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Abstract (1)

• Appropriateness of the Wald-type logarithmic asymptotics for

the mean length (MEAL) of sequential discrimination between

composite alternatives.

• Well-known controversy over comparative performances of the

asymptotically optimal Chernoff’s discrimination strategies and

ad hoc heuristic rules of Box and Hunter in the seventies.

• We show a poor performance of the Wald-type asymptotic

bounds for the mean length of asymptotically optimal

sequential discrimination strategies between simplest types of

Markov chains by simulation.

• We propose some partial remedies against this disaster and

some alternative asymptotic tools.
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Abstract (2)

• Two case studies: 1. First order autoregression with small

noise. Straightforward generalization: sequential discrimination

between stable dynamical systems perturbed by small noise.

• 2. Null hypothesis: Bernoulli binary equally likely sequence

versus all (2 × 2) transition matrices in certain generalized

distance ≥ d2 from the null hypothesis, for very small d > 0.

• Two simplified sequential discrimination strategies between two

classes of Markov chains are proposed, and their performance

studied by simulation.

• The MEAL of 1. our strategies, 2. Wald-type Lower Bounds,

and 3. best static (non-sequential) strategy are compared.
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Introduction

P = P1 ∪ P0 ∪ P+, all disjoint. P ∈ Pr → A(P ) : +P1−r

Testing P1 versus P0, P+ is Indifference zone.

Decision δ at Stopping time N ,

α-strategy s: supP∈P PP (δ ∈ A(P )) ≤ α.

Wald-type lower bound for MEAL, found for I.I.D., then

for MC: ∀P ∈ P and ∀α-strategies s:

Es
P N ≥ ρ(α, P ) + O

(

√

ρ(α, P )
)

, (1)

as α → 0, where ρ(α, P ) = | lnα|/k(P )
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The bound in (1) is asymptotically attained by Wald’s Sequential

Probability Ratio Test for simple alternatives.

Extended to controlled discrimination between composite

hypotheses and change-point detection problems by Chernoff,

Kiefer and Sacks, Lai, etc.

Simulation of comparative performances of the

asymptotically optimal Chernoff’s discrimination strategies and the

ad hoc heuristic rules of Box and Hill (1967) in the seventies (see,

e.g. Blot and Meeter, (1973).
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Our case studies

1. Illustrative example of testing the correlation significance for a

first-order autoregression with small noise.

In certain range of parameters we show the attainability of above

asymptotic lower bound if we permit experimenting in the initial

transition period to the equilibrium.

An extension to the discrimination between conservative dynamical

systems perturbed by small noise is straightforward.

2. Two simplified versions of discrimination strategies between

Markov Chains (MC) are studied by simulation for testing a

regular binary random binary generator versus a MC with

transition probabilities close to those in the null hypothesis.
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Let X be a finite set with mX elements,

P be a Borel set of transition probability matrices for MC on state

space X. p(x, y), x ∈ X, y ∈ X, are entries of the matrix P ∈ P.

Under the convention 0/0 := 1 we assume that for some C > 0

sup
P,Q∈P

max
x∈X,y∈X

p(x, y)

q(x, y)
≤ C < ∞ (2)

∀P ∈ P MC with transition probability matrix P is aperiodic

and irreducible, which implies

existence and uniqueness of the stationary distribution

µP > 0∀x.
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Log-likelihood probability ratios:

z(P, Q, x, y) := ln p(x, y)/q(x, y).

Divergence = cross-entropy

I(x, P, Q) :=
∑

y∈X

p(x, y)z(P, Q, x, y).

Sets P0, P1 and the indifference zone P+ = P \ (P1 ∪ P0).

Testing H0 : P ∈ P0 vs. H1 : P ∈ P1, ∀ decisions good for P ∈ P+.

Suppose that the divergence between the hypotheses is positive, i.e.

min
i=0,1

inf
P∈Pi,Q∈P1−i

max
x∈X

I(x, P, Q) ≥ δ0 > 0. (3)
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The probability for MC Xi, i = 0, 1, . . . , is denoted by PP and the

expectation is denoted by EP . In particular

I(x, P, Q) = EP (z(P, Q, X0, X1)|X0 = x).

A strategy s consists of a stopping (Markov) time N and a

measurable binary decision δ, δ = r means that Hr , r = 0, 1, is

accepted.

Introduce α-strategies s satisfying

max
r=0,1

sup
P∈Pr

PP (δ = 1 − r) ≤ α.

Es
P N is the mean length (MEAL) of a strategy s.
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Define: I(µ, P, Q) :=
∑

x∈X µ(x)I(x, P, Q),

µ is a probability distribution on X, I(P, Q) := I(µP , P, Q)

I(P,R) := infQ∈R I(P, Q) for R ⊂ P; A(P ) := P1−r for P ∈ Pr as

the alternative set to P (in P).

For P ∈ P+, if I(P,P0) ≤ I(P,P1), then A(P ) := P1, otherwise,

A(P ) := P0.

Finally, k(P ) = I(P, A(P )). It follows from (3) that

k0 := inf
P∈P

k(P ) > 0, P ∈ P

It is proved in MT-2001 that ∀P ∈ P, α-strategies s

Es
P N ≥ ρ(α, P ) + O

(

√

ρ(α, P )
)

, (4)

as α → 0, where ρ(α, P ) = | lnα|/k(P ).
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sketch of α-strategy s1 attaining equality in (4)

Strategy s1 consists of conditionally i.i.d. loops.

Every loop contains two phases. Based on the first N1(α, δ0)

observations of a loop, we find the MLE P̂ ∈ P.

Enumerate measurements of the second phase anew and introduce

Lk(P̂ , Q) =
∑k

i=1 z(P̂ , Q, Xi−1, Xi).
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sketch of α-strategy s1 (continued)

We stop observations of the loop at the first moment N2 such that

inf
Q∈A(P̂ )

LN2
(P̂ , Q) > | lnα|, or (5)

N2 > N0 := 2k−1
0 | lnα|, (6)

stop all experiments and accept the hypothesis Hr (i.e. δ = r), if

first of events holds and 1 − r is the index of the set A(P̂ ).

Otherwise, start a new loop.
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We study by simulation simplified strategies s3 and s2 comparing

(with the prescribed level) only the likelihood ratios with respect to

the closest alternative to P̂ which is numerically much easier to

implement.

Note also that for attaining an asymptotic equality in (4) it is

assumed in MT-2001 that P(N2 > N0) → 0 as α → 0 making the

probability of more than one loop negligible. This holds, if

EI(P, P̂ )/δ0 → 0 (7)

as α → 0.
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For close alternatives (δ0 is small) in both our examples the

conventional asymptotic approach of large deviations in

discrimination problems, see e.g. Chernoff (1972), is inappropriate.

Le Cam’s theory of contiguous alternatives might give a better

approximation which we plan to study in future.

The misclassification probability under the hypotheses at distance

of order cn−1/2, where n is the sample size of the first stage, can be

shown to be normal with parameter depending on c.

Choose parameters in such a way that the unfavorable outcome of

the first loop would take place with probability less than α.
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In sections 3 and 4 the condition (7) is impractical since L = | lnα|
cannot be very large.

Our simulation shows that under the parameters studied only α-

strategies with several times larger MEAL than ρ(α, P ) seem to be

attainable which appears still around twice less than the sample

size of the best static strategy.

It is an open problem whether our strategies can be modified to

require the MEAL equivalent to the lower bound proved so far.

Remark. The most promising revision of our strategies would be

to modify recent methods of supervised discrimination

maximizing the margin. These methods use the estimation of the

likelihood function only in the vicinity of the margin points crucial

for discrimination getting rid of the idea to approximate the

likelihood function globally (and plug in the estimated parameters

there).
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Testing correlation in a first-order autoregression

Consider a Markov chain X0, X1, . . . with joint distribution Pθ:

Xt = θXt−1 + εet, t = 1, 2, . . . ,

where |θ| ≤ Θ < 1 is an unknown correlation, the noise εet is

i.i.d.N(0, ε2) and we are allowed to choose X0 to be, say, 1 (or

more generally is random with constant mean as ε → 0).

We test H0 = {θ = 0} versus the composite hypothesis

H1 = {|θ| ≥ d > 0}, {0 < |θ| < d being an indifference zone.
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The marginal distribution of Xt is well-known to converge

exponentially fast as t → ∞ to N(0, ε2(1 − θ2)) for every initial

state.

We study here the performance of strategy s1 for small d, ε and α.

The loglikelihood of Pθ versus Pθ̇ up to moment T is

Z0 +
∑T+1

1 Zt, where

Zt := [(Xt − θ̇Xt−1)
2 − (Xt − θXt−1)

2]/(2ε2).
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First averaging Zt given Xt−1, we get

I(x, θ, θ̇) = (θ − θ̇)2x2/(2ε2),

and then averaging over the stationary distribution, we get the

stationary cross-entropy

I(θ, θ̇) := Eθ(Zt) = (θ − θ̇)2(1 − θ2).)

In particular, I(0, θ) = θ2, I(θ, 0) = θ2(1 − θ2).
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The Fisher information J(x, θ) of Xt given that Xt−1 = x is

x2/(2ε2). Thus

E(

T
∑

0

J(Xt)) = ε−2
T

∑

t=0

(θ2t)/2

is not less asymptotically for large T than 1/[2(1 − D2)ε2] implying

that the variance of the preliminary MLE θ̂ based on
√

ρ(α, Pd)

observations is 1/
√

ρ(α, Pd), if we assume that

ε2(1 − D2) = o(d2/L).

This implies the attainment of the lower bound (3) by s1 along the

lines of MT-2001. The bound (4) holds, if the transition period to

the stationary distribution is not sufficient to discriminate with

error probability less than α, which is also straightforward to

rephrase in terms of the model parameters.
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Testing Random Number generator vs. MC

H0 : independent binary equally likely (P0) sequence X1, X2, . . . .

H1: sequence of stationary MC with transition probabilities

Pr := (pij , i, j = 1, 2), where

r := (r1, r2), r1 := p11 − 1/2, r2 := p22 − 1/2, such that for certain

d > 0

I(P0, Pr) := − ln[16p11(1 − p11)p22(1 − p22)]/4 ≥ d2.
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I(P0, Pr) = ||r||22(1 + o(1)) as ||r||2 → 0, where

||r||22 := r2
1 + r2

2.

For small d approximately the set of alternatives is the exterior to

the figure which is close to a circle of radius d with center in

(1/2, 1/2).

The Nelder-Mead MATLAB program of finding the set of Pr∗

minimizing I(Pr̂, Pṙ) over Pṙ on the border of the alternative set to

a preliminary estimate Pr̂, always gave a unique minimizing point

A(r̂).
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Two simplified algorithms for discrimination between H0 and H1

The only difference of the strategy s2 from s1 is that we use rule

LN2
(Pr̂, PAr̂) > | lnα|. (8)

The strategy s3 is greedier than s2:

we continue to update recurrently the preliminary estimate for the

true parameter r during the second phase in parallel to counting

the likelihood ratios,

and if a loop ended undecidedly, we plug the updated estimate for

r into the likelihhod ratio, find the closest alternative, and start the

new second phase.
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Static Discrimination, error probability α

Our large sample discrimination problem is equivalent to the

discrimination of the zero mean hypothesis for the bivariate

rotationally invariant Normal distribution vs. the spherically

invariant alternative dealt with in Example 5.17 of Cox and

Hinkley (1974):

Best critical region = exterior of a circle of certain radius,

distribution under the alternative is the non-central Chi-Square

with df=2.

Power diagrams of non-central Chi-Square imply:

radius providing the equality of maximal errors under the null

hypothesis and the alternative is approximately 0.39d.

Derived sample size is compared with the empirical MEALs of

strategies s3, s2 by simulation.
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Simulation Results

Several series of simulation results for s2 and s3

done by MATLAB program (available by request) with various

parameters of the model.

In the table below summarizing our simulation ,

N1 = K1

√
L/d2, L = | ln(α)|, n is the No. of times strategies were

repeated,

the empirical MEAL (EMEAL) is the average No. of random

numbers taken before the decision, the ENOL is the average No. of

loops over n runs.

All parameters in simulations 2-4 are taken the same with n=100,

and with n = 1000 in simulation 5 for estimating the variance of

the performance parameters.
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In the plots d2 = 0.001, p := p11 = p22, methods 1 and 2 mean

respectively s2 and s3.

Figures 3 and 6 plot respectively EMEAL and FE under various

alternatives.

Other figures illustrate the performance of our strategies under H0.

EMEAL, number of loops and empirical error rate are plotted

versus changing values of various parameters of our strategies.

Main news is that the EMEAL exceeds the theoretical principal

term approximately four times under best parameters of our

strategies.

25



Simulation Results (5 single trials)

d2 α K1 p n EMEAL FE ENOL

1 s2 0.0002 0.01 2500 0.5015 200 263723.82 0.02 4.37

s3 93836.39 0.0 1.905

2 s2 0.001 0.02 500 0.5 100 42434.89 0.09 4.27

s3 15553.15 0.03 1.89

3 s2 0.001 0.02 500 0.5 100 49191.76 0.04 4.8

s3 15879.13 0.01 1.97

4 s2 0.001 0.02 500 0.5 100 52232.04 0.04 4.97

s3 16412.41 0.03 1.98

5 s2 0.001 0.02 500 0.5 1000 42934.085 0.057 4.24

s3 15729.03 0.01 1.90
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Fig. 1: EMEAL versus α
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Fig. 2: EMEAL versus K1
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Fig. 3: EMEAL versus P
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Fig. 4: Number of Loops versus K1 = N1d
2/
√

ln α
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Fig. 5: Error rate versus α
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Fig. 6: Error rate versus P
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Conclusions

1. Conventional asymptotic expansions of the MEAL in powers of

log maximal probability can be inappropriate for discrimination

between close hypotheses.

2. Our simulation shows that strategy s3 is better than strategy s2.

3. Further work to find a valid expansion for the MEAL of

discriminating between close hypotheses seems worthy: use of Le

Cam’s contiguity and the margin maximization.

4. Suboptimal strategy s3 is preferable to static discrimination

strategies for discrimination between close hypotheses.

5. Use of the MC transition periods for preliminary estimation of

true parameters may be fruitful in discrimination between almost

deterministic ergodic MC.
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