Conditional Probability and

Markov Chains

Conditional Probability

- Conditional Probability contains a condition that may limit the sample space for an event.
- You can write a conditional probability using the notation

$$
P(B \mid A)
$$

- This reads "the probability of event B, given event A"

Conditional Probability

The table shows the results of a class survey.
Find P (own a pet | female)
Do you own a pet?

	yes	no
female	8	6
male	5	7

The condition female limits the sample space to 14 possible outcomes.

Of the 14 females, 8 own a pet.

Therefore, P (own a pet | female) equals $\frac{8}{14}$.

Conditional Probability

The table shows the results of a class survey. Find P (wash the dishes | male)

Did you wash the dishes last night?

	yes	no	
female	7	6	13 females;
male	7	8	15 males

The condition male limits the sample space to 15 possible outcomes.

Of the 15 males, 7 did the dishes.

Therefore, P (wash the dishes | male) $\frac{7}{15}$

Let's Try One

Using the data in the table, find the probability that a sample of not recycled waste was plastic. P (plastic | non-recycled)

The given condition limits the sample space to non-recycled waste.

A favorable outcome is non-recycled plastic.

Material	Recycled	Not Recycled
Paper	34.9	48.9
Metal	6.5	10.1
Glass	2.9	9.1
Plastic	1.1	20.4
Other	15.3	67.8

$$
\begin{aligned}
P(\text { plastic } \mid \text { non-recycled }) & =\frac{20.4}{48.9+10.1+9.1+20.4+67.8} \\
& =\frac{20.4}{156.3} \\
& \approx 0.13
\end{aligned}
$$

The probability that the non-recycled waste was plastic is about 13%.

Conditional Probability Formula

- For any two events A and B from a sample space with $\mathrm{P}(\mathrm{A})$ does not equal zero

$$
P(B \mid A)=\frac{P(\operatorname{AandB})}{P(A)}
$$

Using Tree Diagrams

Jim created the tree diagram after examining years of weather observations in his hometown. The diagram shows the probability of whether a day will begin clear or cloudy, and then the probability of rain on days that begin clear and cloudy.

a. Find the probability that a day will start out clear, and then will rain.

The path containing clear and rain represents days that start out clear and then will rain.

$$
\begin{aligned}
P(\text { clear and rain }) & =P(\text { rain | clear }) \cdot P(\text { clear }) \\
& =0.04 \cdot 0.28 \\
& =0.011
\end{aligned}
$$

The probability that a day will start out clear and then rain is about 1%.

Conditional Probability

The paths containing clear and no rain and cloudy and no rain both represent a day when it will not rain. Find the probability for both paths and add them.
$P($ clear and no rain $)+P($ cloudy and no rain $)=$
P (clear) $\cdot P$ (no rain | clear) $+P$ (cloudy) P (no rain | cloudy)

$$
=0.28(.96)+.72(.69)
$$

$$
=0.7656
$$

The probability that it will not rain on any given day is about 77%.

Let's Try One

- A survey of Pleasanton Teenagers was given.
- 60% of the responders have 1 sibling; 20\% have 2 or more siblings
- Of the responders with 0 siblings, 90% have their own room
- Of the respondents with 1 sibling, 20% do not have their own room
- Of the respondents with 2 siblings, 50% have their own room
Create a tree diagram and determine
A) P (own room | 0 siblings)
в) P (share room | 1 sibling)

