2006-2007		
Discrete Probability	Game Theory	Revisiting Combinatorics
Instructor: Abra Brisbin (CAM)	Instructor: Jason Anema (Math)	Instructor: Jay Schweig (Math)
The first few days introduced set theory and	This course began with a study of matrix games	Combinatorics was taken in new directions for
combinatorics. After that, they turned to	and a proof of the existence of Nash equilibria.	the students, covering graph and tree
probability distributions, expected value, and	Students then studied decision graphs, which	enumeration, partitions, compositions, and
independence. In the second half of the course,	included backwards induction, uncertainty and	generating functions. Responding to a request
they worked on conditional probability, Bayes'	multiple-person decisions, and as an example	from the students, the second part of the session
Theorem, the Monte Carlo method, and Markov	played "Indian Poker" in class. The next topic	covered the beginnings of formal logic, including
chains. Throughout the course, they tackled	was the problem of maximizing utility in auctions	a treatment of sentential logic, a discussion of the
questions involving applications of probability in	with incomplete information. The course	completeness and incompleteness theorems, and
biology, medicine, social policy, and everyday	concluded with a consideration of voting schemes	a full proof of the compactness theorem for
life.	and coalitions.	sentential logic.
2007-2008		
Combinatorics: Unusual Counting Problems	Group Theory	Introduction to Knot Theory
Instructor: Gwyneth Whieldon (Math)	Instructor: Jonathan Needleman (Math)	Instructor: Victor Kostyuk (Math)
Students started with proofs of interesting	This course emphasized symmetries of	This session started with basic concepts of knot
Fibonacci identities, and then moved on to more	mathematical objects, such as geometric shapes	and link projections, ambient isotopies, and
general binomial identities, with the emphasis on	and sets. Basic properties of groups were	Reidemeister moves, and continued with simple
using bijective counting arguments rather than	explored including subgroups, normal subgroups,	link and knot invariants (e.g., linking number,
induction or other proof methods. Lucas and	and quotient groups. Lagrange's Theorem and	tricolorability, and crossing number). Alexander
Gibonacci identities were studied, and more	the first isomorphism theorem were proved, and	and Jones polynomials were introduced, the latter
difficult identities that combine Lucas and	the Sylow Theorems were stated. For an end of	defined in terms of the Kauffman bracket.
Fibonacci numbers were studied. Binet's	the term group project the students decided to	Students examined the Dawker notation and
formula using combinatorial and probabilistic	explore symmetries in M.C. Escher's artwork.	algebraic tangles, closed braid representations of
arguments was proved. Identities on simple or		links, torus and satellite knots. The last few
general continued fractions was studied. Students		weeks were spent discussing surfaces and the
were introduced to Khinchin's constant and some		Euler characteristic, leading to a definition of a

Counting Problems & Generating Functions Instructor: Saud Blanco Rodrigue: (Math)Cardinality Instructor: Matt Noonan (Math)Isometries & Symmetries Instructor: Victor Kostyuk (Math)Students looked at the connection between rational generating functions and linear recurrences, and used these to find closed formulas for the Fibonacci and Catalan numbers. Students by Catalan and Motzkin numbers. Other topics included composition, set and number partitions, their associated generating functions and Euler's Pentagonal number theorem. Unlike the generating functions connected to linear recurrences, students discovered that the generating functions associated with partitions are an infinite product and not an infinite sum.Isometries & Symmetries Instructor: Victor Kostyuk (Math)2009-2010Paradoxes and Infinity Instructor: Grypeth Wieldon (Math)2009-2010Paradoxes and Infinity Instructor: Grypeth Wieldon (Math)Students looked a two compositions of permutations. They investigated subgroups of the Rubik's Cube group and compositions of permutations. They investigated subgroups of the Rubik's cube group and compositions of permutations. They investigated subgroups. The students were not taught how to solve the Rubik's cube turnet, time was and quotient groups. S. the students were not mager into disjoint cycles, and even and odd permutations. They investigated subgroups. The students were not taught how to solve the Rubik's cube bur tarket, time was to the write scanned size of finity mardox, the Littlewood Ping-Pong ball problem, and other Supertals problems).Instructor: Review Rubik's Cube group and Lagrang's Theorem. The students were not taught how to solve the Rubik's cube bur ather, time was problem.2009-2010Paradoxes and I	2008-2009		
Instructor:Instructor:Natt Noonan (Math)Instructor:Instructor:Victor Kostyuk (Math)Students looked at the connection between rational generating functions and linear recurrences, and as the solution to counting problems. Students as the solution to counting problems. Students explored bijections between objects that are counted by Catalan and Motzkin numbers. Other topics included composition, set and number partitions, their associated generating functions and Euler's Pentagonal number theorem. Unlike the generating functions connected to linear recurrences, students tiscovered that the generating functions associated with partitions are an infinite product and not an infinite sum.Instructor: Watt Noonan (Math)Instructor: Victor Kostyuk (Math)2009-2010This session extended the unit on generating functions connected to linear recurrences, students theory in the form of Fermat's Little Theorem, wilson's Theorem, and Euler's Finally, after studying some basic number theory in the form of Fermat's Little Theorem, Wilson's Theorem, and Euler's Theorem, the RSA encryption algorithm was introduced.Instructor: Cryptology toructors company tissession as summetries of encerts tissession extended the unit or generating functions connected to linear recurrences, students theory in the form of Fermat's Little Theorem, Wilson's Theorem, and Euler's Theorem, the RSA encryption algorithm was introduced.Instructor: New covered, as well as homomorphisms and tissession extended the unit's cube groups. Clinear termerations, and free groups. The students group for this they learned about ner students groups of the Rubik's cube groups. For this they learned about ner further introducing modular arithmetic, students generalized to multiplication and, eventuall	Counting Problems & Generating Functions	Cardinality	Isometries & Symmetries
Students looked at the connection between rational generating functions and linear recurrences, and used these to find closed formulas for the Fibnacci and Catalan numbers that were defined recursively as the solution to counting problems. Students explored bijections between objects that are counted by Catalan and Motzkin numbers. Other topics their associated generating functions and Euler's Fentagonal number theorem. Unlike the generating functions are an infinite product and not an infinite sum.Students looked at isometries or fugures in the plane. This led to groups of isometries or symmetries cardinality. Students applied generating functions to the construction of "nonstandard dice." Understanding cyclotomic polynomials, and this became the new theme of the course. The seminar moved on to study constructability of regular polygons by ruler and compass. Finally, after studying some basic number theory in the form of Fermat's Little Theorem, Mison's Theorem, and Euler's Theorem, the RSA encryption algorithm was introduced.Students looked at isometries of fugures in the plane. This led to groups of isometries or symmetries or isometries. Injective and surjective functions userourse. The subgroups, quotient groups, and the first isomorphism theorem. Seminar closed with a discussion of generators, relations, and free groups. Universal properties and commutative diagrams were introduced in this context.2009-20102009-20102009-20102009-20102009-20102009-20102009-20102009-20102009-20102009-20102009-20102009-20102009-20102009-20102009-20102009-20102009-2010	Instructor: Saul Blanco Rodriguez (Math)	Instructor: Matt Noonan (Math)	Instructor: Victor Kostyuk (Math)
generating functions and linear recurrences, and used these to find closed formulas for the Fibonacci and Catalan numbers that were defined recursively as the solution to counting problems. Students explored bijections between objects that are counted by Catalan and Motzkin numbers. Other topics to understanding cyclotomic polynomials, and this became the new theme of the course. The seminar moved on to study constructability of regular polygons by ruler and compass. Finally, after studying some basic number atting functions are ninfinite product and not an infinite sum.plane, and symmetries of figures in the plane. This led to groups of isometries or symmetries. They discussed the axioms a set needs to satisfy in order to be a group, and studied basic examples of groups, their properties, and geometrics or isometries. Injective and surjective functions sometries or isometries or symmetries or isometries or symmetries or isometries or symmetries or isometries. Injective and surjective functions somorphisms and isomorphisms they explored kernels, normal subgroups, quotient groups, and the first isomorphism theorem. Seminar closed with a discussion of generating functions associated theory in the form of Fernat's Little Theorem, they are introduced in this context.Introduction to Cryptology Instructor: Seminar Losed with a discussion of generations, they are an infinity Instructor: Jennifer Biermann (Math)Paradoxes and Infinity Instructor: Gwyneth Whieldon (Math)Intructor: Benjamin Lundell (Math)Students first focused on determining the size of the numbers and number systems, and the areal paradoxes, properties of into disjoint cycles, and even and od dpermutations. They investigated subgroups of the Rubik's cube group and Lagrange's Theorem. The last part of the unit touched on several subj	Students looked at the connection between rational	This session extended the unit on generating	Students looked at isometries of the line and
used these to find closed formulas for the Fibonacci and Catalan numbers that were defined recursively as the solution to counting problems. Students as the solution to counting problems. Students as the solution to counting problems. Students included composition, set and number partitions, and Euler's Pentagonal number theorem. Unlike the generating functions connected to linear recurrences, students discovered that the generating functions associated their associated generating functions associated includes domomorphisms and subjective functions their associated generating functions associated with partitions are an infinite product and not an infinite sum.Institute defined recursively in order to be a group, and studied basic examples of groups, their properties, and geometric expression as symmetries. They discussed the axioms a set needs to satisfy isometries. Injective and surjective functions were covered, as well as homomorphisms and isomorphisms. They explored kernels, normal subgroups, quotient groups, and the first isomorphism theorem. Seminar closed with a discussion of generators, relations, and free groups. Universal properties and commutative diagrams were introduced in this context.2009-2010Paradoxes and Infinity Instructor: Semifer Biermann (Math)Paradoxes and Infinity Instructor: Gwyneth Whieldon (Math)Introduction to Cryptology Instructor: Benjamin Lundel (Math)Students first focused on determining the size of the unit touched on several subgroups of the Rubik's cube unt touched on several subgroups of the Rubik's cube unt touched on several subgroups of the Rubik's cube unit touched on several subgroups	generating functions and linear recurrences, and	functions and examined how generating	plane, and symmetries of figures in the plane.
and Catalan numbers that were defined recursively as the solution to counting problems. Students explored bijections between objects that are counted by Catalan and Motzkin numbers. Other topics included composition, set and number partitions, their associated generating functions, and Euler's Pentagonal number theorem. Unlike the generating functions connected to linear recurrences, students discovered that the generating functions associated with partitions are an infinite product and not an infinite sum.They discussed the axioms a set needs to satisfy in order to be a group, and studied basic examples of groups, their properties, and geometric expression as symmetries or isometries. Injective and surjective functions were covered, as well as homomorphisms and tegular polygons by ruler and compass. Finally, after studying some basic number theory in the form of Fermat's Little Theorem, Wilson's Theorem, and Euler's Theorem, the RSA encryption algorithm was introduced.They discussed the axioms a set needs to satisfy in order to be a group, and studied basic examples of groups, their properties, and geometric expression as symmetries or isomorphisms. They explored kernels, normal subgroups, quotient groups, and the first tisomorphism theorem. Seminar closed with a discussion of generators, relations, and free groups. The students of the Rubik's cube group. For this they learned about permutation groups, decompositions of permutations into disjoint cycles, and even and odd permutations.Paradoxes and Infinity Instructor: Gwyneth Whieldon (Math)Introduction to Cryptology Instructor: Benjamin Lundell (Math)Students examined sizes of finite and infinite group and Lagrange's Theorem. The last part of the unit touched on several subjects as Cayley graphs and quotient groups. The students were not taught 	used these to find closed formulas for the Fibonacci	functions can lead to a generalized notion of	This led to groups of isometries or symmetries.
as the solution to counting problems. Students explored bijections between objects that are counted by Catalan and Motzkin numbers. Other topics included composition, set and number partitions, their associated generating functions, and Euler's Pentagonal number theorem. Unlike the generating functions connected to linear recurrences, students discovered that the generating functions associated with partitions are an infinite product and not an infinite sum.functions to the construction of "nonstandard dice." Understanding cyclotomic polynomials, and this became the new theme of the course. The seminar moved on to study constructability of regular polygons by ruler and compass. Finally, after studying some basic number theory in the form of Fermat's Little Theorem, Wilson's Theorem, and Euler's Theorem, the RSA encryption algorithm was introduced.in order to be a group, and studied basic examples of groups, and tudied basic examples of groups, and the first isomorphisms. They explored kernels, normal subgroups, quotient groups, and the first isomorphisms and not an into disjoint cycles, and even and odd permutations into tudend on several subjects as Cayley graphs and quotient groups. The students were not taught how to solve the Rubik's cube but rather, time wasFunctiona to the construction of "nonstandard dice." Understanding cyclotomic polynomials, and termaly after studying some basic number theory in the form of Fermat's Little Moort Instructor: Group Theory: Rubik's Cube Instructor: Group Theory: Rubik's Cube <br< td=""><td>and Catalan numbers that were defined recursively</td><td>cardinality. Students applied generating</td><td>They discussed the axioms a set needs to satisfy</td></br<>	and Catalan numbers that were defined recursively	cardinality. Students applied generating	They discussed the axioms a set needs to satisfy
explored bijections between objects that are counted by Catalan and Motzkin numbers. Other topics included composition, set and number partitions, included composition, set and number partitions, seminar moved on to study constructability of regular polygons by ruler and compass. Finally, after studying some basic number theory in the form of Fermat's Little Theorem, theory in the form of Fermat's Little Theorem, theorem, and Euler's Theorem, the RSA encryption algorithm was introduced.isomorphisms. They explored kernels, normal subgroups, quotient groups, and the first discussion of generators, relations, and free groups. Universal properties and commutative diagrams were introduced in this context.2009-2010Paradoxes and Infinity Instructor: Gwyneth Whieldon (Math)Introduction to Cryptology Instructor: Benjamin Lundell (Math)Students first focused on determining the size of the regular groups, decompositions of permutations. They investigated subgroups of the Rubik's cube group and Lagrange's Theorem. The last part of the unit touched on several subjects as Cayley graphs and quotient groups. The students were not taught how to solve the Rubik's c	as the solution to counting problems. Students	functions to the construction of "nonstandard	in order to be a group, and studied basic
by Catalan and Motzkin numbers. Other topics included composition, set and number partitions, their associated generating functions, and Euler's Pentagonal number theorem. Unlike the generating functions connected to linear recurrences, students discovered that the generating functions associated with partitions are an infinite product and not an infinite sum.to understanding cyclotomic polynomials, and this became the new theme of the course. The seminar moved on to study constructability of regular polygons by ruler and compass. Finally, after studying some basic number theory in the form of Fermat's Little Theorem, the form of Fermat's Little Theorem, the RSA encryption algorithm was introduced.geometric expression as symmetries or isometries. Injective and surjective functions were covered, as well as homomorphisms and isomorphism. They explored kernels, normal subgroups, quotient groups, and the first isomorphism theorem. Seminar closed with a discussion of generators, relations, and free groups. Universal properties and commutative diagrams were introduced in this context.2009-2010Paradoxes and Infinity Instructor: Jennifer Biermann (Math)This seminar began with discussion of several classical math paradoxes, properties of numbers and number systems, and the development of axiomatic mathematics. Students examined sizes of finite and infinite sets and several classic puzzles and paradoxes (e.g., Zeno's paradox, the Banach-Tarski paradox, the Littlewood Ping-Pong ball paradox, the Littlewood Ping-Pong ball paradox, the Littlewood Ping-Pong ball porblem, and other Supertask problems).genetation is cometries and symmetries or isomorphisms theorem. Seminar closed with a discussion of generators, relations, and free groups. Ale encryptology2009-2010Instructor: Jenni	explored bijections between objects that are counted	dice." Understanding these dice is closely tied	examples of groups, their properties, and
included composition, set and number partitions, their associated generating functions, and Euler's Pentagonal number theorem. Unlike the generating functions connected to linear recurrences, students discovered that the generating functions associated with partitions are an infinite product and not an infinite sum.this became the new theme of the course. The seminar moved on to study constructability of regular polygons by ruler and compass. Finally, after studying some basic number theory in the form of Fermat's Little Theorem, Wilson's Theorem, and Euler's Theorem, the RSA encryption algorithm was introduced.isometries. Injective and surjective functions were covered, as well as homomorphisms and subgroups, quotient groups, and the first isomorphism theorem. Seminar closed with a discussion of generators, relations, and free groups. Universal properties and commutative diagrams were introduced in this context.2009-2010<	by Catalan and Motzkin numbers. Other topics	to understanding cyclotomic polynomials, and	geometric expression as symmetries or
their associated generating functions, and Euler's Pentagonal number theorem. Unlike the generating functions connected to linear recurrences, students discovered that the generating functions associated with partitions are an infinite product and not an infinite sum.seminar moved on to study constructability of regular polygons by ruler and compass. Finally, after studying some basic number theory in the form of Fermat's Little Theorem, theory in the form of Fermat's Little Theorem, this on's Theorem, the RSA encryption algorithm was introduced.were covered, as well as homomorphisms and isomorphisms. They explored kernels, normal subgroups, quotient groups, and the first isomorphism theorem. Seminar closed with a discussion of generators, relations, and free groups. Universal properties and commutative diagrams were introduced in this context.2009-2010Paradoxes and Infinity Instructor: Gwyneth Whieldon (Math)Introduction to Cryptology Instructor: Benjamin Landell (Math)Students first focused on determining the size of the Rubik's cube group. For this they learned about into disjoint cycles, and even and odd permutations. They investigated subgroups of the Rubik's cube group and Lagrange's Theorem. The last part of the and quotient groups. The students were not taught and quotient groups. The students were not taught how to solve the Rubik's cube but rather, time wassets and several classic puzzles and paradoxes (e.g., Zeno's paradox, the Banach-Tarski paradox, the Littlewood Ping-Pong ball paradox, the Supertask problems).were covered, as well as homomorphisms and isomorphisms. They explored kernels, normal sudgroups of the Rubik's cube sets and several classic puzzles and paradoxes (e.g., Zeno's paradox, the Banach-Tarski paradox, the Littlewood Ping-Pong ball paradox	included composition, set and number partitions,	this became the new theme of the course. The	isometries. Injective and surjective functions
Pentagonal number theorem. Unlike the generating functions connected to linear recurrences, students discovered that the generating functions associated with partitions are an infinite product and not an infinite sum.regular polygons by ruler and compass. Finally, after studying some basic number theory in the form of Fermat's Little Theorem, wilson's Theorem, and Euler's Theorem, the RSA encryption algorithm was introduced.isomorphisms. They explored kernels, normal subgroups, quotient groups, and the first isomorphism theorem. Seminar closed with a discussion of generators, relations, and free groups. Universal properties and commutative diagrams were introduced in this context.2009-2010Paradoxes and Infinity Instructor: Gwpneth Whieldon (Math)Introduction to Cryptology Instructor: Benjamin Lundell (Math)Students first focused on determining the size of the remutation groups, decompositions of permutations into disjoint cycles, and even and odd permutations. They investigated subgroups of the Rubik's cube group and Lagrange's Theorem. The last part of the unit touched on several subjects as Cayley graphs and quotient groups. The students were not taught how to solve the Rubik's cube but rather, time wasStudents examined sizes of finite and infinite sets and several classic puzzles and paradoxes (e.g., Zeno's paradox, the Eutlewood Ping-Pong ball paradox, the Littlewood Ping-Pong ball problem, and other Supertask problems).isomorphisms. They explored kernels, normal subgroups, quotient groups, and the first isomorphism theorem. Secure ciphers secure ciphers which led to the Vigenere cipher	their associated generating functions, and Euler's	seminar moved on to study constructability of	were covered, as well as homomorphisms and
functions connected to linear recurrences, students discovered that the generating functions associated with partitions are an infinite product and not an infinite sum.Finally, after studying some basic number theory in the form of Fermat's Little Theorem, wilson's Theorem, and Euler's Theorem, the RSA encryption algorithm was introduced.subgroups, quotient groups, and the first isomorphism theorem. Seminar closed with a discussion of generators, relations, and free groups. Universal properties and commutative diagrams were introduced in this context.2009-2010Paradoxes and Infinity Instructor: Jennifer Biermann (Math)Introduction to Cryptology Instructor: Gwyneth Whieldon (Math)Introduction to Cryptology Instructor: Benjamin Lundell (Math)Students first focused on determining the size of the Rubik's cube group. For this they learned about permutation groups, decompositions of permutations. into disjoint cycles, and even and odd permutations. They investigated subgroups of the Rubik's cube group and Lagrange's Theorem. The last part of the unit touched on several subjects as Cayley graphs and quotient groups. The students were not taught how to solve the Rubik's cube but rather, time wasStudents such as and several classic puzzles and paradoxes (e.g., Zeno's paradox, the Littlewood Ping-Pong ball paradox, the Littlewood Ping-Pong ball paradox, the Littlewood Ping-Pong ballIntroduction to the Vigenere cipher secure ciphers, which led to the Vigenere cipher	Pentagonal number theorem. Unlike the generating	regular polygons by ruler and compass.	isomorphisms. They explored kernels, normal
discovered that the generating functions associated with partitions are an infinite product and not an infinite sum.theory in the form of Fermat's Little Theorem, wilson's Theorem, and Euler's Theorem, the RSA encryption algorithm was introduced.isomorphism theorem. Seminar closed with a discussion of generators, relations, and free groups. Universal properties and commutative diagrams were introduced in this context.2009-2010Paradoxes and Infinity Instructor: Jennifer Biermann (Math)Introduction to Cryptology Instructor: Gwyneth Whieldon (Math)Students first focused on determining the size of the Rubik's cube group. For this they learned about permutation groups, decompositions of permutations. They investigated subgroups of the Rubik's cube group and Lagrange's Theorem. The last part of the unit touched on several subjects as Cayley graphs and quotient groups. The students were not taught how to solve the Rubik's cube but rather, time wassta and several classic puzzles and paradoxes (e.g., Zeno's paradox, the Littlewood Ping-Pong ball problem, and other Supertask problems).Introduction to Cryptology Instructor: Benjamin Lundell (Math) Basic Caesar and Rail Fence ciphers opened the seminar. After introducing modular arithmetic, students sexannied sizes of finite and infinite sets and several classic puzzles and paradoxes (e.g., Zeno's paradox, the Littlewood Ping-Pong ball problem, and other Supertask problems).isomorphism theorem. Seminar closed with a discussion of generators, relations, and free groups. Universal properties and commutative discussion of several	functions connected to linear recurrences, students	Finally, after studying some basic number	subgroups, quotient groups, and the first
with partitions are an infinite product and not an infinite sum.Wilson's Theorem, and Euler's Theorem, the RSA encryption algorithm was introduced.discussion of generators, relations, and free groups. Universal properties and commutative diagrams were introduced in this context.2009-2010Paradoxes and Infinity Instructor: Jennifer Biermann (Math)Intructor: Gwyneth Whieldon (Math)Introduction to Cryptology Instructor: Gwyneth Whieldon (Math)Students first focused on determining the size of the Rubik's cube group, For this they learned about permutation groups, decompositions of permutations. They investigated subgroups of the Rubik's cube group and Lagrange's Theorem. The last part of the unit touched on several subjects as Cayley graphs and quotient groups. The students were not taught how to solve the Rubik's cube but rather, time wasSuldents examined sizes of finite and infinite sets and several classic puzzles and paradoxes (e.g., Zeno's paradox, the Eutenced Program and other Supertask problems).Introduction to Cryptology Instructor: Benjamin Lundell (Math)Basic Caesar and Rail Fence ciphers opened the seminar. After introducing modular arithmetic, students examined sizes of finite and infinite group and Lagrange's Theorem. The last part of the unit touched on several subjects as Cayley graphs and quotient groups. The students were not taught how to solve the Rubik's cube but rather, time wasSudents examined sizes of finite and infinite paradox, the Littlewood Ping-Pong ball problem, and other Supertask problems).discussion of generators, relations, and free groups. The students were not taught	discovered that the generating functions associated	theory in the form of Fermat's Little Theorem,	isomorphism theorem. Seminar closed with a
infinite sum.RSA encryption algorithm was introduced.groups. Universal properties and commutative diagrams were introduced in this context.2009-2010Group Theory: Rubik's Cube Instructor: Jennifer Biermann (Math)Paradoxes and Infinity Instructor: Gwyneth Whieldon (Math)Introduction to Cryptology Instructor: Benjamin Lundell (Math)Students first focused on determining the size of the Rubik's cube group. For this they learned about permutation groups, decompositions of permutations into disjoint cycles, and even and odd permutations. They investigated subgroups of the Rubik's cube group and Lagrange's Theorem. The last part of the unit touched on several subjects as Cayley graphs and quotient groups. The students were not taught how to solve the Rubik's cube but rather, time wasRSA encryption algorithm was introduced. Paradoxes and Infinity Instructor: Gwyneth Whieldon (Math)Introduction to Cryptology Instructor: Benjamin Lundell (Math)Basic Caesar and Rail Fence ciphers opened the classical math paradoxes, properties of numbers and number systems, and the development of axiomatic mathematics. Students examined sizes of finite and infinite and quotient groups. The students were not taught how to solve the Rubik's cube but rather, time wasStudents examined sizes of finite and infinite paradox, the Littlewood Ping-Pong ball problem, and other Supertask problems).Groups. Universal properties and commutative diagrams were introduced in this context.	with partitions are an infinite product and not an	Wilson's Theorem, and Euler's Theorem, the	discussion of generators, relations, and free
2009-2010Group Theory: Rubik's Cube Instructor: Jennifer Biermann (Math)Paradoxes and Infinity Instructor: Gwyneth Whieldon (Math)Introduction to Cryptology Instructor: Gwyneth Whieldon (Math)Students first focused on determining the size of the Rubik's cube group. For this they learned about permutation groups, decompositions of permutations. They investigated subgroups of the Rubik's cube group and Lagrange's Theorem. The last part of the unit touched on several subjects as Cayley graphs and quotient groups. The students were not taught how to solve the Rubik's cube but rather, time wasParadoxes and Infinity Instructor: Gwyneth Whieldon (Math)Introduction to Cryptology Instructor: Benjamin Lundell (Math)Basic Caesar and Rail Fence ciphers opened the seminar. After introducing modular arithmetic, students studied test and several classic puzzles and paradoxes (e.g., Zeno's paradox, the Banach-Tarski problem, and other Supertask problems).Basic Caesar and Rail Fence ciphers opened the seminar. After introducing modular arithmetic, students studied monoalphabetic substitution ciphers using the Keyword cipher, and the cryptoanalysis of ciphers through frequency analysis and letter distributions. They learned ways to make more secure ciphers, which led to the Vigenere cipher	infinite sum.	RSA encryption algorithm was introduced.	groups. Universal properties and commutative
2009-2010Group Theory: Rubik's Cube Instructor: Jennifer Biermann (Math)Paradoxes and Infinity Instructor: Gwyneth Whieldon (Math)Introduction to Cryptology Instructor: Benjamin Lundell (Math)Students first focused on determining the size of the Rubik's cube group. For this they learned about permutation groups, decompositions of permutations. They investigated subgroups of the Rubik's cube group and Lagrange's Theorem. The last part of the unit touched on several subjects as Cayley graphs and quotient groups. The students were not taught how to solve the Rubik's cube but rather, time wasParadoxes and Infinity Instructor: Gwyneth Whieldon (Math) This seminar began with discussion of several classical math paradoxes, properties of numbers and number systems, and the development of axiomatic mathematics. Students examined sizes of finite and infinite sets and several classic puzzles and paradoxes (e.g., Zeno's paradox, the Banach-Tarski paradox, the Littlewood Ping-Pong ball how to solve the Rubik's cube but rather, time wasIntroduction to Cryptology Instructor: Benjamin Lundell (Math) Basic Caesar and Rail Fence ciphers opened the seminar. After introducing modular arithmetic, students generalized to multiplication and, eventually, affine ciphers. Students studied monoalphabetic substitution ciphers using the Keyword cipher, and the cryptoanalysis of ciphers through frequency analysis and letter distributions. They learned ways to make more secure ciphers, which led to the Vigenere cipher			diagrams were introduced in this context.
Group Theory: Rubik's CubeParadoxes and InfinityIntroduction to CryptologyInstructor: Jennifer Biermann (Math)Instructor: Gwyneth Whieldon (Math)Instructor: Benjamin Lundell (Math)Students first focused on determining the size of the Rubik's cube group. For this they learned about permutation groups, decompositions of permutations into disjoint cycles, and even and odd permutations. They investigated subgroups of the Rubik's cube group and Lagrange's Theorem. The last part of the unit touched on several subjects as Cayley graphs and quotient groups. The students were not taught how to solve the Rubik's cube but rather, time wasParadoxes and Infinity Instructor: Gwyneth Whieldon (Math)Introduction to Cryptology Instructor: Benjamin Lundell (Math)Basic Caesar and Rail Fence ciphers opened the classical math paradoxes, properties of numbers and number systems, and the development of axiomatic mathematics.Basic Caesar and Rail Fence ciphers opened the seminar. After introducing modular arithmetic, students studied monoalphabetic substitution ciphers using the sets and several classic puzzles and paradoxes (e.g., Zeno's paradox, the Banach-Tarski paradox, the Littlewood Ping-Pong ball problem, and other Supertask problems).Basic Caesar and Rail Fence ciphers setuant arithmetic, students expression and, eventually, affine ciphers. Students studied monoalphabetic substitution ciphers using the sets and several classic puzzles and paradoxes (c.g., Zeno's paradox, the Banach-Tarski paradox, the Littlewood Ping-Pong ball problem, and other Supertask problems).Introduction to CryptologyStudents even and out permutations group and Lagrange's Theorem. The last part of the unit touched on several subjects as Cayley graphs and quotient gr	2009-2010		
Instructor: Jennifer Biermann (Math)Instructor: Gwyneth Whieldon (Math)Instructor: Benjamin Lundell (Math)Students first focused on determining the size of the Rubik's cube group. For this they learned about permutation groups, decompositions of permutations. into disjoint cycles, and even and odd permutations. They investigated subgroups of the Rubik's cube group and Lagrange's Theorem. The last part of the unit touched on several subjects as Cayley graphs and quotient groups. The students were not taught how to solve the Rubik's cube but rather, time wasInstructor: Benjamin Lundell (Math)Basic Caesar and Rail Fence ciphers opened the seminar. After introducing modular arithmetic, students groups and number systems, and the group and Lagrange's Theorem. The last part of the unit touched on several subjects as Cayley graphs and quotient groups. The students were not taught how to solve the Rubik's cube but rather, time wasInstructor: Benjamin Lundell (Math)Basic Caesar and Rail Fence ciphers opened the seminar. After introducing modular arithmetic, students examined sizes of finite and infinite sets and several classic puzzles and paradoxes (e.g., Zeno's paradox, the Banach-Tarski paradox, the Littlewood Ping-Pong ball problem, and other Supertask problems).Instructor: Benjamin Lundell (Math)Basic Caesar and Rail Fence ciphers subjects as Cayley graphs and quotient groups. The students were not taught how to solve the Rubik's cube but rather, time wasInstructor: Benjamin Lundell (Math)Basic Caesar and Rail Fence ciphers subjects as Cayley graphs and quotient groups. The students were not taught how to solve the Rubik's cube but rather, time wasInstructor: Benjamin Lundell (Math)Basic Caesar and Rail Fence ciphers problem,	Group Theory: Rubik's Cube	Paradoxes and Infinity	Introduction to Cryptology
Students first focused on determining the size of the Rubik's cube group. For this they learned about permutation groups, decompositions of permutations into disjoint cycles, and even and odd permutations. They investigated subgroups of the Rubik's cube group and Lagrange's Theorem. The last part of the unit touched on several subjects as Cayley graphs and quotient groups. The students were not taught how to solve the Rubik's cube but rather, time wasThis seminar began with discussion of several classical math paradoxes, properties of numbers and number systems, and the development of axiomatic mathematics.Basic Caesar and Rail Fence ciphers opened the seminar. After introducing modular arithmetic, students generalized to multiplication and, eventually, affine ciphers. Students studied monoalphabetic substitution ciphers using the sets and several classic puzzles and paradoxes (e.g., Zeno's paradox, the Banach-Tarski paradox, the Littlewood Ping-Pong ball problem, and other Supertask problems).Basic Caesar and Rail Fence ciphers opened the seminar. After introducing modular arithmetic, students seminar. After introducing modular arithmetic, students generalized to multiplication and, eventually, affine ciphers. Students studied monoalphabetic substitution ciphers using the Keyword cipher, and the cryptoanalysis of ciphers through frequency analysis and letter distributions. They learned ways to make more secure ciphers, which led to the Vigenere cipher	Instructor: Jennifer Biermann (Math)	Instructor: Gwyneth Whieldon (Math)	Instructor: Benjamin Lundell (Math)
Rubik's cube group. For this they learned about permutation groups, decompositions of permutations into disjoint cycles, and even and odd permutations.classical math paradoxes, properties of numbers and number systems, and the development of axiomatic mathematics.seminar. After introducing modular arithmetic, students generalized to multiplication and, eventually, affine ciphers. Students studied monoalphabetic substitution ciphers using the sets and several classic puzzles and paradoxes (e.g., Zeno's paradox, the Banach-Tarski and quotient groups. The students were not taught how to solve the Rubik's cube but rather, time wasset classical math paradoxes, properties of numbers and number systems, and the development of axiomatic mathematics. Students examined sizes of finite and infinite sets and several classic puzzles and paradoxes (e.g., Zeno's paradox, the Banach-Tarski paradox, the Littlewood Ping-Pong ball problem, and other Supertask problems).seminar. After introducing modular arithmetic, students generalized to multiplication and, eventually, affine ciphers. Students studied monoalphabetic substitution ciphers using the Keyword cipher, and the cryptoanalysis of ciphers through frequency analysis and letter distributions. They learned ways to make more secure ciphers, which led to the Vigenere cipher	Students first focused on determining the size of the	This seminar began with discussion of several	Basic Caesar and Rail Fence ciphers opened the
permutation groups, decompositions of permutationsnumbers and number systems, and the development of axiomatic mathematics.students generalized to multiplication and, eventually, affine ciphers. Students studied monoalphabetic substitution ciphers using the Keyword cipher, and the cryptoanalysis of ciphers through frequency analysis and letter distributions. They learned ways to make more problem, and other Supertask problems).	Rubik's cube group. For this they learned about	classical math paradoxes, properties of	seminar. After introducing modular arithmetic,
into disjoint cycles, and even and odd permutations.development of axiomatic mathematics.eventually, affine ciphers. Students studiedThey investigated subgroups of the Rubik's cubeStudents examined sizes of finite and infinitemonoalphabetic substitution ciphers using thegroup and Lagrange's Theorem. The last part of thesets and several classic puzzles and paradoxesKeyword cipher, and the cryptoanalysis ofunit touched on several subjects as Cayley graphs(e.g., Zeno's paradox, the Banach-Tarskiciphers through frequency analysis and letterand quotient groups. The students were not taughtparadox, the Littlewood Ping-Pong balldistributions. They learned ways to make morehow to solve the Rubik's cube but rather, time wasproblem, and other Supertask problems).secure ciphers, which led to the Vigenere cipher	permutation groups, decompositions of permutations	numbers and number systems, and the	students generalized to multiplication and,
They investigated subgroups of the Rubik's cube group and Lagrange's Theorem. The last part of the unit touched on several subjects as Cayley graphs and quotient groups. The students were not taught how to solve the Rubik's cube but rather, time wasStudents examined sizes of finite and infinite sets and several classic puzzles and paradoxes (e.g., Zeno's paradox, the Banach-Tarski paradox, the Littlewood Ping-Pong ball problem, and other Supertask problems).monoalphabetic substitution ciphers using the Keyword cipher, and the cryptoanalysis of ciphers through frequency analysis and letter distributions. They learned ways to make more secure ciphers, which led to the Vigenere cipher	into disjoint cycles, and even and odd permutations.	development of axiomatic mathematics.	eventually, affine ciphers. Students studied
group and Lagrange's Theorem. The last part of the unit touched on several subjects as Cayley graphs and quotient groups. The students were not taught how to solve the Rubik's cube but rather, time wassets and several classic puzzles and paradoxes (e.g., Zeno's paradox, the Banach-Tarski paradox, the Littlewood Ping-Pong ball problem, and other Supertask problems).Keyword cipher, and the cryptoanalysis of ciphers through frequency analysis and letter distributions. They learned ways to make more secure ciphers, which led to the Vigenere cipher	They investigated subgroups of the Rubik's cube	Students examined sizes of finite and infinite	monoalphabetic substitution ciphers using the
unit touched on several subjects as Cayley graphs and quotient groups. The students were not taught how to solve the Rubik's cube but rather, time was(e.g., Zeno's paradox, the Banach-Tarski paradox, the Littlewood Ping-Pong ball problem, and other Supertask problems).ciphers through frequency analysis and letter distributions. They learned ways to make more secure ciphers, which led to the Vigenere cipher	group and Lagrange's Theorem. The last part of the	sets and several classic puzzles and paradoxes	Keyword cipher, and the cryptoanalysis of
and quotient groups. The students were not taught paradox, the Littlewood Ping-Pong ball distributions. They learned ways to make more secure ciphers, which led to the Vigenere cipher	unit touched on several subjects as Cayley graphs	(e.g., Zeno's paradox, the Banach-Tarski	ciphers through frequency analysis and letter
how to solve the Rubik's cube but rather, time was problem, and other Supertask problems).	and quotient groups. The students were not taught	paradox, the Littlewood Ping-Pong ball	distributions. They learned ways to make more
	how to solve the Rubik's cube but rather, time was	problem, and other Supertask problems).	secure ciphers, which led to the Vigenere cipher
spent discussing conjugates and how they could be Other topics included partial fractions and and the one-time pad. They studied	spent discussing conjugates and how they could be	Other topics included partial fractions and	and the one-time pad. They studied
used to find useful sequences of moves. Most Khinchin's constant, Fibonacci numbers and cryptoanalysis of polyalphabetic ciphers via the	used to find useful sequences of moves. Most	Khinchin's constant, Fibonacci numbers and	cryptoanalysis of polyalphabetic ciphers via the
students learned (on their own) how to solve the counting problems, and properties of infinite Friedman test, public key cryptography, and the	students learned (on their own) how to solve the	counting problems, and properties of infinite	Friedman test, public key cryptography, and the
cube by the end of the unit. sums. Students took an historical examination Diffe-Hellman Key Exchange Protocol. We	cube by the end of the unit.	sums. Students took an historical examination	Diffe-Hellman Key Exchange Protocol. We
of paradoxes of set theory, and the axiomatic ended with a week-long "cipher scavenger hunt,"		of paradoxes of set theory, and the axiomatic	ended with a week-long "cipher scavenger hunt,"
systems of Whitehead and Russell. In which students cracked a series of ciphers		systems of Whitehead and Russell.	in which students cracked a series of ciphers

2010-2011		
Counterexamples in Mathematics	Probability	Numerical Analysis
Instructor: Mircea Pitici (Math Education)	Instructor: Tilo Nguyen (CAM)	Instructor: Amy Cochran (CAM)
This seminar was based exclusively on analyzing,	The first segment of this seminar was an	The seminar began with preliminary topics:
constructing, and discussing counterexamples in	introduction to probability, starting with some	computer arithmetic, error, logic, and basic
mathematics. We proceeded gradually, starting with	refresher combinatorics problems. Students then	programming using graphing calculators. The
counterexamples pertaining to basic functional	learned how to use combinatorics and Venn	bulk of the seminar was focused on linear and
notions and quickly advancing to counterexamples	diagram to calculate probability. We talked about	nonlinear systems of equations. For linear
related to functional properties studied in calculus	the meaning of independent or mutually exclusive	systems, the students examined solution
(continuity, differentiability, Darboux property,	events. We discussed conditional probability and	techniques (e.g., Gaussian Elimination,
integrability). Among many examples we included	Bayes' Theorem, using disease testing as an	Backward/Forward Substitution, and Jacobi
some of historical importance (e.g., Dirichlet	example. We studied popular discrete distributions	method), and learned about matrix and vector
function and its variants, Weierstrass function).	(e.g., Bernoulli, binomial, negative binomial,	norms, singular value decomposition, and LU
Most examples concerned functions of one variable.	geometric, and Poisson distributions). We studied	decomposition. For nonlinear systems, root-
but toward the end we also studied counterexamples	Markov chains and briefly discussed the use of	finding and minimization techniques were
in functions of two variables. The initial intent was	Markov chains in real life applications (e.g.,	studied, including Newton-Raphson, bisection,
to include all branches of mathematics, but we	Google searches). The seminar ended with solving	golden search, and steepest descent methods.
decided to stay just within calculus for the whole	fun and famous probability problems (e.g.,	Numerical calculus was also briefly studied.
seminar. However, as a final project, one student	Buffon's needle).	Topics included Newton-Cotes formulas,
studied counterexamples in number theory.		Gaussian, and Monte Carlo integration.
2011-2012		
2011-2012 Special Curves	Axiomatic Development of Probability	Calculus of Variations
2011-2012 Special Curves Instructor: Mircea Pitici (Math Education)	Axiomatic Development of Probability Instructor: Mark Cerenzia (Math)	Calculus of Variations Instructor: Anoop Grewal (TAM)
2011-2012Special CurvesInstructor: Mircea Pitici (Math Education)We explored various special curves, with an	Axiomatic Development of Probability Instructor: Mark Cerenzia (Math) This seminar presented the axiomatic approach to	Calculus of Variations Instructor: Anoop Grewal (TAM) We started off with the historical beginning of
2011-2012 Special Curves <i>Instructor: Mircea Pitici (Math Education)</i> We explored various special curves, with an emphasis on geometric elements; occasionally we	Axiomatic Development of Probability Instructor: Mark Cerenzia (Math) This seminar presented the axiomatic approach to probability theory so that students could learn how	Calculus of Variations Instructor: Anoop Grewal (TAM) We started off with the historical beginning of the subject with the famous Brachistochrone
2011-2012 Special Curves <i>Instructor: Mircea Pitici (Math Education)</i> We explored various special curves, with an emphasis on geometric elements; occasionally we also studied the algebraic and trigonometric	Axiomatic Development of Probability Instructor: Mark Cerenzia (Math) This seminar presented the axiomatic approach to probability theory so that students could learn how mathematical machinery is built and applied. We	Calculus of Variations Instructor: Anoop Grewal (TAM) We started off with the historical beginning of the subject with the famous Brachistochrone problem by Johann Bernoulli. The general
2011-2012 Special Curves <i>Instructor: Mircea Pitici (Math Education)</i> We explored various special curves, with an emphasis on geometric elements; occasionally we also studied the algebraic and trigonometric properties, and pointed out the importance of the	Axiomatic Development of Probability Instructor: Mark Cerenzia (Math) This seminar presented the axiomatic approach to probability theory so that students could learn how mathematical machinery is built and applied. We began with a brisk introduction to relevant set	Calculus of Variations Instructor: Anoop Grewal (TAM) We started off with the historical beginning of the subject with the famous Brachistochrone problem by Johann Bernoulli. The general solution by Euler and Lagrange was derived
2011-2012 Special Curves <i>Instructor: Mircea Pitici (Math Education)</i> We explored various special curves, with an emphasis on geometric elements; occasionally we also studied the algebraic and trigonometric properties, and pointed out the importance of the curves in applications, for instance in the theory and	Axiomatic Development of Probability Instructor: Mark Cerenzia (Math) This seminar presented the axiomatic approach to probability theory so that students could learn how mathematical machinery is built and applied. We began with a brisk introduction to relevant set theory in order to state the three axioms of	Calculus of Variations Instructor: Anoop Grewal (TAM) We started off with the historical beginning of the subject with the famous Brachistochrone problem by Johann Bernoulli. The general solution by Euler and Lagrange was derived and discussed next. We discussed many
2011-2012 Special Curves <i>Instructor: Mircea Pitici (Math Education)</i> We explored various special curves, with an emphasis on geometric elements; occasionally we also studied the algebraic and trigonometric properties, and pointed out the importance of the curves in applications, for instance in the theory and construction of mechanisms. All along we	Axiomatic Development of Probability Instructor: Mark Cerenzia (Math) This seminar presented the axiomatic approach to probability theory so that students could learn how mathematical machinery is built and applied. We began with a brisk introduction to relevant set theory in order to state the three axioms of probability (i.e., the definition of a measure space).	Calculus of Variations <i>Instructor: Anoop Grewal (TAM)</i> We started off with the historical beginning of the subject with the famous Brachistochrone problem by Johann Bernoulli. The general solution by Euler and Lagrange was derived and discussed next. We discussed many famous applications of calculus of variations in
2011-2012 Special Curves Instructor: Mircea Pitici (Math Education) We explored various special curves, with an emphasis on geometric elements; occasionally we also studied the algebraic and trigonometric properties, and pointed out the importance of the curves in applications, for instance in the theory and construction of mechanisms. All along we considered other curves related to a given curve,	Axiomatic Development of Probability Instructor: Mark Cerenzia (Math) This seminar presented the axiomatic approach to probability theory so that students could learn how mathematical machinery is built and applied. We began with a brisk introduction to relevant set theory in order to state the three axioms of probability (i.e., the definition of a measure space). We then derived typical properties one would	Calculus of Variations Instructor: Anoop Grewal (TAM) We started off with the historical beginning of the subject with the famous Brachistochrone problem by Johann Bernoulli. The general solution by Euler and Lagrange was derived and discussed next. We discussed many famous applications of calculus of variations in engineering and physics, including geodesics
2011-2012 Special Curves <i>Instructor: Mircea Pitici (Math Education)</i> We explored various special curves, with an emphasis on geometric elements; occasionally we also studied the algebraic and trigonometric properties, and pointed out the importance of the curves in applications, for instance in the theory and construction of mechanisms. All along we considered other curves related to a given curve, such as pedal curves and envelopes. We started off	Axiomatic Development of Probability Instructor: Mark Cerenzia (Math) This seminar presented the axiomatic approach to probability theory so that students could learn how mathematical machinery is built and applied. We began with a brisk introduction to relevant set theory in order to state the three axioms of probability (i.e., the definition of a measure space). We then derived typical properties one would expect when computing probabilities and showed	Calculus of Variations Instructor: Anoop Grewal (TAM) We started off with the historical beginning of the subject with the famous Brachistochrone problem by Johann Bernoulli. The general solution by Euler and Lagrange was derived and discussed next. We discussed many famous applications of calculus of variations in engineering and physics, including geodesics on the plane, cylinder and sphere; Lagrangian
2011-2012 Special Curves Instructor: Mircea Pitici (Math Education) We explored various special curves, with an emphasis on geometric elements; occasionally we also studied the algebraic and trigonometric properties, and pointed out the importance of the curves in applications, for instance in the theory and construction of mechanisms. All along we considered other curves related to a given curve, such as pedal curves and envelopes. We started off with a unified view of conics offered by projective	Axiomatic Development of Probability Instructor: Mark Cerenzia (Math) This seminar presented the axiomatic approach to probability theory so that students could learn how mathematical machinery is built and applied. We began with a brisk introduction to relevant set theory in order to state the three axioms of probability (i.e., the definition of a measure space). We then derived typical properties one would expect when computing probabilities and showed how the framework helps us avoid pitfalls that both	Calculus of Variations <i>Instructor: Anoop Grewal (TAM)</i> We started off with the historical beginning of the subject with the famous Brachistochrone problem by Johann Bernoulli. The general solution by Euler and Lagrange was derived and discussed next. We discussed many famous applications of calculus of variations in engineering and physics, including geodesics on the plane, cylinder and sphere; Lagrangian formulation of mechanics; and the catenary
2011-2012 Special Curves <i>Instructor: Mircea Pitici (Math Education)</i> We explored various special curves, with an emphasis on geometric elements; occasionally we also studied the algebraic and trigonometric properties, and pointed out the importance of the curves in applications, for instance in the theory and construction of mechanisms. All along we considered other curves related to a given curve, such as pedal curves and envelopes. We started off with a unified view of conics offered by projective geometry, mentioning several major closure	Axiomatic Development of Probability Instructor: Mark Cerenzia (Math) This seminar presented the axiomatic approach to probability theory so that students could learn how mathematical machinery is built and applied. We began with a brisk introduction to relevant set theory in order to state the three axioms of probability (i.e., the definition of a measure space). We then derived typical properties one would expect when computing probabilities and showed how the framework helps us avoid pitfalls that both laymen and professionals often make. This led	Calculus of Variations <i>Instructor: Anoop Grewal (TAM)</i> We started off with the historical beginning of the subject with the famous Brachistochrone problem by Johann Bernoulli. The general solution by Euler and Lagrange was derived and discussed next. We discussed many famous applications of calculus of variations in engineering and physics, including geodesics on the plane, cylinder and sphere; Lagrangian formulation of mechanics; and the catenary curve as minimum potential energy solution.
2011-2012 Special Curves <i>Instructor: Mircea Pitici (Math Education)</i> We explored various special curves, with an emphasis on geometric elements; occasionally we also studied the algebraic and trigonometric properties, and pointed out the importance of the curves in applications, for instance in the theory and construction of mechanisms. All along we considered other curves related to a given curve, such as pedal curves and envelopes. We started off with a unified view of conics offered by projective geometry, mentioning several major closure theorems (due to Pascal, Brianchon, Poncelet) and a	Axiomatic Development of Probability Instructor: Mark Cerenzia (Math) This seminar presented the axiomatic approach to probability theory so that students could learn how mathematical machinery is built and applied. We began with a brisk introduction to relevant set theory in order to state the three axioms of probability (i.e., the definition of a measure space). We then derived typical properties one would expect when computing probabilities and showed how the framework helps us avoid pitfalls that both laymen and professionals often make. This led naturally into other core concepts, such as	Calculus of Variations <i>Instructor: Anoop Grewal (TAM)</i> We started off with the historical beginning of the subject with the famous Brachistochrone problem by Johann Bernoulli. The general solution by Euler and Lagrange was derived and discussed next. We discussed many famous applications of calculus of variations in engineering and physics, including geodesics on the plane, cylinder and sphere; Lagrangian formulation of mechanics; and the catenary curve as minimum potential energy solution.
2011-2012 Special Curves Instructor: Mircea Pitici (Math Education) We explored various special curves, with an emphasis on geometric elements; occasionally we also studied the algebraic and trigonometric properties, and pointed out the importance of the curves in applications, for instance in the theory and construction of mechanisms. All along we considered other curves related to a given curve, such as pedal curves and envelopes. We started off with a unified view of conics offered by projective geometry, mentioning several major closure theorems (due to Pascal, Brianchon, Poncelet) and a potpourri of side results. We continued by	Axiomatic Development of Probability Instructor: Mark Cerenzia (Math) This seminar presented the axiomatic approach to probability theory so that students could learn how mathematical machinery is built and applied. We began with a brisk introduction to relevant set theory in order to state the three axioms of probability (i.e., the definition of a measure space). We then derived typical properties one would expect when computing probabilities and showed how the framework helps us avoid pitfalls that both laymen and professionals often make. This led naturally into other core concepts, such as independence, conditional probability, Bayes'	Calculus of Variations <i>Instructor: Anoop Grewal (TAM)</i> We started off with the historical beginning of the subject with the famous Brachistochrone problem by Johann Bernoulli. The general solution by Euler and Lagrange was derived and discussed next. We discussed many famous applications of calculus of variations in engineering and physics, including geodesics on the plane, cylinder and sphere; Lagrangian formulation of mechanics; and the catenary curve as minimum potential energy solution.
2011-2012 Special Curves <i>Instructor: Mircea Pitici (Math Education)</i> We explored various special curves, with an emphasis on geometric elements; occasionally we also studied the algebraic and trigonometric properties, and pointed out the importance of the curves in applications, for instance in the theory and construction of mechanisms. All along we considered other curves related to a given curve, such as pedal curves and envelopes. We started off with a unified view of conics offered by projective geometry, mentioning several major closure theorems (due to Pascal, Brianchon, Poncelet) and a potpourri of side results. We continued by examining in detail the cycloid, a few particular	Axiomatic Development of Probability Instructor: Mark Cerenzia (Math) This seminar presented the axiomatic approach to probability theory so that students could learn how mathematical machinery is built and applied. We began with a brisk introduction to relevant set theory in order to state the three axioms of probability (i.e., the definition of a measure space). We then derived typical properties one would expect when computing probabilities and showed how the framework helps us avoid pitfalls that both laymen and professionals often make. This led naturally into other core concepts, such as independence, conditional probability, Bayes' Formula, and random variables along with their	Calculus of Variations <i>Instructor: Anoop Grewal (TAM)</i> We started off with the historical beginning of the subject with the famous Brachistochrone problem by Johann Bernoulli. The general solution by Euler and Lagrange was derived and discussed next. We discussed many famous applications of calculus of variations in engineering and physics, including geodesics on the plane, cylinder and sphere; Lagrangian formulation of mechanics; and the catenary curve as minimum potential energy solution.
2011-2012 Special Curves <i>Instructor: Mircea Pitici (Math Education)</i> We explored various special curves, with an emphasis on geometric elements; occasionally we also studied the algebraic and trigonometric properties, and pointed out the importance of the curves in applications, for instance in the theory and construction of mechanisms. All along we considered other curves related to a given curve, such as pedal curves and envelopes. We started off with a unified view of conics offered by projective geometry, mentioning several major closure theorems (due to Pascal, Brianchon, Poncelet) and a potpourri of side results. We continued by examining in detail the cycloid, a few particular epicycloids and hypocycloids (cardioid, astroid,	Axiomatic Development of Probability Instructor: Mark Cerenzia (Math) This seminar presented the axiomatic approach to probability theory so that students could learn how mathematical machinery is built and applied. We began with a brisk introduction to relevant set theory in order to state the three axioms of probability (i.e., the definition of a measure space). We then derived typical properties one would expect when computing probabilities and showed how the framework helps us avoid pitfalls that both laymen and professionals often make. This led naturally into other core concepts, such as independence, conditional probability, Bayes' Formula, and random variables along with their important quantities (variance and expectation).	Calculus of Variations <i>Instructor: Anoop Grewal (TAM)</i> We started off with the historical beginning of the subject with the famous Brachistochrone problem by Johann Bernoulli. The general solution by Euler and Lagrange was derived and discussed next. We discussed many famous applications of calculus of variations in engineering and physics, including geodesics on the plane, cylinder and sphere; Lagrangian formulation of mechanics; and the catenary curve as minimum potential energy solution.
2011-2012 Special Curves <i>Instructor: Mircea Pitici (Math Education)</i> We explored various special curves, with an emphasis on geometric elements; occasionally we also studied the algebraic and trigonometric properties, and pointed out the importance of the curves in applications, for instance in the theory and construction of mechanisms. All along we considered other curves related to a given curve, such as pedal curves and envelopes. We started off with a unified view of conics offered by projective geometry, mentioning several major closure theorems (due to Pascal, Brianchon, Poncelet) and a potpourri of side results. We continued by examining in detail the cycloid, a few particular epicycloids and hypocycloids (cardioid, astroid, deltoid, nephroid), and various spirals. Pressed by	Axiomatic Development of Probability Instructor: Mark Cerenzia (Math) This seminar presented the axiomatic approach to probability theory so that students could learn how mathematical machinery is built and applied. We began with a brisk introduction to relevant set theory in order to state the three axioms of probability (i.e., the definition of a measure space). We then derived typical properties one would expect when computing probabilities and showed how the framework helps us avoid pitfalls that both laymen and professionals often make. This led naturally into other core concepts, such as independence, conditional probability, Bayes' Formula, and random variables along with their important quantities (variance and expectation). Deriving everything formally from the axioms was	Calculus of Variations <i>Instructor: Anoop Grewal (TAM)</i> We started off with the historical beginning of the subject with the famous Brachistochrone problem by Johann Bernoulli. The general solution by Euler and Lagrange was derived and discussed next. We discussed many famous applications of calculus of variations in engineering and physics, including geodesics on the plane, cylinder and sphere; Lagrangian formulation of mechanics; and the catenary curve as minimum potential energy solution.
2011-2012 Special Curves <i>Instructor: Mircea Pitici (Math Education)</i> We explored various special curves, with an emphasis on geometric elements; occasionally we also studied the algebraic and trigonometric properties, and pointed out the importance of the curves in applications, for instance in the theory and construction of mechanisms. All along we considered other curves related to a given curve, such as pedal curves and envelopes. We started off with a unified view of conics offered by projective geometry, mentioning several major closure theorems (due to Pascal, Brianchon, Poncelet) and a potpourri of side results. We continued by examining in detail the cycloid, a few particular epicycloids and hypocycloids (cardioid, astroid, deltoid, nephroid), and various spirals. Pressed by time, we mentioned cursorily some of the properties	Axiomatic Development of Probability Instructor: Mark Cerenzia (Math) This seminar presented the axiomatic approach to probability theory so that students could learn how mathematical machinery is built and applied. We began with a brisk introduction to relevant set theory in order to state the three axioms of probability (i.e., the definition of a measure space). We then derived typical properties one would expect when computing probabilities and showed how the framework helps us avoid pitfalls that both laymen and professionals often make. This led naturally into other core concepts, such as independence, conditional probability, Bayes' Formula, and random variables along with their important quantities (variance and expectation). Deriving everything formally from the axioms was the main feature and focus of this development.	Calculus of Variations <i>Instructor: Anoop Grewal (TAM)</i> We started off with the historical beginning of the subject with the famous Brachistochrone problem by Johann Bernoulli. The general solution by Euler and Lagrange was derived and discussed next. We discussed many famous applications of calculus of variations in engineering and physics, including geodesics on the plane, cylinder and sphere; Lagrangian formulation of mechanics; and the catenary curve as minimum potential energy solution.

2012-2013		
Complex Numbers and Geometry	Set Theory and the Foundations of Mathematics	Axiomatic Development of Probability
Instructor: Mircea Pitici (Math Education)	Instructor: Iian Smythe (Math)	Instructor: Mark Cerenzia (Math)
During this seminar we reconstructed much of	We explored how sets can be used to axiomatically	In slight contrast to the previous year, this
the school geometry (and more) from a novel	build up the whole of mathematics. Beginning with	seminar focused on applying the axiomatic
perspective: by using complex numbers. We	the basic algebra of sets, we built new sets from old	framework of probability to approach concrete
defined special operations with complex	ones and defined functions, relations, and numbers	in problems and concepts. Notes were distributed
numbers (such as the "real product" of two	terms of sets. Detours into the worlds of orders,	to facilitate and hasten the acquisition of this
complex numbers and the "complex product"	graphs, and other relational structures were made	machinery, allowing us to cover paradoxes
of two complex numbers) which lead to	along the way. We established induction on the	(notably Simpson's), distributions of random
remarkable mathematical expressions for basic	natural numbers and constructed explicitly the basic	variables, and Markov Chains. The highlight of
geometrical relationships and concepts (such as	arithmetical operations. From here, the integers,	the seminar was a study of Brownian Motion
collinearity, concurrence, area) and introduced	rationals, and reals (via Dedekind cuts) were	and its properties, including a computation of
alternative systems of coordinates (i.e.,	constructed, and their basic properties were discuss	ed, distributions of certain of its functionals,
baricentric coordinates). With these elements	including those used in the foundations of calculus.	computation of probabilities of concrete events
we proved important geometrical results of	Lastly, we turned to the issues of cardinality,	(such as the probability it hits zero on a given
historical, theoretical, and educational value—	countable sets, uncountable sets, Cantor's Theorem	, interval, which can be expressed explicitly with
some well-known and others little known. This	and basic cardinal arithmetic. As an epilogue, we	the arccos function), and lastly Marc Kac's
was a capstone seminar during which we	briefly discussed other foundational issues, such as	derivation of the arcsin distribution of the time
integrated elements of different mathematics	the Continuum Hypothesis, Godel's Incompleteness	Brownian Motion spends in the positive axis.
branches including geometry, algebra, linear	Theorems, Turing machines, and the undecidability	r of
algebra, and trigonometry.	the halting problem.	
2013-2014		
The Isoperimetric Problem	Classical Algebraic Geometry	Reflection Groups
Instructor: Hung Tran (Math)	Instructor: Sergio Da Silva (Math)	Instructor: Balazs Elek (Math)
This seminar was motivated by Queen Dido's	This session was devoted to learning classical	First we looked at a couple examples of groups,
problem, isoperimetric regions on a plane. The	algebraic geometry (which is the study of	which we have shown to be reflection groups after
first half was devoted to studying the history,	solutions to algebraic equations) by focusing	investigating how reflections interact with each
practical relevance, geometry, and	more on the motivational aspects of the problems	other in Euclidean space. To motivate the
symmetrization techniques. We also discussed	rather than the abstract techniques and	classification of all finite reflection groups, we
variants of the problem in different contexts.	framework introduced in the 20th century. The	looked at regular polytopes, and investigated some
In the second half, several proofs of the main	basic concepts of affine and projective varieties	of their combinatorial properties. Then we looked
theorem, which asserts that circular balls are	and their morphisms were introduced. The first	at root systems associated to finite reflection groups,
minimizers, were derived. Last but not least,	half built up to Bezout's Theorem, while the	and proved several theorems in detail with the aim
we talked about related issues such as	second portion focused on the resolution of	of showing that every such group is generated by a
compactness arguments, Gromov's magical	singularities (at least for curves and surfaces).	set of simple reflections. We used this knowledge
construction, and bubbles.	Some classical constructions such as the Segre	to construct the Coxeter graph of a finite reflection
	I and Managa and adding a sign diagon and a	group and we used V estant's find the highest reat
	and veronese embeddings were discussed, as	group, and we used Kostant's find the highest foot
	well as the process of blowing up a point in	game to give a combinatorial proof of the

2014-2015		
Introduction to Combinatorics	Algebraic Obstructions in Topology	Fourier Analysis
Instructor: Sergio Da Silva (Math)	Instructor: Aliaksandr (Sasha) Patotski (Math)	Instructor: Evan Randles (CAM)
Combinatorics is the study of finite or	This seminar was intended to be an introduction to	The seminar focused on Fourier series of periodic
countable discrete structures. This session was	algebraic topology, with the emphasis on the	functions on the real line. After introducing some
devoted to learning classical enumerative	algebraic side. We considered some basic	basics and history of Fourier series, the seminar
techniques, which eventually branched off	topological objects: knots and links, surfaces, and	was broken into three segments. In the first
into graph theory. The basic concepts of	vector fields on them. Having these object in hand,	segment, the students were introduced to uniform
enumerative combinatorics were taught,	there are plenty of questions you can ask: are given	convergence, integration, and the exchange of
including general counting methods, generating	two knots isotopic? Can we classify surfaces up to	limits. This segment ended with the basic result:
functions, recursion relations,	homeomorphism? Is this surface orientable? Are	Every twice continuously differentiable periodic
the inclusion/exclusion principle, and rook	the two given vector fields homotopic? Can we	function has a uniformly convergent Fourier
polynomials. A small portion was devoted to	classify them on a given surface? It turns out that	series. In the second segment, the focus turned to
algebraic combinatorics, such as Polya	there are rather pretty algebraic constructions helping	applications and included a detailed discussion
enumeration and to game theory. Topics in	to answer these questions, and studying them was the	and solution to the heat equation. The third
graph theory included basic definitions, planar	main goal of the course. Students learned about	segment returned to the question of convergence,
graphs, graph coloring, Hamiltonian circuits,	polynomial invariants of knots, about the Euler	in which the students learned about pointwise
and various algorithms. In fact, one of the final	characteristic of a surface, about indices of vector	convergence, the Dirichlet kernel, and the Gibbs'
projects was a problem from graph theory	fields, and how these things relate to each other and	phenomenon. The seminar ended with the
featuring the Hoffman-Singleton graph and	how they help us to study topological objects.	statement of the celebrated theorem of Carleson.
related topics.		
2015-2016		
Introduction to Number Theory	Group Theory Via Interesting Examples	Projective Geometry
Instructor: Sergio Da Silva (Math)	Instructor: Aliaksandr (Sasha) Patotski (Math)	Instructor: Daoji Huang (Math)
The study of the integers is a primary focus of	This course was an introduction to group theory,	Projective geometry was introduced from the
number theory. During this seminar the	emphasizing examples and applications of group	synthetic point of view. The axioms of projective
students learned about classical results from the	theory to mathematics and real life. The group	space and duality on the projective plane were
subject, including finding integer solutions to	theoretic topics were rather standard, and included	discussed, and some basic properties of projective
Diophantine equations, the Euler totient	definitions of groups, homomorphisms, group	spaces were proved. Then a few simple finite
function, and the Euclidean algorithm. Two	actions, Lagrange's theorem, quotient groups, and	projective spaces were studied. After that, a
main goals of the seminar were to understand	Cayley graphs. Abstract notions and theorems were	different point of view was taken, and
the RSA algorithm that is used for encryption,	only introduced when motivated by a situation or a	homogeneous coordinates and projective
and to introduce elliptic curves. Fermat's Last	problem not directly involving groups. For	transformation using some linear algebra were
Theorem was also discussed. Final projects on	example, symmetric groups were used to prove that	introduced, which was explained along with
elliptic cryptography and Pell's equation were	the famous Sam Loyd's puzzle is unsolvable. As	applications in computer graphics. In the last part
chosen by the students.	another example, the problem of creating bell	of the course, the topics discussed were cross
	ringing patterns for churches motivated the study of	ratio, Desargue's theorem, Pappus' theorem, and
	Cayley graphs.	geometric constructions of sums and products,
		with an emphasis on the interplay between
		geometry and algebra.

2016-2017		
Reflection Groups	Continued Fractions	Topological Data Analysis
Instructor: Balazs Elek (Math)	Instructor: Gautam Gopal Krishnan	Instructor: Amin Saied (Math)
First we looked at a couple examples of groups,	(Math)	In this module students learned how to apply ideas
which we have shown to be reflection groups after	This seminar was an introduction to	from topology to analyze so-called "big data."
investigating how reflections interact with each	working with real numbers using continued	Examples included the following:
other in Euclidean space. To motivate the	fractions. We looked at how Euclid's	• Using graph theory to simulate the dynamics of the
classification of all finite reflection groups, we	algorithm to compute the greatest common	Internet, eventually leading to Google's famous
looked at regular polytopes, and investigated some	divisor of two integers can be used to	Page Rank algorithm; and
of their combinatorial properties. Then we looked	compute the continued fraction of a rational	• Using "persistent homology" to investigate the
at root systems associated to finite reflection	number. Using this, we then studied how to	manifold hypothesis, that is, the idea that high-
groups, and proved several theorems in detail with	best approximate irrational numbers by	dimensional data sets appearing in nature tend to
the aim of showing that every such group is	rational numbers. This led to a discussion	conform to low dimensional manifolds.
generated by a set of simple reflections. We used	of different notions of "best"	https://aminsaied.github.io/topology-and-data-analysis/
this knowledge to construct the Coxeter graph of a	approximations. A geometric approach to	
finite reflection group, and we used Kostant's find	think about continued fractions and	
the highest root game to give a combinatorial	approximations was also considered. We	
proof of the classification of Coxeter graphs of	then discussed applications of continued	
finite type.	fractions, and studied Diophantine	
	equations using continued fractions.	
2017-2018		
Understanding Computation	Reflection Groups	Numerical Methods
Instructor: Daoji Huang(Math)	Instructor: Balazs Elek (Math)	Instructor: Matthew Hin (CAM)
In this seminar students studied computations	First we looked at a couple examples of	The seminar was an introduction to basic numerical
from two different perspectives. The first was	groups, which we have shown to be	methods and programming principles using Python.
"abstract machines," namely, automata theory.	reflection groups after investigating how	After introducing how computers represent numbers
Students were introduced to deterministic and	reflections interact with each other in	and how errors can propagate, the seminar was divided
non-deterministic finite automata and it was	Euclidean space. To motivate the	into four segments.
shown that non-deterministic finite automata can	classification of all finite reflection groups,	1. Students were introduced to Gaussian elimination
be determinized. Students then were introduced to	we looked at regular polytopes, and	and its uses in solving linear systems.
Turing machines and shown that they are more	investigated some of their combinatorial	2. Students were introduced to bisection methods and
powerful than finite automata. The halting	properties. Then we looked at root systems	Newton-Raphson methods and their uses in solving
problem was also discussed. In the end, students	associated to finite reflection groups, and	nonlinear equations.
briefly studied the second perspective, which is an	alscussed several theorems with lots of	5. Students learned about Lagrange interpolation and
abstract program, namely, lambda calculus.	nands-on computations and examples.	11s application to Newton-Cotes integration.
		4. Students explored the forward, improved, and
		backward Euler methods for ordinary differential
		equations.