Random Variable

- A random variable x takes on a defined set of values with different probabilities.
- For example, if you roll a die, the outcome is random (not fixed) and there are 6 possible outcomes, each of which occur with probability one-sixth.
- For example, if you poll people about their voting preferences, the percentage of the sample that responds "Yes on Proposition 100" is a also a random variable (the percentage will be slightly differently every time you poll).
- Roughly, probability is how frequently we expect different outcomes to occur if we repeat the experiment over and over ("frequentist" view)

Probability functions

- A probability function maps the possible values of x against their respective probabilities of occurrence, $p(x)$
- $p(x)$ is a number from 0 to 1.0 .
- The area under a probability function is always 1.

Discrete example: roll of a die

Probability mass function (pmf)

x	$p(x)$
1	$p(x=1)=1 / 6$
2	$p(x=2)=1 / 6$
3	$p(x=3)=1 / 6$
4	$p(x=4)=1 / 6$
5	$p(x=5)=1 / 6$
6	$p(x=6)=1 / 6$

Cumulative distribution function (CDF)

Cumulative distribution function

x	$P(x \leq A)$
1	$P(x \leq 1)=1 / 6$
2	$P(x \leq 2)=2 / 6$
3	$P(x \leq 3)=3 / 6$
4	$P(x \leq 4)=4 / 6$
5	$P(x \leq 5)=5 / 6$
6	$P(x \leq 6)=6 / 6$

Practice Problem:

- The number of patients in any given hour is a random variable represented by x. The probability distribution for x is:

x	10	11	12	13	14
$P(x)$.4	.2	.2	.1	.1

Find the probability that in a given hour:
a. exactly 14 patients arrive $p(x=14)=.1$
b. At least 12 patients arrive $p(x \geq 12)=(.2+.1+.1)=.4$
C. At most 11 patients arrive $p(x \leq 11)=(.4+.2)=.6$

Review Question 1

If you toss a die, what's the probability that you roll a 3 or less?
a. $1 / 6$
b. $1 / 3$
c. $1 / 2$
d. $5 / 6$
e. 1.0

Review Question 1

If you toss a die, what's the probability that you roll a 3 or less?
a. $1 / 6$
b. $1 / 3$
c. $\mathbf{1 / 2}$
d. $5 / 6$
e. 1.0

Review Question 2

Two dice are rolled and the sum of the face values is six? What is the probability that at least one of the dice came up a 3 ?
a. $1 / 5$
b. $2 / 3$
c. $1 / 2$
d. $5 / 6$
e. 1.0

Example 2: Uniform distribution

The uniform distribution: all values are equally likely. $f(x)=1$, for $1 \geq x \geq 0$

We can see it's a probability distribution because the area of the rectangle is 1 .

Example: Uniform distribution

What's the probability that x is between 0 and $1 / 2$?

Clinical Research Example: When randomizing patients in an RCT, we often use a random number generator on the computer. These programs work by randomly generating a number between 0 and 1 (with equal probability of every number in between). Then a subject who gets $X<.5$ is control and a subject who gets $X>.5$ is treatment.
$P(1 / 2 \geq x \geq 0)=1 / 2$

Expected Value and Variance

- All probability distributions are characterized by an expected value (mean) and a variance (standard deviation squared).

Expected value of a random variable

- Expected value is just the average or mean (μ) of random variable x.
- It's sometimes called a "weighted average" because more frequent values of X are weighted more highly in the average.
- It's also how we expect X to behave on-average over the long run ("frequentist" view again).

Expected value, formally

$$
E(X)=\sum_{\text {all }} x_{i} p\left(x_{i}\right)
$$

Example: expected value

- Recall the following probability distribution of ER arrivals:

