solvable and they both have the same derived length.
The two groups even have the same simple Jordan-Hölder components although not
necessarily the same number of each type.

Many interesting questions arise from the study of these groups. For example, each
of the elements of a set of n generators of such a group will have all the same prop-
erties. They all have the same exponent for example (called the generating exponent

and denoted gexp(G) ). If n > r(G) , that exponent is just exp(G) . It is always true
that the exponent of these generators divides exp(G) . However, if n = r(G) that is
not necessarily the case. The smallest such example has order 72 and is the group
G = (Z3 × Z3) ⋊ Q8 where Q8 acts as a group of matrices sitting inside GL(2,Z3) .
The group G has r(G) = 2 and gexp(H(2, G)) = 4 whereas exp(G) = 12 . It appears
that a prime has vanished from the exponent! The groups doing the acting (“hiding the
primes”) in the semi-direct product, e.g., Q8 , were called “secretive” in some publica-
tions. A generalization of an idea of W. Scharlau using a special ideal in the group ring,
Z[G] , gives a way of directly determining which groups have this “secretive” property.

An even more subtle question about homogeneous groups arises in the case of p -groups:
For a finite p -group G is it true that there exists an irredundant generating sequence
of G of length r(G) which contains an element having exponent exp(G) ? A group for
which this property fails will also fail to satisfy the Hughes Conjecture. The Hughes
Conjecture is known to be false, but the smallest counterexamples are of order 548 (Havas
and Vaughan-Lee); so a counterexample to our question about generators must be at
least as large.

Origins

The previous discussion is the original entry point into this topic for the first author
of this note. About 20 years ago, Persi Diaconis asked him if it would be possible to
define a “K-theory” of finite groups based on n -tuples of group elements (instead of
n -tuples of elements of a free module as in the classical case). Algebraic K -theory
is a subject which is often considered to be a generalization of linear algebra from the
study of vector spaces over a field to the study of modules over an arbitrary ring. The
ideas of Neumann and Neumann suggest a natural way to associate with any finite
group and positive integer n ≥ r(G) a homogeneous cover H of G having r(H) = n
with H being as close to G as possible (e.g., it has the same composition factors)
and which has the appropriate universal mapping property which could thus be used
as an analogue of “free modules”. One would then take the automorphism groups of
these along with natural maps to construct groups which would play the role of the
general linear groups in ordinary algebraic K-theory. This remark is inserted merely for
motivational purposes since we will neither be discussing nor attempting to construct
such a theory. In particular, it is not necessary to have any familiarity with any of the
concepts in this remark. However, this point of view and particularly trying to carry
out such a construction, gives rise to a multitude of interesting questions about finite
groups. Further, it suggests that any success in the current program might well have
interesting consequences for the development of group theory.


