Why do we care how connected a graph is?

- we don't want a network of computers (or websites) to fail if a few computers (or websites) get a virus or need maintenance.

Today we will examine:
Quantity of data going through a network vs. Cutting edges in a network
Want to get the following result:
"Largest number of distinct routes between two special vertices in a graph"
||
"Minimal number of edges that can be cut to separate these two vertices"
Activity 1: For each of the graphs below:

- what is the minimal number of edges you have to cut to separate s from t ?
- what is the maximum number of routes from s to t which do not share edges?

Flow problem

You can think of collection of pipes connecting an oil well and a refinery. We are given:

- a directed graph
- two special vertices: source, s, and sink, t.
- values on edges (called capacity $=$ maximum allowed flow on that edge)

We want a flow, i.e. an assignment of non-negative numbers to each edge, such that:

- no bursting pipes: the number assigned to an edge should be less than its capacity
- pipes are not leaky: for each vertex, besides s and t, the total flow going in is equal to the total flow going out

Notice: The flow conservation means that the flow coming out of s is equal to the flow going into t, we will call this amount the value of the flow. In practice, we are often interested in the maximal flow.

Activity 2:

You are given the flow out of s. Fill in valid flow values for other edges given that the capacity of each edge is 6 .

Is the flow coming out of s equal to the flow going into t ?

Cutting edges

A cut is a separation of vertices of the graph into two components X and $V-X$, such that s is in X and t is in $V-X$. The capacity of a cut is the sum of the capacities of all the edges going from X to $V-X$.

Notice: Removing the edges between X and $V-X$ stops all flows from s to t. So,
"Maximal value of any flow" \leq "Minimal capacity of all cuts"
In fact, we have equality above!

$$
\text { Maximal flow }=\text { Minimal capacity of cuts }
$$

Given a flow on a graph, we can build the set X corresponding to a cut of the same value recursively by:

- put s in X
- for every, v vertex in X and w a neighbor of v :
if capacity $(v \rightarrow w)>\operatorname{flow}(v \rightarrow w)$, or
if flow $(w \rightarrow v)>0$,
then add w to X.
- repeat step 2 until no more vertices can be added

Activity 3:

Assume all edges have capacity 5. Given the following flow on the graph, find the set X corresponding to this flow using the method described above.

Is the given flow maximal?

