7880 Applied Logic, Fall 2009

Sasha Rubin

Logical Definability and Random Graphs

The theme of this course is that logical definability can be used to understand combinatorial properties of randomly chosen finite graphs.
An idealisation of a real network is the random graph model advanced by Erdős and Rényi. In this model a random graph $G(n, p)$ is an undirected graph on n labelled vertices with each edge chosen independently with probability p (in general p may depend on n).

Combinatorists ask questions such as: For a given property X of graphs (connected, contains a triangle, ...) what is the probability that $G(n, p)$ has property X ? When $p=\frac{1}{2}$ this probability is the proportion of graphs for which X holds. What happens as n tends to infinity? It was noticed, for instance, that for many properties this limit exists and is either 0 or 1 - loosely then, larger and larger randomly chosen graphs begin to look alike!
Consequently, logicians generalised the probabilistic arguments and showed theorems of the following form: Every property X that can be defined in a certain logical language already ensures that the limit is 0 or 1 . The main tools come from an area of mathematical logic called finite model theory which also has applications in database theory, artificial intelligence, and computational complexity theory.

I hope this course will appeal to those with backgrounds in any of the following: logic, probability, combinatorics, or theoretical computer science. The prerequisites for this course are familiarity with the content of upper-level undergraduate courses in logic and probability. Although we will need some notions usually covered in a first graduate course in logic, the makeup of the class will determine how we cover missing background. There will be no exam. I will ask each student to present a recent paper or chapter from a book.

Keywords: evolution of random graphs, threshold function, zero-one law, convergence law, infinitary logic, almost-sure theory, finite model theory.

