Side 1: Cardinality

Note: We will use \mathbb{N} to indicate the set of all natural numbers $\{1, 2, 3, 4, ...\}$. We will use \mathbb{R} to indicate the set of all real numbers, i.e. points on the real number line, i.e. decimal numbers.

Let's make a mathematical definition: The *cardinality* of a set is the size of the set. We use the notation card(S) = N to mean that N is the size of the set S. For example, $card(\{1, 2, 3\}) = 3$.

- 1. What's card $(\{1, 2, 3, 4, 5, 6, 7, 8, 9, 0\})$?
- 2. What's card($\{ !, @, #, \$, \%, \hat{,} \&, *, (,) \}$)?
- 3. What's card($\{10, 20, 30, 40, 50\} \{30, 40\}$)?
- 4. What's $\operatorname{card}(\{\})$?
- 5. What's card($\{1, 2, 3, 4...\}$)? (i.e. What's card(\mathbb{N})?)
- 6. What's card $(\{2, 4, 6, 8, ...\})$?
- 7. What's card($\{1, 2, 3, 4...\} \{2, 4, 6, 8, ...\}$)?
- 8. What's the cardinality of the set of points on the real number line? (i.e. What's $card(\mathbb{R})$?)
- Warning: Tricky questions. We will work for the next hour to answer these. Just write down your intuitions. Is card({1,2,3,4...}) =card({2,4,6,8,...})? Is card(ℕ) =card(ℝ)?
- 10. Given two big bags of coins, how can one tell without counting! whether the two bags of coins have the same cardinality?

Side 2: Bijections

Let's make another mathematical definition: A *bijection* between two sets is a way of pairing elements of one set with elements of the other set.

For example, a bijection between $\{1, 2, 3\}$ and $\{4, 5, 6\}$ is:

 $1 \leftrightarrow 4, \quad 2 \leftrightarrow 5, \quad 3 \leftrightarrow 6.$

We could also say that the bijection is given by the rule $x \leftrightarrow x + 3$.

- 1. Can you give a bijection between the sets in #1 and #2 on the last page?
- 2. Can you give a bijection between $\{1, 2, 3, 4\}$ and $\{10, 20, 30, 40\}$?
- 3. Is it possible to give a bijection between $\{1, 2, 3, 4\}$ and $\{5, 6, 7\}$?
- 4. What's card($\{1, 2, 3, 4\}$)? What's card($\{5, 6, 7\}$)? What's card($\{10, 20, 30, 40\}$)?
- 5. What do the above results suggest about the relationship between the cardinality of two sets and the existence of a bijection between them?
- 6. Can you give a bijection between $\{1, 2, 3, 4...\}$ and $\{2, 4, 6, 8, ...\}$?
- 7. What does this tell you about $card(\{1, 2, 3, 4, ...\})$ and $card(\{2, 4, 6, 8, ...\})$?
- 8. Can you give a bijection between $\{1, 2, 3, 4, ...\}$ and the set of all rational numbers (i.e. all numbers of the form $\frac{p}{q}$) where p and q are natural numbers)?
- 9. What does this tell you about $\operatorname{card}(\mathbb{N})$ and $\operatorname{card}(\operatorname{rational numbers})$?
- 10. Is it possible to give a bijection between \mathbb{N} and \mathbb{R} ?