1 Questions

Question 1.1. Compare $(R 1 \circ R 2) \circ X_{A}$ and $R 1 \circ\left(R 2 \circ X_{A}\right)$.
Question 1.2. Which ones of the following operations are associative.
(i) Addition on the real numbers. Multiplication on the positive real numbers.
(ii) Division on the non-zero real numbers.

Question 1.3. Suppose an operation $*$ on X has two identity elements e and f. Use the identity property for both e and f to simplify $e * f$ into two different expressions, and conclude that $e=f$ necessarily.

Question 1.4. Let $X, *$ and e as in the previous definition but assume that $*$ is associative. Now let $x \in X$ with two inverses y and z. In other words, $x * y=y * x=e$ and $x * z=z * x=e$. Show that $z=z *(x * y)=(z * x) * y$ and conclude that $z=y$ and hence that an inverse under an associative operation is unique if it exists.

Question 1.5. Let $X, *$ and e as in the previous definition, but this time assume that X is finite, i.e. it only has finitely many elements, and that $*$ is associative. Now let $x \in X$ and $y \in X$ such that $x * y=e$. Consider the map $f: X \rightarrow X$ defined by $f(a)=y * a$ for $a \in X$.
(i) Show that f is one-to-one, a.k.a injective, by using an associativity trick on $x * f(a)$
(ii) Deduce that f is also onto because X is finite.
(iii) Deduce now that the previous statement implies that there exists an element $z \in X$ with $y * z=e$.
(iv) Show that $x=x *(y * z)$ implies that $x=z$ and $y * x=e$.

Question 1.6. Does the set of all symmetries of a square form a group?
Question 1.7. Does the set of all permutation of n elements form a group?
Question 1.8. Which one of these sets with operations are Groups?

1. The natural numbers with addition? With multiplication? How about substraction?
2. Same question with the rational numbers?

Forming a new group from old groups?
Question 1.9. Let $(\mathbb{Z},+)$ be the additive integer group. Is $\mathbb{Z} \times \mathbb{Z}=\{(a, b) \mid a, b \in \mathbb{Z}\}$ a group? What would be its binary operation?

Question 1.10. Can you generalize this to any group $(G, *)$?

Question 1.11. Let M be the set of expressions of the form $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ where a, b, c and d are real numbers. Define the binary operation + on M by the following expression:

$$
\left(\begin{array}{ll}
a_{1} & b_{1} \\
c_{1} & d_{1}
\end{array}\right)+\left(\begin{array}{ll}
a_{2} & b_{2} \\
c_{2} & d_{2}
\end{array}\right)=\left(\begin{array}{ll}
a_{1}+a_{2} & b_{1}+b_{2} \\
c_{1}+c_{2} & d_{1}+d_{2}
\end{array}\right)
$$

Show that this operation makes M into a group. What is the identity in this case?
Question 1.12. Let O be the subset of M with elements $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ such that $a d-b c \neq 0$, with operation * defined:

$$
\left(\begin{array}{ll}
a_{1} & b_{1} \\
c_{1} & d_{1}
\end{array}\right) *\left(\begin{array}{rr}
a_{2} & b_{2} \\
c_{2} & d_{2}
\end{array}\right)=\left(\begin{array}{ll}
a_{1} a_{2}+b_{1} c_{2} & a_{1} b_{2}+b_{1} d_{2} \\
c_{1} a_{2}+d_{1} c_{2} & c_{1} b_{2}+d_{1} d_{2}
\end{array}\right) .
$$

Show that this makes O into a group with identity. What is the identity in this case?
Question 1.13. What are the rotational symmetries of a 3-dimensional cube?

