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1. Introduction

Iterations of continuous maps of an interval I = [−β, β] into itself serve as the sim-
plest example of models for dynamical systems. These models present an interesting
mathematical structure going far beyond the simple equilibrium solutions one might
expect. A special case of these kinds of continuous maps are unimodal functions. We
say f is unimodal if there is a unique turning point x0 ∈ I such that f is decreasing in
[−β, x0] and increasing in [x0, β]. A very interesting technique, namely the kneading
sequences, has been advocated by Milnor and Thurston in 1978 to study and classify
the orbit of unimodal functions. Intuitively, a kneading sequence of an unimodal map
is an infinite sequence with symbols in {L,C,R}∗, where L at position i means f i(x0)
is on the Left of the turning point x0; R means f i(x0) is on the Right of x0 and C
means f i(x0) is exactly x0.

Although the fundamental idea of kneading sequences is simple, it is particularly
useful when we are seeking combinatorial classifications of unimodal functions. In
this Thesis, we investigate a special family of unimodal functions: the quadratic
polynomials fc = x2 + c where c ∈ [−2, 1/4] using the kneading sequence technique.
This family is nice because: The kneading sequences all lie in a particular range and
because there is a unique function, i.e. a unique c in the family for every periodic
kneading sequence. More importantly, the result proved by using the quadratic poly-
nomial family can be extended to any full family of unimodal functions.

The Thesis begins with some background of kneading sequence and one of its
modification, called orientation kneading sequence. Results in Section 2 are mostly
quoted without giving the detailed verifications. However, the motivations behind
these results and their applications to the later sections are introduced. There are
three new results presented in this thesis:

(A) (Proposition 3.2 & Theorem 3.4) A new proof of known formulas that count
the number of real parameters c such that the quadratic polynomials fc have
a periodic critical point with period n or period exactly n.

(B) (Theorem 4.1) From a kneading sequence, one can extract a description of the
itinerary of the critical orbit with respect to a fixed point. This description
is called a composition. In the complex plane, every composition has some
quadratic function correspond to it. But this is not the case if we restrict to
real polynomials. I proved the conditions for a composition to be associated
to a real unimodal map.
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(C) (Proposition 4.3) Each valid composition may arise from several different
kneading sequences, so it serves to classify interval maps with similar dynam-
ical behaviors. I gave a partial answer to the number of kneading sequences
corresponding to each valid composition.

1.1. Acknowledgements. This Thesis is based in joint work with Vorrapan Chandee
and Rodrigo Pérez; see [CQP].

2. Kneading sequences

2.1. Definitions. We refer the reader to [CE] and [MT] for proofs of the kneading
sequence results stated below.

Let {L,C,R}∗ denote the set of infinite sequences in the symbols L, C and R. The
shift map σ : {L,C,R}∗ −→ {L,C,R}∗ is defined by removing the first symbol of
a sequence: σ(u1u2 . . .) = u2u3 . . . We define a special order on {L,C,R}∗ in the
following manner: Let A = a1a2 . . . and B = b1b2 . . . be 2 sequences and j the
lowest index such that aj 6= bj. If ` represents the number of L symbols among
a1, a2, . . . , aj−1, then A ≺ B if and only if aj < bj according to the rule

L < C < R when ` ≡ 0 (mod 2)
R < C < L when ` ≡ 1 (mod 2).

According to this order, every sequence A ∈ {L,C,R}∗, satisfies LR � A � R; where
the overline represents an infinitely repeated block.

Let I = [−β, β] be an interval and f : I −→ I a C1 function. We say f is unimodal
if there is a unique turning point x0 ∈ I such that f is decreasing in [−β, x0] and
increasing in [x0, β]. Clearly, x0 is a critical point of f . We regard f as an iterative
dynamical system and write fn(x) to denote the nth iterate

n times︷ ︸︸ ︷
f(f(. . . f(x) . . .)

The itinerary of a point x ∈ I is the infinite sequence of symbols ι(x) = u1u2 . . . ∈
{L,C,R}∗ where

uj :=





L if f j(x) ∈ [−β, x0),
C if f j(x0) = x0,
R if f j(x) ∈ (x0, β].

Note that ι(f(x)) = σ(ι(x)).
It is natural to consider the order ≺ in this context since itineraries vary monoton-

ically with respect to I:

Lemma 2.1. For x, y ∈ [x0, β], x < y if and only if ι(x) ≺ ι(y). Similarly, for
x, y ∈ [−β, x0], x < y if and only if ι(x) � ι(y).

In particular, no sequence smaller than ι(x0) can be an itinerary for f . We call
the itinerary ι(x0) the kneading sequence of f and denote it by κ(f). Obviously, κ
is smaller than any of its translates: κ � σn(κ). Conversely, it is known that given
a sequence A ∈ {L,C,R}∗, there exists a unimodal map g such that κ(g) = A if
and only if A � σn(A) for all n ≥ 1. If this condition is satisfied, A will be called
admissible.
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Given a sequence A ∈ {L,C,R}∗. An will denote the symbol at position n.
Note that an admissible sequence that starts with R cannot contain any L. More

generally, an admissible sequence A satisfies

LR � A � L � C � R.

Our arguments will simplify considerably if we restrict our attention to sequences
A ≺ L. We will adopt this convention in the rest of this work.

An alternative object to encode the information carried by a kneading sequence is
the orientation kneading sequence of f . Suppose f has kneading sequence κ = u1u2 . . .
Note that un = L if and only if f ′(fn(x0)) < 0 and un = R if and only if f ′(fn(x0)) > 0.
By the chain rule,

(fn)′(f(x0)) = f ′(fn−1(x0)) · f ′(fn−2(x0)) · . . . · f ′(f(x0)),

so the sign of (fn)′(f(x0)) encodes how many times did the orbit of x0 fall on the left
sub-interval [−β, x0) during the first n iterates. The orientation kneading sequence
will be defined as a sequence s1s2 . . . of symbols {−.0,+} where sn = 0 if fn(x0) = x0

and sn =
∏n

i=1 sgnf ′(f i(x0)) otherwise.
Just as before, if A′ is an orientation kneading sequence, A′n will denote the symbol

at position n.
It is easy to see that the orientation kneading sequence can be constructed from

the kneading sequence using the rules

(1) Since we restrict to the case u1 = L, we have s1 = −.
(2) For n ≥ 2, if un = C then sn = 0,
(3) If un = R then sn is equal to the last non-0 symbol,
(4) If un = L then sn is the opposite of the last non-0 symbol.

Similarly a kneading sequence u1u2 . . . can be reconstructed from an orientation
kneading sequence s1s2 . . . as follows:

(1) Any 0 is replaced by C.
(2) If sn = sn−1, then un = R. otherwise, un = L.

We can define an order ≺0 on sequences in {−, 0,+}∗ that is equivalent to the order
≺ on {L,C,R}∗. It is enough for our purposes to define the order between a sequence
A′ ∈ {−, 0,+}∗ and its translates σn(A′). Let A′ = s1s2 . . . be the sequence obtained
from A ≺ L by the above rules, then s1 = − and

(1) If s1 = sn+1, let sr 6= sn+r be the first position where A′ and σn(A′) differ.
Then A′ ≺0 σ

n(A′) if and only if sr < sn+r according to the rule − < 0 < +.
(2) If s1 = (−1)sn+1, let sr = sn+r be the first position where A′ and σn(A′) agree.

Then A′ ≺0 σ
n(A′) if and only if sr = −.

(3) If sn+1 = 0 then A′ ≺0 σ
n(A′).

The admissibility condition for orientation kneading sequences is the same as for
kneading sequences: A sequence A′ ∈ {−, 0,+}∗ is admissible if and only if A′ �0

σn(A′) for all n. With this definition, a kneading sequence is admissible if and only
if the corresponding orientation kneading sequence is admissible.
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2.2. Quadratic family. As mentioned in Lemma 2.1, any kneading sequence lies
between LR and R. The following result guarantees the existence of unimodal maps
with arbitrary kneading sequences.

Definition 2.1. A family {fc} of C1 unimodal maps varying continuously on the
parameter c ∈ [a, b] is said to be full if κ(fa) = LR and κ(fb) = R.

Lemma 2.2. Let F = {fc} be a full family of unimodal maps. Then, given any
admissible sequence A ∈ {L,C,R}∗, there is a parameter c such that κ(fc) = A.

Most of our discussion is independent of the actual unimodal maps considered
since we will focus only on properties derived from the associated kneading sequence.
However, it is convenient to have a specific model in mind. The quadratic family
F = {fc : x 7→ x2 + c}, where c ∈ [−2, 1

4
], is the standard model of a full family.

Indeed, for any c in the parameter range fc has 2 fixed points α = (1−√1− 4c)/2,
β = (1 +

√
1− 4c)/2 and a unique turning point at 0. The interval I = [−β, β]

remains bounded under iteration: fc(I) = I; so fc is unimodal.
For the map x2 − 2 we have

0
x−27−→ −2

x2−27−→ 2
x2−27−→ 2,

while for c > 0, fnc (0) > 0. Thus, κ(f−2) = LR, κ(f 1
4
) = R and F is a full family. A

particular property of F that makes it a convenient family to study is monotonicity:
Given c1, c2 ∈ [−2, 1

4
], we have c1 ≤ c2 if and only if κ(fc1) � κ(fc2).

Perhaps more importantly, settling on the concrete family F to study general prop-
erties of kneading sequences we can exploit the similarities with its complex counter-
part FC = {z 7→ z2 + c} where c is now an arbitrary complex parameter.

2.3. Julia sets. Let f : C −→ C be a complex polynomial map. The filled Julia set
is defined as

Kf := {z ∈ C | {fn(z)} remains bounded} .
The Julia set of f is the set Jf := ∂Kf . It is a compact set with a fractal struc-

ture. In the case that f ∈ FC, the Julia set is either simply connected or totally
disconnected. This dichotomy is the basis of the definition of the Mandelbrot set:

M := {c ∈ C | Jfc is connected} .
The interval [−2, 1/4] of real parameters for the family F is contained in M . In

particular, for c ∈ [−2, 1/4], the intersection of the Julia set Jc with the real axis is
precisely the interval [−β, β].

3. The number of periodic maps

We will be concerned with unimodal maps whose critical point is periodic, referring
to them as periodic maps for short. Clearly, the corresponding kneading sequence
consists of an infinitely repeating block of the form u1u2 . . . un−1C where uj ∈ {L,R}
and the corresponding orientation kneading sequence consists of an infinitely repeat-
ing block of the form s1s2 . . . sn−10 where sj ∈ {−,+}. We say that n is the exact
period of the sequence and any multiple kn will be called a period.
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Another reason to focus on the quadratic family model is that there is a unique c
for every periodic kneading sequence. Counting the total number of complex periodic
maps of period n is relatively easy.

Lemma 3.1. The number of different periodic maps in FC with period n is 2n−1.

Proof. (Gleason [DH1, exposé XIX]) Given n we want to count all the solutions c of
the equation fnc (0) = 0. Since fc(0) = c, this is equivalent to count the solutions of
fn−1
c (c) = 0. This is a polynomial of degree 2n−1 in c; hence we only need to show

that all its solutions are different.
Define the family of polynomials

{
hr ∈ Z[z]

}
by the recursion h0(z) = z, hr(z) =(

hr−1(z)
)2

+z, so that the critical orbit of fc returns to 0 after n iterations if and only
if hn−1(c) = 0. Each hr(z) is a monic polynomial with integer coefficients, showing
that c belongs to the ring A of algebraic integers.

Suppose c is a multiple root of hn(z); that is, h′n(c) = 0. From h′n(z) = 2
(
hn−1(z)

) ·
h′n−1(z)+1 we conclude that

(
hn−1(c)

)·h′n−1(c) = −1/2. By the additive/multiplicative
closure of A, the left hand expression is again an algebraic integer; thus −1/2 ∈
Q ∩ A = Z which is a contradiction (refer for instance to [D]). This contradiction
shows that c must be a simple root of hn(z) and the result follows. �

The corresponding result for a monotonic full family of unimodal maps is also
known; see [MSS]. Our proof is based on the following definitions.

Definition 3.1. A necklace is a cyclic graph together with a color assignment to each
vertex. In this context, vertices are called beads. If the necklace looks the same after
rotating the beads p positions in the clockwise direction, we say that p is a period of
the necklace. Note that n is a period for any necklace with n beads, but there can be
smaller periods.

A n-necklace is a necklace with n beads in 2 colors, where rotation and color swap
produce equivalent necklaces.

An exact n-necklace is an n-necklace and minimal period equal to n.

Let p(n) be the number of n-necklaces and p0(n) be the number of exact n-necklaces.
There are known formulas for these two functions; refer to [S]:

p(n) =
1

2n

∑

d|n
ϕ(2d)2n/d

(1) p0(n) =
1

2n

∑

d|n
d≡1 (mod 2)

µ(d)2n/d

See Appendix for number theoretical definitions.
Figure 1 shows all exact 6-necklaces. The table below shows values of p(n) and

p0(n) for small n.

n 1 2 3 4 5 6 7 8 9 10 11 12
p(n) 1 2 2 4 4 8 10 20 30 56 94 180
p0(n) 1 1 1 2 3 5 9 16 28 51 93 170
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Figure 1. There are 5 exact 6-necklaces. The bottom-right necklace
is equivalent to necklace 5 by swapping colors and rotating 2 spaces
clockwise.

Proposition 3.2. The number of periodic admissible kneading sequences of exact
period n is p0(n).

To prove Proposition 3.2, we need the following Lemma.

Lemma 3.3. If K = s1s2...sk−10 is a periodic admissible orientation kneading se-
quence, then both

K ′ = s1s2...sk−1+

and

K ′′ = s1s2...sk−1−
satisfy the following condition: K ′ �o σn(K ′) and K ′′ �o σn(K ′′) for all n.

Proof. We will prove that K ′ �o σn(K ′) for all n. A similar argument applies to K ′′.

If K is an admissible orientation kneading sequence, then s1 = −. However σn(K)
can begin with either + or −. Suppose σn(K)1 is −. Let pn denote the first position
such that Kpn 6= σn(K)pn . Since K �o σn(K), σn(K)pn = + or 0 and Kpn = −.
Hence changing 0 to + in K ′ does not affect the order.

Suppose now that σn(K)1 = +. Let pn denote the first position such that Kpn =
σn(K)pn . Since K �o σn(K), σn(K)pn = − or 0 and Kpn = −. If σn(K)pn = −,
changing 0 to + does not affect the order. The case when σn(K)pn = 0 requires some
work.

Let K = s1s2...sn︸ ︷︷ ︸
length=n

sn+1...0︸ ︷︷ ︸
length=pn

and K ′ = s1s2...sn︸ ︷︷ ︸
length=n

sn+1...+︸ ︷︷ ︸
length=pn

.
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Since we determined K �o σn(K) at position pn, and σn(K)pn = 0, Kpn must be
−. Note also that σn(K ′)pn+1 = K ′1 = − because K ′ is periodic with period pn + n.
Therefore, K ′ and σn(K ′) has the form:

K ′ = −......−︸ ︷︷ ︸
length=pn

......

σn(K ′) = +......+︸ ︷︷ ︸
length=pn

−......

where the corresponding signs to the left of dashed line are pairwise different.
To the right of the vertical dashed line, we have copies of σn(K ′)(above) and

K ′(below). Since K �o σn(K), the first position with equal signs holds a −. When
we consider the entire strings, K ′ ≺o σn(K ′). This is always true unless the first
position with equal signs occurred after the position pn + n, in other words, we met
a + in K ′ that is originally 0 in K before the first position with equal signs. In this
case, K ′ and σnk′ has the form:

K ′ = −......−+...+︸ ︷︷ ︸
pn+n

−...

σn(K ′) = +......+−...−︸ ︷︷ ︸
pn+n

...

where the corresponding signs to the left of the dashed line are pairwise different.
σn(K ′)pn+n = − because letting it be a + will violate K �o σn(K). To the right

of the vertical dashed line, we have copies of K ′(above) and σpn+n(K ′)(below). Since
K �o σn(K), the first position with equal signs holds a −. When we consider the
entire strings, K ′ ≺o σn(K ′). This is always true unless the first position with equal
signs occurred after the position 2pn+n. Repeat this argument, we get K ′ ≺o σn(K ′)
unless we can never find a position with equal signs for K ′ and σnK ′, in which case
they are equal. Therefore, K ′ �o σn(K ′).

�

Proof of Proposition 3.2. Let C be the set of all real parameters c such that fc has
a periodic critical orbit of period exactly n. Let N be the set of exact n-necklaces.
Note that the cardinality of C is precisely p0(n).

Let g : C −→ N be the mapping such that for each c ∈ C, g(c) is the necklace with
n beads formed by painting − as black, + as white and 0 as white (the same color as
+) clockwise.

First, we have to prove that g is well-defined; in other words, g(c) ∈ N for all
c ∈ C.

Clearly, g(c) is a necklace with n beads in white and black. We only need to show
that g(c) has exact period n. Suppose g(c) has period k and km = n, where m is
greater than 1.

We get the same necklace when we rotate g(c) with angle 2kπ
n

. Therefore the
orientation kneading sequence of c should be in the form:

pc = (−s2s3..sk−1+)(−s2s3...sk−1+)...(−s2s3...sk−10).

By inspection, σk(m−1)+1(pc) ≺o pc. This contradicts the validity of the orientation
kneading sequence, so g is indeed well defined. We will prove that g is a bijection
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(A) The function g is one to one: For each necklace g(c), we can read n orientation
kneading sequences clockwise, depending on which position we start with. If there
is a black bead, write down −, if there is a white bead, write down +. One of
them is indeed the sequence p′c modified from the orientation kneading sequence pc
by changing 0 to +. Since pc is an admissible orientation kneading sequence of period
exactly n, by Lemma 3.3, p′c �o σn(p′c).

Claim 1: If c1 and c2 are two different periodic admissible orientation kneading
sequences, then g(c1) 6= g(c2) up to rotation.

Suppose g(c1) is a rotation of g(c2). Let the orientation kneading sequence of c1 be
pc1 and the orientation kneading sequence of c2 be pc2 . The modified sequence p′c1 is
the shifted sequence of p′c2 , because g(c1) is the rotation of g(c2).

Then for some n, p′c2 �o σn(p′c1) and p′c2 �o σn(p′c1). This pair of inequalities implies
that either p′c2 = σn(p′c1) or these two orientation kneading sequences are complemen-
tary in the sense that they differ at every symbol. We will denote this relation by
p′c2 =o σ

n(p′c1). By Lemma 3.3, p′c1 �o σn(p′c1) =o p
′
c2

. Analogously, p′c2 �o p′c1 and
hence we have p′c1 =o p

′
c2

. But since both orientation kneading sequences begin with
a −, p′c1 = p′c2 , which is a contradiction.

Claim 2: If c1 and c2 are two different periodic admissible orientation kneading
sequences, then g(c1) 6= g(c2) up to complement.

Suppose g(c1) is the complement of g(c2). Let p′c1 and p′c2 be the smallest sequences
read from necklace gc1 and gc2 . Then p′c1 and p′c2 are the sequences modified from pc1
and pc2 by changing 0 to +. We know from Claim 1 that such p′c1 and p′c2 exist and
are unique.

Without loss of generality, assume p′c2 �o p′c1 .
Let q be the complement of p′c2 . We can read q from g(c1). So q �o p′c1 by Lemma

3.3. But q =o p
′
c2
�o p′c1 . So

p′c2 =o q =o p
′
c1
,

and

pc1 = pc2

by the same reasoning as in Claim 1. Hence c1 = c2, which is a contradiction.

(B) the function g is onto: For each necklace in N , we have read off n sequences
p′i. Let q′i be the complementary sequences of p′i. Call the smallest sequences among
{p′i} p′c and let q′c be its complementary sequence. Either p′c or q′c begins with a −.

Without loss of generality, assume p′c begins with a − and convert it back to a
periodic orientation kneading sequence pc by changing the + on every nth position
back to 0. The periodic orientation kneading sequence pc is admissible because p′c
satisfies the shift condition.

Therefore, there is always some c ∈ C that is mapped to every necklace in N . �

Now we can state the main result of this Section.

Theorem 3.4. The number of periodic admissible kneading sequences of period n is
p(n).
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Proof. By definition, p(n) =
∑

d|n p0(d). Assuming Formula 1, we have

p(n) =
∑

d|n

∑

r|d
r≡1 (mod 2)

µ(r)2d/r

2d
=

1

2n

∑

d|n

n

d

∑

r|d
r≡1

µ(r)2d/r =
1

2n

∑

d|n
d
∑

r|n/d
r≡1

µ(r)2n/rd =

1

2n

∑

d|n

∑

r|n/d
r≡1

dµ(r)2n/rd =
1

2n

∑

D|n



∑

rd=D
r≡1

D

r
µ(r)


 2n/D =

1

2n

∑

D|n
ϕ(2D)2n/D.

using Formula 3 from the Appendix. �

4. Partial classification results

For the quadratic family F = {fc : x 7→ x2 + c}, where c ∈ [−2, 1
4
]. The interval

P = [−2, 1
4
] splits into 3 parts A = [−β, α], B = [α,−α] and C = [−α, β] in such a

way that both A and C map 1 to 1 onto B and B maps 2 to 1 onto A.
The interval B ∪ C is called the main branch. One can give a partial description

of the behavior of a point under iteration by counting the number of times its orbit
passes through the main branch.

When f i(0) ∈ C, f i+1(0) is again in the main branch. However, when f i(0) ∈ B,
2 iterates are required to return to the main branch (since f i+1(0) ∈ A).

Figure 2

Definition 4.1. The composition of a periodic quadratic map f ∈ F with period n is a
finite sequence of symbols in {1, 2} obtained by following the orbit 0, f(0), . . . , fn−1(0)
and writing a 2 every time that f i(0) ∈ B and a 1 when f i(0) ∈ C.

Note that the sum of the numerical values of the symbols in a composition is equal
to n.
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Remark. Intuitively, the composition describes the Left/Right position of the critical
orbit relative to the fixed point α. This may seem an arbitrary choice since kneading
sequences describe the Left/Right position relative to the point with lowest itinerary.
The reason to introduce compositions is that they appear naturally in the context of
complex quadratic maps. In the complex setting, the fixed point α splits the Julia
set in several branches Y0, Y1, . . . , Yr−1. The main branch is equal to the set Y0 that
contains 0 and the β fixed point. Then, every time that the critical point lands on a
“secondary” branch f i(0) ∈ Yj (j > 0) it is forced to follow a cyclic permutation along
the secondary branches and will eventually return to Y0: f i+1(0) ∈ Yj+1, f

i+2(0) ∈
Yj+2, . . . , f

r+i−j(0) ∈ Y0.
The definition of composition extends to the complex setting and is useful to clas-

sify different combinatorial behavior of periodic complex quadratic maps (see [AP]):
Any sequence of symbols {1, 2} starting with 2 is the composition of some complex
quadratic map. When restricting to real maps this is no longer the case, and we want
to describe an attempt at classification.

Theorem 4.1. A finite string of symbols in {1, 2} is the composition of a real uni-
modal map if and only if it has the following form

(1) It contains only 2, or
(2) It begins with 21, and no block of consecutive 1 is longer than the initial block

of 1.

Definition 4.2. The template of a composition is a finite string of symbols {L
R, L,R,C}

obtained by the following procedure:

(1) If there is a 1, substitute it by R.
(2) The first 2 is substituted by L.
(3) Substitute any further 2 by L

RL.
(4) Add C at the end of the sequence.

A substring of a template will be called a sub-template.

Lemma 4.2. All periodic kneading sequences with given composition P are obtained
by selecting either L or R on each L

R position of the template of P and then repeating
the resulting string infinitely many times.

Note. Not all selections give admissible kneading sequences. To find the admissible
kneading sequences with the given composition, we need to plug in L or R for each L

R

position in the template and test the admissibility condition for kneading sequences.

Proof. Let us describe a modified itinerary of 0 that includes the position of the point
0 itself. The first symbols are CL, accounting for the fact that 0 ∈ B and f(0) ∈ A
as specified by the initial 2 of the composition.

After the initial 2, any 1 implies that the current iterate is in C, hence, to the
right of 0. Then the itinerary has an R at that position. Any 2 means that the
current iterate f j(0) is in B and f j+1(0) ∈ A, hence, only LL or RL can appear at
that location.

Now, the true itinerary of 0 does not begin with C. Since the orbit is periodic,
simply translate the symbol C to the end in order to represent fn(0) = 0. Since 0 is
periodic, its itinerary is periodic as claimed. �
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There are two basic rules when we want to fill in the L
R position in a template and

get an admissible periodic kneading sequence.

(1) Since the template ends in C, we only need to check subtemplates shorter than
n.

(2) The templates begin with LR, we only need to check subtemplates beginning
with L. Those that begin with L

RL are automatically larger than the original
template.

Proof of Theorem 4.1. We will show that if an composition satisfies neither 1) nor 2),
then there is no real parameter corresponding to this composition.

Suppose the composition has some block with a consecutive 1 longer than the first
block of a1 consecutive 1. We separate the proof into 2 cases.

Case 1: a1 < a− 1

Composition 2 1 . . . 1 2 . . .
subcomposition 2 1 . . . 1 1 . . . 1 2 . . .

template L R R . . . L
R L . . .

subtemplate L R R . . . R R . . . L
R L . . .

No matter what we put in the L
R position, the subtemplate is always smaller. So

there is no admissible kneading sequence with this given composition.

Case 2: a1 = a− 1

Composition 2 1 . . . 2 . . .
subcomposition 2 1 . . . 1 2 . . .

template L R R . . . L
R L . . .

subtemplate L R R . . . R L
R L . . .

If we choose L for the L
R position in the sub-template, the subtemplate is smaller

and we can not have an admissible sequence. If we choose R for the L
R position in the

template, we need to compare the next position.

template L R R . . . R L . . .
subtemplate L R R . . . R L

R L . . .

If we choose R for the L
R position in the subtemplate, then the template is bigger

and there is no admissible kneading sequence. If we choose L for this position, we
need to compare the next position.

template L R R . . . R L . . .
subtemplate L R R . . . R L L . . .

We need to know the letter in the position in the template. If it is either C or R,
then the template is bigger and there is no admissible kneading sequence. Otherwise,
the corresponding number in the composition is 2 and L

R is in position i.e.:

template L R R . . . R L L
R . . .

subtemplate L R R . . . R L L . . .
11



This situation was already considered. This process has to end at some point, so
we can never find an admissible kneading sequence for this type of composition.

Next, we show that if a composition does satisfy 1) or 2), we have at least one real
parameter corresponding to it, i.e. we have at least one valid kneading sequence that
can be obtained from the composition by the method above. If the number of first
block of 1 is bigger than or equal to all other blocks of 1, we can put an R at the
first L

R position and L at all other L
R positions, then direct checking shows that this

kneading sequence is admissible. �
We have not been able to produce a formula to count the number of admissible

kneading sequences to each composition with at least one admissible kneading se-
quence. But we have the following partial results.

Proposition 4.3. Let P be a composition. If the first block of 1 is strictly longer
than all other blocks of 1, any kneading sequence formed from the template of P is
admissible. In other words, the number of admissible kneading sequences with the
given composition is 2ω−1, where ω is the number of 2 in P .

Proposition 4.3 is a special case of Theorem 4.4. The proof of Proposition 4.3 will
illustrate the ideas used in Theorem 4.4.

Proof. Let a1 be the number of consecutive 1 in the first block of 1, and consider a
block of 1 of length a < a1. We need to analyze 2 cases.

Case 1: a < a1 − 1

Composition 2 1 . . . 1 1 . . . 1 2 . . .
subcomposition 2 1 . . . 1 2 . . .

template L R R . . . R R . . . L
R L . . .

subtemplate L R R . . . L
R L . . .

No matter what we put in the L
R position, the subtemplate is always bigger. So

there is no obstruction to admissibility.

Case 2: a = a1 − 1

Composition 2 1 . . . 1 2 . . .
subcomposition 2 1 . . . 2 . . .

template L R R . . . R L
R L . . .

subtemplate L R R . . . L
R L . . .

If we choose L for the L
R position in the sub-template, the subtemplate is bigger

and there is no obstruction to admissibility. If we choose R for the L
R position in the

sub-template, we need to compare the next position.

template L R R . . . R L
R L . . .

subtemplate L R R . . . R L . . .

If we choose R for the L
R position in the template, then the template is smaller and

there is no obstruction. If we choose L, we need to compare the next position.

template L R R . . . R L L . . .
subtemplate L R R . . . R L . . .
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We need to determine the letter in the position in the subtemplate. If it is C or R,
then the template is smaller and there is no obstruction. Otherwise, the corresponding
number in the composition is 2 and position of the subtemplate holds L

R:

template L R R . . . R L L . . .
subtemplate L R R . . . R L L

R . . .

This case was already considered. Since no substitution at L
R positions yields an

obstruction, the kneading sequence is admissible. �
Definition 4.3. Consider composition h = k1k2 . . . kn, where ki = {1, 2}. The com-
position h′ obtained by removing a 1 from each block of consecutive 1 in h is the
reduction of h. Suppose h contains a subcomposition kr . . . kr+s such that kr+j = kj+1

for j = 0, 1, . . . , s, but kr+s+1 6= ks+1. If kr+s+1 or ks+1 is an isolated 1 (i.e. surrounded
by 2) we say that h is blocked.

Theorem 4.4. If a composition h is not blocked, then there is a bijection between the
set of kneading sequences of h and the set of kneading sequences of h′ (the reduction
of h).

To prove the theorem 4.4 we need the following Definition and Lemma.

Definition 4.4. Let c = s1s2 . . . sn be a composition and c = sr . . . sr+m be a sub-
composition such that sr+j = sj+1 for j = 0, 1, . . . ,m, but sr+m+1 6= sm+1. Let k

and k be a kneading sequence template and subtemplate corresponding to c and c,
respectively. In what follows, cj will denote the jth symbol of c, that is cj = sr+j−1.

We say that k ≺ k up to the (m + 1)st position if one of the following conditions
applies.

(1) kn < kn, where n < m and n is the first position where k and k are different.
(2) kn = kn for all n ≤ m, the number of L up to position m is odd, cm+1 = 1 and

cm+1 = 2.
(3) kn = kn for all n ≤ m, the number of L up to position m is even, cm+1 = 2

and cm+1 = 1.

Lemma 4.5. Let c = s1s2 . . . sn be a composition and c = sr . . . sr+m be a subcompo-
sition such that sr+j = sj+1 for j = 0, 1, . . . ,m, but sr+m+1 6= sm+1. Let k and k be
a kneading sequence template and subtemplate corresponding to c and c, respectively.
Then k ≺ k if and only if k ≺ k up to the (m+ 1)st position.

Proof. If kn 6= kn for some n ∈ {1, . . . ,m}, obviously k ≺ k if and only if k ≺ k up to
the (m + 1)st position. From now on, we assume that kn = kn for all n = 1, . . . ,m.
We separate the proof into 2 cases.

Case 1: The number of L up to position m is odd, cm+1 = 1 and cm+1 = 2.

Composition 2 1 . . . 1 . . .
Subcomposition 2 1 . . . 2 . . .

Template L R . . . R . . .
Subtemplate L R . . . L

R L . . .

If L
R = L, k ≺ k since the number of L before this position is odd.

If L
R = R, we need to compare the next position.
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L R . . . R . . .
L R . . . R L . . .

We need to determine the letter in the position. If it is C or R we are done: k ≺ k.
Otherwise the corresponding number in the composition is 2 so the template holds a
L
R in the position. Thus the picture is

L R . . . R L
R L . . .

L R . . . R L . . .

If L
R is R, k ≺ k because the number of L before this position is odd. Otherwise we

need to compare the next position.

L R . . . R L L . . .
L R . . . R L . . .

If the holds a C or R, we are done because the number of L before this position
is even. Otherwise the corresponding number in the composition is 2 so the template
holds a L

R in the position. Thus the picture is

L R . . . R L L . . .
L R . . . R L L

R . . .

and the previous argument applies. Finally this procedure stops at some point
because the sequence is periodic.

Case 2: The number of L up to position m is even; cm+1 = 2 and cm+1 = 1.
The proof of this case is essentially the same as in Case 1. But this time, we begin

matching a L
R located in the template:

Composition 2 1 . . . 2 . . .
Subcomposition 2 1 . . . 1 . . .

Template L R . . . L
R L . . .

Subtemplate L R . . . R . . .

If L
R = L, k ≺ k since the number of L before this position is even.

If L
R = R, we need to compare the next position.

L R . . . R L . . .
L R . . . R . . .

We need to determine the letter in the position. If it is C or R we are done: k ≺ k.
Otherwise the corresponding number in the composition is 2 so the subtemplate holds
a L

R in the position. Thus the picture is

L R . . . R L . . .
L R . . . R L

R L . . .

If L
R is R, k ≺ k because the number of L before this position is even. Otherwise we

need to compare the next position.

L R . . . R L . . .
L R . . . R L L . . .
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If the holds a C or R, we are done because the number of L before this position
is even. Otherwise the corresponding number in the composition is 2 so the template
holds a L

R in the position. Thus the picture is

L R . . . R L L
R . . .

L R . . . R L L . . .

Therefore k ≺ k if k ≺ k up to the (m+ 1)st position.

Conversely, we need to show that if k ≺ k, then k ≺ k up to the (m+ 1)st position.
Suppose k is NOT smaller than k up to the (m + 1)st position. This can happen in
2 different ways:

The number of L up to position m is even, cm+1 = 1 and cm+1 = 2.

The number of L up to position m is odd, cm+1 = 2 and cm+1 = 1.

Since the parity of the number of L is opposite to that in Cases 1 and 2, following
the argument for those cases yields that k � k; this is a contradiction. Thus, k ≺ k
implies that k ≺ k up to the (m+ 1)st position.

�

Proof of Theorem 4.4. A 1 in the composition is converted to R in the kneading se-
quence template. The order between a kneading sequence and its translate depends
on the number of L before the position where they differ. Because the composition
is not blocked, when we remove a 1 from each block of 1, the number of L in front
of the differing position remains the same. This will also be the case after reducing
the template and the corresponding subtemplate. Now we have to show that the
symbols at those locations where k and k first differ, are the same before and after
the reduction.

By Lemma 4.5, we know that k ≺ k if and only if k ≺ k up to the (m+1)st position;
where m+ 1 is the position where c and c first differ.

It follows that k and k are reduced by the same number of R. Therefore a kneading
sequence for c is valid if and only if the reduced kneading sequence is valid for the
reduced c. That is, there is a 1 to 1 correspondence between the kneading sequence
of c and the kneading sequence of c′. �

Appendix

Definition 4.5. The greatest common divisor between 2 integers m and n is denoted
(m,n). The Möbius function µ : N −→ N is determined by µ(1) = 1 and

∑
d|n µ(d) =

0 for n ≥ 2. Alternatively, it can be defined by µ(n) = 0 if n contains a repeated
factor and µ(n) = (−1)r when n is the product of r different primes. The Euler
totient function ϕ : N −→ N counts, for an arbitrary n, the number of integers m ≤ n
such that (m,n) = 1.

The Möbius function plays a fundamental role in number theory due to the following
property, known as the Möbius inversion formula.
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Proposition 4.6. Consider a function f : N −→ C and define g(n) =
∑

d|n f(d).
Then

f(n) =
∑

d|n
g(n/d)µ(d).

As an application, partition the set S = {1, 2, . . . , n} into the subsets Sd = {m ≤
n | (m,n) = d} for every divisor d of n. The Sd are disjoint and their union is S.
Moreover, the size of Sd is ϕ(n/d). Thus,

n =
∑

d|n

∑
m≤n

(m,n)=d

1 =
∑

d|n
ϕ(d)

and the Möbius inversion formula shows that

(2) ϕ(n) =
∑

d|n
(n/d)µ(d).

Our goal in this Appendix is to derive a formula for ϕ(2n) by splitting (2) in 2
sums for even and odd divisors. Note that an odd divisor of 2n is a (odd) divisor of
n, whereas an even divisor of 2n either has a 22 factor and the corresponding µ term
vanishes, or it has a single factor of 2, in which case it is of the form 2d where d is an
odd divisor of n.

ϕ(2n) =
∑

d|2n

2n

d
µ(d) =

∑

d|2n
d≡1

2n

d
µ(d) +

∑

d|2n
d≡0

2n

d
µ(d) =

∑

d|n
d≡1

2n

d
µ(d) +

∑

d|n
d≡1

2n

2d
µ(2d)

Since µ(2d) = −µ(d) for odd d, we obtain

(3) ϕ(2n) =
∑

d|n
d≡1

2n

d
µ(d)− n

d
µ(d) =

∑

d|n
d≡1

n

d
µ(d).
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