Side 1: Cardinality

Note: We will use \mathbb{N} to indicate the set of all natural numbers $\{1,2,3,4, \ldots\}$. We will use \mathbb{R} to indicate the set of all real numbers, i.e. points on the real number line, i.e. decimal numbers.

Let's make a mathematical definition: The cardinality of a set is the size of the set. We use the notation $\operatorname{card}(S)=N$ to mean that N is the size of the set S. For example, $\operatorname{card}(\{1,2,3\})=3$.

1. What's $\operatorname{card}(\{1,2,3,4,5,6,7,8,9,0\})$?
2. What's $\operatorname{card}\left(\left\{!, @, \#, \$, \%,{ }^{\circ}, \&, *,(),\right\}\right)$?
3. What's $\operatorname{card}(\{10,20,30,40,50\}-\{30,40\})$?
4. What's card(\{\})?
5. What's $\operatorname{card}(\{1,2,3,4 \ldots\})$? (i.e. What's $\operatorname{card}(\mathbb{N})$?)
6. What's card $(\{2,4,6,8, \ldots\})$?
7. What's $\operatorname{card}(\{1,2,3,4 \ldots\}-\{2,4,6,8, \ldots\})$?
8. What's the cardinality of the set of points on the real number line? (i.e. What's card(\mathbb{R})?)
9. Warning: Tricky questions. We will work for the next hour to answer these. Just write down your intuitions. Is $\operatorname{card}(\{1,2,3,4 \ldots\})=\operatorname{card}(\{2,4,6,8, \ldots\})$? Is $\operatorname{card}(\mathbb{N})=\operatorname{card}(\mathbb{R})$?
10. Given two big bags of coins, how can one tell - without counting! - whether the two bags of coins have the same cardinality?

Side 2: Bijections

Let's make another mathematical definition: A bijection between two sets is a way of pairing elements of one set with elements of the other set.

For example, a bijection between $\{1,2,3\}$ and $\{4,5,6\}$ is:

$$
1 \leftrightarrow 4, \quad 2 \leftrightarrow 5, \quad 3 \leftrightarrow 6 .
$$

We could also say that the bijection is given by the rule $x \leftrightarrow x+3$.

1. Can you give a bijection between the sets in $\# 1$ and $\# 2$ on the last page?
2. Can you give a bijection between $\{1,2,3,4\}$ and $\{10,20,30,40\}$?
3. Is it possible to give a bijection between $\{1,2,3,4\}$ and $\{5,6,7\}$?
4. What's $\operatorname{card}(\{1,2,3,4\})$? What's $\operatorname{card}(\{5,6,7\})$? What's card($\{10,20,30,40\})$?
5. What do the above results suggest about the relationship between the cardinality of two sets and the existence of a bijection between them?
6. Can you give a bijection between $\{1,2,3,4 \ldots\}$ and $\{2,4,6,8, .$.$\} ?$
7. What does this tell you about $\operatorname{card}(\{1,2,3,4, \ldots\})$ and $\operatorname{card}(\{2,4,6,8, \ldots\})$?
8. Can you give a bijection between $\{1,2,3,4, \ldots\}$ and the set of all rational numbers (i.e. all numbers of the form $\frac{p}{q}$) where p and q are natural numbers)?
9. What does this tell you about $\operatorname{card}(\mathbb{N})$ and card(rational numbers)?

10 . Is it possible to give a bijection between \mathbb{N} and \mathbb{R} ?

