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Topological spaces

Definition: A topological space
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Orientable surfaces

Definition: A surface is a topological space where
every point looks locally like a disc D* C R?.
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Definition: A surface embedded in R”is orientable
if there is a consistent way to choose a normal

vector.
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Homeomorphism

Definition: Two topological spaces X and Y are
homeomorphic if there is a continuous bijection
f:X—Y

such that ' : Y — X is also continuous.
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Homotopy equivalence
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homotopy equivalent to one another if they can
be transformed into one another by bending,
squishing, stretching, and expanding operations.
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Topologist

Definition: A topologist is a person who can turn

their pants inside out without taking them off.
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Definition: A topologist is a person who can turn
their pants inside out without taking them off.

Theorem:
Tara Holm is a topologist.
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