
CORNELL UNIVERSITY MATHEMATICS DEPARTMENT SENIOR THESIS

The Weak Order and Flag h-Vector
Inequalities

May 2005

A THESIS PRESENTED IN PARTIAL FULFILLMENT
OF CRITERIA FOR HONORS IN MATHEMATICS

BACHELOR OF ARTS, CORNELL UNIVERSITY

THESIS ADVISOR(S)

Timothy D. DeVries

Edward Swartz
Department of Mathematics

Acknowledgements. I would like to thank my thesis advisor Edward Swartz,
without whose counsel and direction this paper would not exist. I would also
like to thank professor Louis Billera, whose courses in combinatorics triggered
my initial interest in the subject.

Finally, I’d like to thank my friends and family (especially you, Dad). With-
out their understanding and support - emotional, monetary and otherwise - I
would never have made it through Cornell.

THE WEAK ORDER AND FLAG h-VECTOR INEQUALITIES

TIMOTHY D. DEVRIES, CORNELL UNIVERSITY

Abstract. The following paper examines properties of the weak order on
the groups Sr+1 and Br+1 as motivated by the search for a combinatorial
proof of known h-vector inequalities. Several general results are developed
with respect to descent set domination, and an explanation of the computer
programs used to generate a number of these results is presented. While
this paper primarily focuses on h- and flag h-vector inequalities of the order
complex of geometric lattices, such inequalities for the order complexes of
distributive and supersolvable lattices are also explored. Finally, several
courses of action for further study are considered.

1. Preliminaries

We begin with some preliminary terminology (see [NS] for further details). A
simplicial complex ∆ is a nonempty collection of subsets of a finite set V such
that the following two properties hold:

(1) For all F ∈ ∆, G ⊆ F ⇒ G ∈ ∆

(2) For all v ∈ V, {v} ∈ ∆.

The subsets of V in ∆ are called the faces, and for a given face F ∈ ∆ the
dimension of F is defined to be |F | − 1. The dimension of ∆ is then defined
to be the largest dimension of any face of ∆. The faces of ∆ which are also
maximal subsets of ∆ are called facets. If all the facets of ∆ are of the same
dimension, then ∆ is said to be pure. Below is an example of a well-known
simplicial complex.

Example 1.1. Given a connected graph G, a simplicial complex ∆G is defined
as follows: Let V be the set of edges of G whose removal does not disconnect
G. Then define ∆G so that F ⊆ V implies F ∈ ∆G if and only if the removal of
the edges in F from G leaves a connected graph. It is simple to check that ∆G

satisfies the given properties of a simplicial complex.

Two objects associated with any simplicial complex are the f - and h-vectors.
For a simplical complex ∆ of dimension d − 1, the f -vector is defined to be
(f−1, f0, . . . , fd−1), where fi counts the number of i-dimensional faces of ∆.
The h-vector (h0, h1, . . . , hd) is in turn defined in terms of the f -vector so that

Date: April 29, 2005.
Key words and phrases. h-vector, flag h-vector, weak order, matching, permutations.

1

THE WEAK ORDER AND FLAG h-VECTOR INEQUALITIES 2

the following equality holds:

d∑
i=0

fi−1(x− 1)d−i =
d∑

i=0

hix
d−i

(in certain classes of simplicial complexes these hi’s also have a general combi-
natorial interpretation; for instance, in what are known as shellable complexes).
Calculating the coefficient of xd−i (for i ∈ {0, 1, . . . , d}) by binomial expansion
yields the following formula for the elements of the h-vector:

(1.1) hi =
i∑

j=0

(−1)i−j

(
d− j

d− i

)
fj−1.

It is clear from the above equations that studying the f -vector is equivalent
to studying the h-vector. In what follows, the h-vector will be the object of
primary interest.

The specific simplicial complexes primarily investigated in this paper are the
order complexes of geometric lattices, which we now present. First, let P be a
finite poset. P is said to be graded if all maximal chains in P are of the same
length. This length is then defined to be the rank of such a P . Given any
element x ∈ P , the rank of x (denoted ρ(x)) is defined to be the length of the
longest chain x0 < x1 < . . . < xρ(x) = x in P . A lattice L is a poset such that
for all x, y ∈ L, x and y have a least upper bound (or join, denoted x ∨ y) and
a greatest lower bound (or meet, denoted x ∧ y). Consequently, a finite lattice
L has a unique minimal element (denoted by 0̂) and a unique maximal element
(denoted by 1̂). Those elements x ∈ L that cover 0̂, i.e. such that 0̂ < y < x
for no y ∈ L, are called the atoms of L. L is said to be atomic if every element
in L can be written as the join of atoms. Finally, a geometric lattice L may be
defined as a graded atomic lattice whose rank function satisfies the following
condition:

ρ(x ∨ y) + ρ(x ∧ y) ≤ ρ(x) + ρ(y) for all x, y ∈ L.

As an example of a geometric lattice, consider the set of subspaces of a finite
vector space. It is not difficult to verify that such a set does indeed satisfy all
the conditions of a geometric lattice.

Now let L be a geometric lattice of rank r + 1. From L one can construct a
simplicial complex ∆(L), known as the order complex of L and having dimension
r − 1, as follows: Let 0̂, 1̂ denote the minimal and maximal elements of L,
respectively. Then the set V is defined to be the set L−{0̂, 1̂}, and the elements
of ∆(L) are all the chains of L − {0̂, 1̂}. Note that the order complex may be
defined for an arbitrary poset P .

The main motivation of this paper can now be stated. We wish to investigate
the h-vector of the order complex of geometric lattices, seeking inequalities
which relate the elements of the h-vector. Specifically, we are interested in a
theorem proved in [NS], which asserts:

THE WEAK ORDER AND FLAG h-VECTOR INEQUALITIES 3

Theorem 1.2. For L a rank r + 1 geometric lattice, the h-vector of ∆(L)
satisfies:

hi ≤ hi+1 for i < br
2
c, and

hi ≤ hr−i for i ≤ br
2
c.

The proof of this theorem involves the fact that the order complex of a geo-
metric lattice has what is known as a convex ear decomposition. In this paper
we are seeking a more geometric, or combinatorial (and hence more intuitive)
proof of this fact.

2. Initial Work

The foundation upon which this paper’s investigation is built is due to Ny-
man and Swartz’s paper entitled “Inequalities for the h- and flag h-vectors of
geometric lattices.” This paper marks in part a slight extension of the original
investigation contained therein. This section will present and develop several
fundamental results from Nyman and Swartz’s work.

First note that oftentimes in studying a mathematical object, it is best to
define a seemingly more complex object in an attempt to study the original
object’s properties. With respect to the f - and h-vectors, these new objects are
the flag f - and h-vectors. The flag f -vector is a refinement of the f -vector. In
the case of the order complex of a lattice L of rank r + 1, it is defined in the
following way. Given S ⊆ [r] = {1, . . . , r}, define the subposet LS of L by:

LS = {x ∈ L : ρ(x) ∈ S, x = 0̂ or x = 1̂}
Then define an integer fS(L) by:

fS(L) = number of maximal chains of LS .

The collection of all such fS(L) is called the flag f -vector of L. Cleary by
definition, we obtain:

fi−1(∆(L)) =
∑
|S|=i

fS(L) for i ∈ {0, 1, . . . , r}

justifying the above claim that the flag f -vector is a refinement of the original
f -vector. The elements of the flag h-vector are in turn defined in terms of the
elements of the flag f -vector. Specifically for the order complex ∆(L) of a lattice
of rank r + 1, define:

hS(L) =
∑
T⊆S

(−1)|S|−|T |fT (L), for S ⊆ [r].

Then the flag h-vector is the set of all such hS(L).

Proposition 2.1. Let L be a lattice of rank r + 1. Then on the order complex
of L:

hi(∆(L)) =
∑
|S|=i

hS(L) for i ∈ {0, 1, . . . , r},

THE WEAK ORDER AND FLAG h-VECTOR INEQUALITIES 4

i.e. the flag h-vector is a refinement of the h-vector.

Proof. For S ⊆ [r], hS(L) =
∑

T⊆S(−1)|S|−|T |fT (L). This implies:∑
|S|=i

hS(L) =
∑
|S|=i

∑
T⊆S

(−1)i−|T |fT (L)

=
i∑

j=0

∑
|T |=j

∑
S:|S|=i,S⊇T

(−1)i−jfT (L)

=
i∑

j=0

∑
|T |=j

(−1)i−j

(
r − j

i− j

)
fT (L)

=
i∑

j=0

(−1)i−j

(
r − j

i− j

) ∑
|T |=j

fT (L)

=
i∑

j=0

(−1)i−j

(
r − j

i− j

)
fj−1(∆(L))

which is equal to hi(∆(L)) by formula 1.1. �

As the above proposition shows, studying the flag h-vector may give insight
into the behavior of the original h-vector.

The flag h-vector of the order complex of a geometric lattice L can also be
given a combinatorial interpretation, but presenting this interpretation requires
the development of some further terminology. Given a geometric lattice L, label
the atoms of L by {1, 2, . . . , n}. Then for any edge (x, y) in the Hasse diagram
of L, label (x, y) by λ(x, y) = j where j is the minimal atom such that x∨j = y.
As noted in [NS], this labeling induces a lexicographic ordering on the facets
of ∆(L), where each facet F is given a distinct labeling λ(F) as an ordered
tuple of the edges of which it is comprised (from 0̂ to 1̂). This ordering is called
the minimal labeling of the facets of L. There are two theorems regarding such
labelings presented in [NS] which are provided below without proof (see [NS]
for further details). One is the so-called Switching Lemma:

Lemma 2.2. (Switching Lemma) Let (b1, . . . , bi, bi+1, . . . , br+1) be a minimal
labeling of a facet of ∆(L). If bi < bi+1, then (b1, . . . , bi+1, bi, . . . , br+1) is also a
minimal labeling of a facet of ∆(L).

The other gives a combinatorial interpretation of the flag h-vector:

Proposition 2.3. For L a geometric lattice of rank r +1 and S ⊆ [r], we have:

hS(L) =
∣∣{0̂ = x0 < x1 < . . . < xr+1 = 1̂ : {i : λ(xi−1, xi) > λ(xi, xi+1)} = S}

∣∣ .

That is, hS(L) counts the number of maximal chains of L with labels having
the descent set S. The proposition above actually applies to the flag h-vector
of the order complex of any lattice whose facets have been endowed with what
is known as an EL-labeling. For a definition of EL-labelings and a proof of

THE WEAK ORDER AND FLAG h-VECTOR INEQUALITIES 5

why these labelings lead to the above combinatorial interpretation of the flag
h-vector, see [St] (note that in this source, EL-labelings are referred to as R-
labelings).

In order to study this flag h-vector, Nyman and Swartz turned to the per-
mutation group Sr+1. Specifically, they investigated a partial ordering ≤w on
Sr+1 known as the weak ordering, (sometimes called the weak Bruhat ordering)
which is defined as follows: Given π1 = a1a2 . . . ar+1, π2 = b1b2 . . . br+1 ∈ Sr+1

(where ai = π1(i) and bi = π2(i)), we say that π1 ≤w π2 if and only if π2 can
be obtained from π1 by successively transposing adjacent elements ai and ai+1

such that ai < ai+1.
A foundational result upon which this research is based comes from exam-

ining the weak ordering on the permutation group Sr+1 given the above-listed
properties of the minimal labeling of a geometric lattice L. First, given S ⊆ [r],
define D(S) = {π = a1a2 . . . ar+1 ∈ Sr+1 : ai > ai+1 ⇔ i ∈ S}, i.e. D(S) is
the set of all permutations in Sr+1 whose descent set is S. Then for T, S ⊆ [r],
we say S dominates T if there exists an injection φ : D(T) → D(S) such that
π ≤w φ(π) for all π ∈ D(T). Given this terminology, the following theorem falls
easily out of the combinatorial interpretation of hS , the Switching Lemma and
the definition of the weak ordering:

Theorem 2.4. Let L be a geometric lattice of order r + 1 and let ∆(L) be
the corresponding order complex. Then for S, T ⊆ [r], S dominates T implies
hT (L) ≤ hS(L).

The bulk of the results in this paper have been obtained in trying to use the
above theorem to provide a combinatorial proof of Theorem 1.2. The following
section turns to the results obtained thus far.

3. Results concerning the weak order in Sr+1

The first result is an extension of a proposition given in [NS]. First, let
S1, . . . , Sn, T1, . . . , Tm ⊆ [r]. We say that S1, . . . , Sn dominates T1, . . . , Tm if
there exists an injection

φ : D(T1) ∪ . . . ∪D(Tm) → D(S1) ∪ . . . ∪D(Sn)

such that π ≤w φ(π) for all π ∈ D(T1) ∪ . . . ∪ D(Tm). It is easy to see that
a proof completely analogous to that of Theorem 2.4 implies that if S1, . . . , Sn

dominates T1, . . . , Tm, then hT1 + . . . + hTm ≤ hS1 + . . . + hSn .

Proposition 3.1. (Subset Principle) If S1, . . . , Sn dominates T1, . . . , Tm, then
for each i ∈ [m] there exists j ∈ [n] such that Ti ⊆ Sj .

Proof. Let S1, . . . , Sn, T1, . . . , Tm ⊆ [r] as above, and let i ∈ [m]. Say

Ti = {c1, c2, . . . , cl}, with c1 < c2 < . . . < cl.

THE WEAK ORDER AND FLAG h-VECTOR INEQUALITIES 6

Let π ∈ Sr+1 be the permutation with descent set Ti such that:

{π(1), π(2), . . . , π(c1)} = {r + 2− c1, . . . , r + 1}
{π(c1 + 1), π(c1 + 2), . . . , π(c2)} = {r + 2− c2, . . . , r + 1− c1}

...

{π(cl + 1), π(cl + 2), . . . , π(r + 1)} = {1, . . . , r + 1− cl}

It is clear by the definition of ≤w that for such a π, π ≤w π′ implies that the
descent set of π′ must contain {c1, c2, . . . , cl} as a subset. Hence:

φ(π) ∈ D(S1) ∪ . . . ∪D(Sn) ⇒ φ(π) ∈ D(Sj) for some j

⇒ Sj ⊇ {c1, c2, . . . , cl} = Ti.

�

The motivation for seeking such conditions for domination is that it allows us
to relate the elements of the flag h-vector of the order complex of a geometric
lattice by inequalities. This in turn may reveal inequalities regarding the stan-
dard h-vector. If, for instance, one could find a distinct S ⊆ [r] of cardinality
i + 1 for each T ⊆ [r] of cardinality i (where i < b r

2c) such that S dominates T ,
then by Theorem 2.4 this would imply

hi =
∑
|T |=i

hT ≤
∑

|S|=i+1

hS = hi+1

thus proving one of the inequalities of Theorem 1.2. As was discovered early
on, however, such a result is not possible. For instance, for the descent set
T = {2, 4} ⊆ [5], there exists no descent set S ⊆ [5] such that |S| = 3 and such
that S dominates T . The reason for this is simple to state: the only subset
S ⊆ [5] with |S| = 3 such that |D(T)| ≤ |D(S)| is S = {1, 3, 5}. But as T 6⊆ S,
S can not dominate T (by the Subset Principle).

This fact does not destroy all hope of obtaining useful results from this
method. Note that one only needs to prove something somewhat weaker than
the above, failed attempt. Specifically, one would be able to prove the first
inequality from Theorem 1.2 if for i < b r

2c one could prove that the collection of
all i-subsets of [r] is dominated by the collection of all (i+1)-subsets of [r]. The
failure above simply demonstrates the fact that an injection corresponding to
such a domination can not always be built up from the injections corresponding
to individual sets of cardinality i+1 dominating individual sets of cardinality i.
So the next logical question is this: by additionally looking at pairs of i-subsets
dominated by pairs of (i + 1)-subsets, can the corresponding injections be ex-
tended to a single injection demonstrating that the collection of all i-subsets of
[r] is dominated by the collection of all (i + 1)-subsets of [r] (for i < b r

2c)?
As the following theorem will show, the answer is an unfortunate “No.”

THE WEAK ORDER AND FLAG h-VECTOR INEQUALITIES 7

Theorem 3.2. Let T1 = {2, 4, . . . , 2n} ⊆ [2n + 1] for some n ≥ 2. Then there
exist no T2, S1, S2 ⊆ [2n + 1] such that:

(1) |T2| = n, |S1| = |S2| = n + 1

(2)S1, S2 dominates T1, T2

and such that the injection of the corresponding domination can be extended
to an injection demonstrating that the collection of all n-subsets of [2n + 1] is
dominated by the set of all (n + 1)-subsets of [2n + 1].

Proof. Assume that there do exist such sets T2, S1, S2 ⊆ [2n + 1].
First, note that by symmetry it is easy to see that the number of n-subsets

of [2n + 1] is equal to the number of (n + 1)-subsets of [2n + 1]. Therefore if
the injection φ : D(T1) ∪D(T2) → D(S1) ∪D(S2) (guaranteed by the fact that
S1, S2 dominates T1, T2) can really be extended as assumed, then we must have:

|D(T1) ∪D(T2)| = |D(S1) ∪D(S2)| .
Due to the results of Niven in [Ni]:

|D(S)| ≤ |D(T1)| for all S ⊆ [2n + 1], |S| = n + 1, and

|D(S)| = |D(T1)| ⇔ S = {1, 3, . . . , 2n + 1}

which, when coupled with the fact that |D(T1) ∪D(T2)| = |D(S1) ∪D(S2)| ,
implies w.l.o.g. that:

S1 = {1, 3, . . . , 2n + 1}.
But by the Subset Principle, T1 6⊆ S1 implies that T1 ⊆ S2, and hence:

S2 = {1, 2, 4, . . . , 2n}, {2, 3, 4, . . . , 2n}, . . . , or {2, 4, . . . , 2n, 2n + 1}
There are two cases:

Case I: S2 = {1, 2, 4, . . . , 2n}, {2, 3, 4, . . . , 2n}, . . . , or {2, 4, . . . , 2n− 1, 2n}
Let A denote the set of permutations π ∈ S2n+2 with descent set T1 such

that:

{π(1), π(2), . . . , π(2n)} = {3, 4, . . . , 2n + 2}
{π(2n + 1), π(2n + 2)} = {1, 2}.

Clearly for any π ∈ A and π′ ∈ S2n+2 such that π ≤w π′, the descent set of
π′ contains {2n}. Thus for all π ∈ A, φ(π) ⊆ D(S2) and hence φ gives us an
injection from A to D(S2).

Next note that for π ∈ A, π ∈ D(T1) implies that π(2n + 1) = 1 and π(2n +
2) = 2. And hence for φ(π) ∈ D(S2):

(φ(π))(2n + 1) = 1, (φ(π))(2n + 2) = 2.

So if B is defined to be the set of permutations π ∈ S2n+2 with descent set S2

such that

{π(1), π(2), . . . , π(2n)} = {3, 4, . . . , 2n + 2}
{π(2n + 1), π(2n + 2)} = {1, 2}.

THE WEAK ORDER AND FLAG h-VECTOR INEQUALITIES 8

then we see that φ gives an injection from A to B. But clearly there exist obvious
bijections between A and D(T1 − {2n}), T1 − {2n} ⊆ [2n − 1], and between B
and D(S2 − {2n}), S2 − {2n} ⊆ [2n− 1]. But again due to Niven’s result from
[Ni]:

|D(T1 − {2n})| > |D(S2 − {2n})|
⇒ |A| > |B|

which contradicts the fact that φ|A : A → B is an injection.
Case II: S2 = {2, 4, . . . , 2n, 2n + 1}.
Similar to Case I, let A denote the set of all π ∈ S2n+2 with descent set T1

such that

{π(1), π(2)} = {2n + 1, 2n + 2}
{π(3), π(4), . . . , π(2n + 2)} = {1, 2, . . . , 2n}

and B to be the set of all π ∈ S2n+2 with descent set S2 such that

{π(1), π(2)} = {2n + 1, 2n + 2}
{π(3), π(4), . . . , π(2n + 2)} = {1, 2, . . . , 2n}.

A similar argument to that employed in Case I shows that |A| > |B| while
φ|A : A → B is an injection, which is a contradiction.

Hence the original assumption was incorrect, and there can be no such sets
T2, S1, S2 ⊆ [2n + 1]. �

Despite this discouraging theorem, we shall see in Section 6 that appealing to
triples of descent sets dominated by triples of descent sets can sometimes yield
more useful results.

The remainder of this section turns to what can be said regarding the weak
order on Sr+1. In Sections 7 and 8 we shall see these results have applications
not just to the order complex of geometric lattices, but also to a host of other
objects. We begin by presenting the following lemma, used to prove Theorem
3.4 below.

Lemma 3.3. Let j, r +1 ∈ N with j ≤ b r
2c. Let X be any collection of j-subsets

of [r + 1] such that |X| ≤
(
r+1

j

)
− 1, and define

Y = {V ⊆ [r + 1] : |V | = r + 1− j and U ⊆ V for some U ∈ X}.
Then |Y | ≥ |X|+ 1.

Proof. The elements of X ∪ Y can be viewed as the vertices of a directed,
bipartite graph G defined so that there is an edge from U ∈ X to an element
V ∈ Y if and only if U ⊆ V.

We begin by counting the number of edges of G. For each U ∈ X, U is a
subset of exactly

(
r+1−j
r+1−2j

)
=

(
r+1−j

j

)
(r + 1 − j)-subsets of [r + 1]. Each such

(r + 1− j)-subset is by definition an element of Y, and hence there are exactly(
r+1−j

j

)
edges from U to elements of Y. Thus there are exactly |X|

(
r+1−j

j

)
edges

exiting the vertex set X in G.

THE WEAK ORDER AND FLAG h-VECTOR INEQUALITIES 9

Clearly this means that there must be |X|
(
r+1−j

j

)
edges entering the vertex

set Y in G, by definition of the graph G. Now for each V ∈ Y, V is a superset
of exactly

(
r+1−j

j

)
j-subsets of [r + 1]. Each such subset may or may not be an

element of X, which shows that there are at most
(
r+1−j

j

)
edges from the vertex

set X to the vertex V. Thus the number of edges entering the vertex set Y is at
most |Y |

(
r+1−j

j

)
, i.e.

|X|
(

r + 1− j

j

)
≤ |Y |

(
r + 1− j

j

)
⇒ |X| ≤ |Y |

where equality holds only if each j-subset of each element of Y is an element of
X. Thus to complete the proof that |Y | ≥ |X|+1 (i.e. |Y | > |X|), we need only
exhibit a single element of Y having a j-subset V such that V /∈ X.

As |X| ≤
(
r+1

j

)
−1, we can choose some j-subset α of [r+1] such that α /∈ X.

Now let β = {b1, b2, . . . , br+1−j} be any (r + 1 − j)-subset of [r + 1] such that
α ⊆ β. Finally, let β′ = {a1, a2, . . . , ar+1−j} be any element of Y. Define a
sequence β0, β1, . . . , βr+1−j of (r + 1− j)-subsets of [r + 1] as follows:

β0 = β′ = {a1, a2, . . . , ar+1−j}
β1 = {b1, a2, . . . , ar+1−j}
β2 = {b1, b2, . . . , ar+1−j}

...

βr+1−j = β = {b1, b2, . . . , br+1−j}

Note that β0 ∈ Y and that βr+1−j has a j-subset V (= α) such that V /∈ X.
Now let k be the smallest index such that βk has a j-subset V such that

V /∈ X. This is well defined as the index r + 1 − j satisfies this property. In
order to complete the proof, all that needs to be shown is that βk is an element
of Y.

If k = 0, then by definition β0 = β′ ∈ Y. So assume k 6= 0. Note the following
fact: if every j-subset of βi is an element of X for some i ∈ {0, 1, . . . , r − j},
then βi+1 ∈ Y. This is because any j-subset U of βi+1 − {bi+1} is a j-subset of
βi, and hence is an element of X (note that such a set U exists by the fact that
j ≤ b r

2c). So βi+1 is an (r + 1 − j)-subset of [r + 1] such that there exists a
U ⊆ βi+1 with U ∈ X, i.e. βi+1 is an element of Y. And so as every j-subset of
βk−1 is an element of X by the definition of k, this demonstrates that βk ∈ Y
and completes the proof. �

The above lemma can be used to prove the following theorem concerning
descent set dominance. Note that the following theorem is a specific case of a
more general conjecture to be presented in Section 6.

Theorem 3.4. Let r + 1 ∈ N and j ∈ [r]. Let {j} ◦ β ⊆ [r] be defined by

{j} ◦ β = {i ∈ [r] : r − i + 1 6= j}.

THE WEAK ORDER AND FLAG h-VECTOR INEQUALITIES 10

Then if {j} ⊆ {j} ◦ β (equivalently if j 6= r+1
2), {j} is dominated by {j} ◦ β.

Proof. The theorem is first proved for the case j ≤ b r
2c.

The first claim is that the set D({j}) is in bijective correspondence with the
set X = {U ⊆ [r + 1] : |U | = j, U 6= [j]}. To see why this is so, define the
function f on D({j}) by

f(a1a2 . . . ar+1) = {a1, a2, . . . , aj}
The claim is that f is a bijection from X to D({j}). First note that for any π =
a1a2 . . . ar+1 ∈ D({j}), the fact that aj > aj+1 implies that {a1, a2, . . . , aj} 6=
[j]. Hence f(π) ∈ X, i.e.

f : D({j}) → X.

To show that f is surjective, let U ∈ X. Define π ∈ Sr+1 by π = a1a2 . . . ar+1,
where

{a1, a2, . . . , aj} = U with a1 < a2 < . . . < aj , and

{aj+1, . . . , ar+1} = [r + 1]− U with aj+1 < . . . < ar+1.

As U = {a1, a2, . . . , aj} 6= [j], we must have that aj > aj+1. Hence D(π) = {j},
and thus π ∈ D({j}). As f(π) = {a1, a2, . . . , aj} = U, this demonstrates that f
is a surjective map.

To show that f is injective, assume that f(π1) = f(π2) for π1, π2 ∈ D({j}).
Denote π1 = a1a2 . . . ar+1 and π2 = b1b2 . . . br+1. Then the condition f(π1) =
f(π2) gives

{a1, . . . , aj} = {b1, . . . , bj}, and

{aj+1, . . . , ar+1} = [r + 1]− f(π1) = [r + 1]− f(π2) = {bj+1, . . . , br+1}
But the conditions that a1 < . . . < aj , aj+1 < . . . < ar+1, b1 < . . . < bj and
bj+1 < . . . < br+1 imply that

ai = bi for all i ∈ {1, . . . , j} ∪ {j + 1, . . . , r + 1}
i.e. π1 = π2. Hence f is injective and thus bijective, as desired.

The second claim is that the set D({j}◦β) is in bijective correspondence with
the set Y = {V ⊆ [r + 1] : |V | = r + 1− j, U 6= {j + 1, . . . , r + 1}}. The function
g defined on D({j} ◦ β) by

g(a1a2 . . . ar+1) = {a1, a2, . . . , ar+1−j}
yields the appropriate bijection. This follows by reasoning similar to the above,
recognizing that D({j} ◦ β) is the set of all permutations in Sr+1 whose ascent
set (rather than descent set) is {n− j}.

The final claim is that for π1 ∈ D({j}) and π2 ∈ D({j} ◦ β), f(π1) ⊆ g(π2)
implies that π1 ≤w π2. To see why this is so, let π1 = a1a2 . . . ar+1 ∈ D({j}),
π2 = b1b2 . . . br+1 ∈ D({j} ◦ β) and assume that f(π1) = {a1, . . . , aj} is a
subset of g(π2) = {b1, . . . , br+1−j}. As a1 < . . . < aj , repeated application of the
switching algorithm described earlier yields:

π1 ≤w π′1 := ajaj−1 . . . a1aj+1aj+2 . . . ar+1.

THE WEAK ORDER AND FLAG h-VECTOR INEQUALITIES 11

As {a1, . . . , aj} ⊆ {b1, . . . , br+1−j}, we can write

a1 = bi1 , a2 = bi2 , . . . , aj = bij

for some indices i1, . . . , ij . Hence π′1 = bijbij−1 . . . bi1aj+1aj+2 . . . ar+1. As bij >
. . . > bi1 , b1 > . . . > bj and aj+1 < . . . < ar+1, further application of the
switching algorithm yields:

π′1 ≤w π′′1 := b1b2 . . . br+1−jbr+1br . . . br+2−j

where here π′′1 was obtained from π′1 by “switching” all those elements belonging
to both {aj+1, . . . , ar+1} and {b1, . . . , br+1−j}− {a1, . . . , aj} to the left as far as
possible. Finally, as br+1 < . . . < br+2−j , further application of the switching
algorithm yields:

π′′1 ≤w b1b2 . . . br+1−jbr+2−jbr+3−j . . . br+1 = π2.

Thus π1 ≤w π2, as desired.
In order to prove the theorem, it must be shown that there exists a matching

from D({j}) to D({j}◦β) on the graph G whose vertex set is D({j})∪D({j}◦β)
and whose edges are defined by: π1 ∈ D({j}) is connected to π2 ∈ D({j} ◦ β)
if and only if π1 ≤w π2. By what has been shown thus far, such a matching is
guaranteed if there exists a matching from X to Y on the graph G′ whose vertex
set is X ∪ Y and whose edges are defined by: U ∈ X is connected to V ∈ Y if
and only if U ⊆ V. Thus we turn to proving the existence of such a matching in
G′.

Let X1 ⊆ X and define

Γ(X1) = {V ∈ Y : there exists U ∈ X1 such that U ⊆ V },

that is, Γ(X1) is the set of neighbors of the vertex set X1 in G′. By definition,
X1 is a collection of j-subsets of [r + 1] such that |X1| ≤ |X| =

(
r+1

j

)
− 1. If we

define

Y1 = {V ⊆ [r + 1] : |V | = r + 1− j and U ⊆ V for some U ∈ X},

then by Lemma 3.3 we have that |Y1| ≥ |X1| + 1. But clearly Γ(X1) = Y1 ∩ Y,
and hence Γ(X1) = Y1 or Γ(X1) = Y1 − {{j + 1, . . . , r + 1}}. So we have:

|Γ(X1)| ≥ |Y1| − 1 ≥ |X1| .

As |Γ(X1)| ≥ |X1| for all X1 ⊆ X, Hall’s Marriage Theorem guarantees the
existence of a matching from X to Y in G′. So by what was stated above, this
proves the theorem for j ≤ b r

2c.
For j ≥ b r+2

2 c, the proof is similar. In this case, one can show that D({j}) is
in bijective correspondence with the set Y under the function f ′ defined by

f ′(a1a2 . . . ar+1) = {aj+1, aj+2, . . . , ar+1},

and that D({j} ◦ β) is in bijective correspondence with the set X under the
function g′ defined by

g′(a1a2 . . . ar+1) = {ar+2−j , ar+3−j , . . . , ar+1}.

THE WEAK ORDER AND FLAG h-VECTOR INEQUALITIES 12

Then in a manner similar to the above, it can be shown that for π1 ∈ D({j})
and π2 ∈ D({j} ◦ β), f ′(π1) ⊆ g′(π2) implies that π1 ≤w π2. The rest of the
proof proceeds analogously. �

A corollary to the above theorem is the following application to the h-vector
of the order complex of geometric lattices.

Corollary 3.5. Let L be a geometric lattice of order r+1, r even, and let ∆(L)
be the corresponding order complex. Then h1(∆(L)) ≤ hr−1(∆(L)).

Proof. As r is even, {j} ⊆ {j} ◦ β for all j ∈ [r]. Then by the previous theorem:

{j} is dominated by {j} ◦ β for all j ∈ [r],

which implies by Theorem 2.4 that

h{j}(L) ≤ h{j}◦β(L) for all j ∈ [r].

Finally, as h1(∆(L)) =
∑

j∈[r] h{j}(L) and as hr−1(∆(L)) =
∑

j∈[r] h{j}◦β(L)
(by Proposition 2.1), this implies that

h1(∆(L)) ≤ hr−1(∆(L))

�

This section concludes with another theorem concerning subset dominance.
Note that this theorem is another special case of the conjecture referred to in
presenting Theorem 3.4.

Theorem 3.6. Let S = {1, 2, . . . , j} be a subset of [r] and let S ◦ β ⊆ [r] be
defined by

S ◦ β = {i ∈ [r] : r − i + 1 /∈ T}.
Note that S ◦ β = {1, 2, . . . , r− j}. Then if S ⊆ S ◦ β (equivalently, if j ≤ b r

2c),
S ◦ β dominates S.

Proof. The proof of this theorem is quite similar to that of Theorem 3.4, and
as such will simply be outlined below.

It can be shown that D(S) is in bijective correspondence with the set of
j-subsets of [r + 1]− {1} under the function f defined by

f(a1a2 . . . ar+1) = {a1, a2, . . . , aj} for a1a2 . . . ar+1 ∈ D(S).

It can also be shown that D(S ◦ β) is in bijective correspondence with the set
of (r − j)-subsets of [r + 1]− {1} under the function g defined by

f(a1a2 . . . ar+1) = {a1, a2, . . . , ar−j} for a1a2 . . . ar+1 ∈ D(S).

Then just as in Theorem 3.4, it can be shown that f(π1) ⊆ g(π2) implies
that π1 ≤w π2 for π1 ∈ D(S), π2 ∈ D(S ◦ β). So in order to find an injection
φ : D(S) → D(S ◦ β) such that π ≤w φ(π) for all π ∈ D(S), it suffices to find
an injection φ′ from the set of all j-subsets of [r + 1] − {1} to the set of all
(r − j)-subsets of [r + 1] − {1} such that U ⊆ φ′(U) for all such j-subsets U.
But as can easily be shown by Hall’s Marriage Theorem, one can always find a
bijection from the set of j-subsets to the set of (r − j)-subsets of an r element

THE WEAK ORDER AND FLAG h-VECTOR INEQUALITIES 13

set such that each j-subset is a subset of its image under the bijection. Thus
the injection φ′ exists, completing the proof. �

4. Results concerning the weak order in Br+1

As has been shown, the permutation group Sr+1 endowed with the weak order
is an interesting object to investigate as it is intimately tied to the h-vector of
geometric lattices. As we shall see in Sections 7 and 8, the properties of this
ordering on Sr+1 are also linked to inequalities of the h-vector of distributive and
supersolvable lattices. In fact, due to the fundamental structure of distributive
lattices (as revealed in section 7), the weak order on Sr+1 can even been seen as
linked to certain properties of arbitrary finite posets. Because of the importance
of the weak order, this section takes the time to develop and investigate the
properties of the weak order on another group: Br+1.

The group Br+1, known as the signed permutation group, is defined as follows.
Each element of Br+1 is of the form π = a1a2 . . . ar+1, where

{|a1| , |a2| , . . . , |ar+1|} = [r + 1]
and ai ∈ {−r − 1,−r, . . . ,−1, 1, . . . , r, r + 1} for i ∈ [r + 1].

That is, each element of Br+1 is simply an element π′ = a′1a
′
2 . . . a′r+1 of Sr+1 for

which some combination of the a′i have been multiplied by −1. As in the case of
Sr+1, there exists a partial ordering on the elements of Br+1 known as the weak
ordering (sometimes called the weak Bruhat ordering). This ordering will also
be denoted by the symbol ≤w, although it should be clear from context which
group is being referred to whenever this symbol is used. The definition of this
ordering will be presented in two equivalent ways.

Let π1 = a1a2 . . . ar+1, π2 = b1b2 . . . br+1 ∈ Br+1. Let i, j ∈ [r + 1] with
i < j. Define x(i, j) = min{|ai| , |aj |}, y(i, j) = max{|ai| , |aj |}. Next, define two
ordered pairs: α(i, j) = (ai, aj) and β(i, j) = (bk1 , bk2) where k1 is the minimum
index such that |bk1 | ∈ {|ai| , |aj |} and k2 is the maximum index such that
|bk2 | ∈ {|ai| , |aj |}. Finally, define a finite poset P (i, j) whose Hasse diagram
appears on the following page.

Then we say that π1 ≤w π2 in Br+1 if α(i, j) ≤ β(i, j) in the partial ordering
on P (i, j) for all i, j ∈ [r + 1] with i < j.

Example 4.1. Let π1 = −1, 2 and π2 = −2,−1 be elements of B2. The only
i, j ∈ [2] such that i < j are i = 1 and j = 2. Then by definition:

x(1, 2) = min{|−1| , |2|} = 1,

y(1, 2) = max{|−1| , |2|} = 2,

α(1, 2) = (−1, 2) = (−x(1, 2), y(1, 2)),

β(1, 2) = (−2, 1) = (−y(1, 2),−x(1, 2)).

And as (−x(1, 2), y(1, 2)) < (−y(1, 2),−x(1, 2)) in P (1, 2), this implies that
π1 ≤w π2 in B2.

The above definition of the weak order in Br+1 is hard to work with in practice
(though it is well suited for use in a computer program, as will be discussed in

THE WEAK ORDER AND FLAG h-VECTOR INEQUALITIES 14

(−x(i, j),−y(i, j))

(−y(i, j),−x(i, j))

jjjjjjjjjjjjjjj
(x(i, j),−y(i, j))

SSSSSSSSSSSSSSS

(y(i, j),−x(i, j)) (−y(i, j), x(i, j))

(−x(i, j), y(i, j))

TTTTTTTTTTTTTTT
(y(i, j), x(i, j))

kkkkkkkkkkkkkkk

(x(i, j), y(i, j))

Figure 1. Hasse diagram for the poset P (i, j).

Section 5). A more desirable definition would be something analogous to the
switching procedure described earlier to define the weak order in Sr+1. So again,
let π1 = a1a2 . . . ar+1, π2 = b1b2 . . . br+1 ∈ Br+1. The claim is that π1 ≤w π2

in Br+1 if and only if π2 can be obtained from π1 by repeated application of
so-called “legal moves” of either of the following forms:

(1) Transposing ai and ai+1, if ai < ai+1

(2) Changing a1 to −a1, if a1 > 0
(assuming that after each move, the resulting permutation is reindexed in the
natural way). One direction of the equivalence of these two definitions is easy to
see. Namely if π2 can be obtained from π1 by repeated application of the legal
moves above, then clearly π1 ≤w π2. Showing the other direction will require
the following lemma.

Lemma 4.2. Let π1 = a1a2 . . . ar+1, π2 = b1b2 . . . br+1 ∈ Br+1 be two signed
permutations such that π1 ≤w π2. If π1 6= π2, then there exits π3 ∈ Br+1,
obtainable from π1 by applying one of the two legal moves described above, such
that

π1 <w π3 ≤w π2.

Proof. This proof makes use of the notation that was developed earlier in defin-
ing the weak order on Br+1. Additionally, for i ∈ [r + 1], the index k ∈ [r + 1]
such that |bk| = |ai| will be denoted by g(i). There are three possible cases:

Case I (a1 < 0, bg(1) > 0): Because π1 ≤w π2, α(1, 2) = (a1, a2) ≤ β(1, 2)
in the partial ordering on P (1, 2). By examination of P (1, 2), it is evident that
(a1, a2) ≤ β(1, 2) in P (1, 2) and a1 < 0 implies that bg(1) < 0. This is a contra-
diction, and hence this case does not occur.

Case II (a1 > 0, bg(1) < 0): Because π1 ≤w π2, α(1, n) = (a1, an) ≤ β(1, n) in
P (1, n) for all n ∈ {2, 3, . . . , r+1}. By examination of P (1, n), it is evident that if

THE WEAK ORDER AND FLAG h-VECTOR INEQUALITIES 15

(a1, an) ≤ β(1, n) in P (1, n) with a1 > 0 and bg(1) < 0, then (−a1, an) ≤ β(1, n)
in P (1, n). Hence if we define π3 ∈ Br+1 by π3 = (−a1)a2 . . . ar+1, this shows
that π3 ≤w π2. But as π3 is obtained from π1 by one of the legal moves described
earlier, π1 ≤w π3. And as π1 6= π3, π1 <w π3 and the conclusion of the lemma
follows in this case.

Case III (a1 = bg(1)): There are several things which may happen in this case.
First, it might be that ai > ai+1 for all i ∈ [r]. Assume that this is the case. As
π1 ≤w π2, α(n, n + 1) = (an, an+1) ≤ β(n, n + 1) in P (n, n + 1) for all n ∈ [r].
By examination of P (n, n + 1), it is evident that if (an, an+1) ≤ β(n, n + 1) in
P (n, n + 1) with an > an+1 and an = bg(n), then g(n) < g(n + 1) and an+1 =
bg(n+1). As a1 = bg(1), induction on n yields that g(1) < g(2) < . . . < g(r + 1)
and ai = bg(i) for i ∈ [r + 1]. But this implies that g(i) = i for all i ∈ [r + 1],
and hence ai = bi for i ∈ [r + 1]. In other words, π1 = π2.

Second, it might be true that for all i such that ai < ai+1, g(i) < g(i + 1)
and ai+1 = bg(i+1). Assume that this is the case, and let n ∈ [r]. If an > an+1

and an = bg(n), then by the reasoning of the preceding paragraph it follows
that g(n) < g(n + 1) and an+1 = bg(n+1). If an < an+1, then by assumption
g(n) < g(n + 1) and an+1 = bg(n+1). As a1 = bg(1), induction on n implies that
g(1) < g(2) < . . . < g(r +1) and ai = bg(i) for i ∈ [r +1]. As before, this implies
that π1 = π2.

Finally, it might be that there is an index j such that aj < aj+1 and either
g(j) > g(j + 1) or aj+1 6= bg(j+1). If this is the case, let j denote the minimum
index for which this occurs. Then by the reasoning presented in the preceding
two paragraphs, it can by shown that ai = bg(i) for all i ∈ [j]. Now as π1 ≤w π2,
α(j, j+1) = (aj , aj+1) ≤ β(j, j+1) in P (j, j+1). But examination of P (j, j+1)
shows that as aj = bg(j) and as either g(j) > g(j+1) or aj+1 6= bg(j+1), (aj+1, aj)
is also less than or equal to β(j, j+1) in P (j, j+1). Hence if we define π3 ∈ Br+1

by π3 = a1a2 . . . aj+1aj . . . ar+1, this shows that π3 ≤w π2. As aj < aj+1, π3 is
obtained from π1 by an application of one of the legal moves described above
and so π1 ≤w π3. As π1 6= π3, π1 <w π3 and the conclusion of the lemma follows
in this case. �

Using this lemma, the following theorem may be proved.

Theorem 4.3. Let π1, π2 ∈ Br+1. Then π1 ≤w π2 if and only if π2 can by
obtained from π1 by repeated application of the legal moves described earlier.

Proof. As mentioned before, one direction of this proof is trivial to show from the
definition of the weak ordering on Br+1. So it suffices to prove that if π1 ≤w π2,
then π2 can be obtained from π1 by repeated application of the two legal moves.

If π1 = π2, then there is nothing to show. If π1 <w π2, then by Lemma 4.2 we
can apply a legal move to π1 to obtain a π3 ∈ Br+1 such that π1 <w π3 ≤w π2.
If π3 = π2, then we are done. If not, then we can apply Lemma 4.2 to π3 and
π2 to obtain a new signed permutation larger than π3 and less than or equal to
π2. We continue in this manner, repeatedly applying the results of Lemma 4.2
to each new permutation. If at any point we obtain the permutation π2, then

THE WEAK ORDER AND FLAG h-VECTOR INEQUALITIES 16

we have shown that the permutation π2 can be obtained from π1 by repeated
application of the two legal moves described above, and hence we have proved
the theorem.

What if the permutation π2 is never obtained? Then by Lemma 4.2 we can
continue this process indefinitely to produce a chain in Br+1 of arbitary length.
As Br+1 is a finite set, this is a contradiction. Thus π2 must be obtainable from
π1 through repeated application of the legal moves. �

And so the two provided definitions of the weak order on Br+1 really are
equivalent (note that in the literature, the latter definition is the one usually
presented). As with Sr+1, the more algorithmic definition of the weak ordering
will prove itself more useful in establishing facts about Br+1.

One such fact is that the Subset Principle holds in Br+1 as well as in Sr+1.
In order to prove this, however, it must first be established what is meant by
descent sets and domination in Br+1.

So given S ⊆ {0, 1, . . . , r}, define

Dσ(S) = {π = a1 . . . ar+1 ∈ Br+1 : ai > ai+1 ⇔ i ∈ S, where a0 := 0}.
That is, Dσ(S) is the set of all signed permutations in Br+1 whose descent set
is S (where a signed permutation π = a1a2 . . . ar+1 is said to have a descent in
the 0th place if a1 is negative). Note that the subscript σ is meant to indicate
that what is being referred to is a collection of signed permutations, distin-
guishing this current object from the analogue for standard permutations (D(),
presented earlier). Then analogous to the definition presented for standard
permutations, we say that for S1, . . . , Sn, T1, . . . , Tm ⊆ {0, . . . , r}, S1, . . . , Sn

dominates T1, . . . , Tm in Br+1 if there exists an injection

φ : Dσ(T1) ∪ . . . ∪Dσ(Tm) → Dσ(S1) ∪ . . . ∪Dσ(Sn)

such that π ≤w φ(π) in Br+1 for all π ∈ Dσ(T1) ∪ . . . ∪Dσ(Tm).

Theorem 4.4. (Subset Principle, Br+1) Let S1, . . . , Sn, T1, . . . , Tm ⊆ {0, . . . , r},
and assume that S1, . . . , Sn dominates T1, . . . , Tm in Br+1. Then for each i ∈ [m]
there exists j ∈ [n] such that Ti ⊆ Sj.

Proof. Let S1, . . . , Sn, T1, . . . , Tm be as above, let i ∈ [m], and let φ denote the
implied injection. Say

Ti = {c1, c2, . . . , cl} with c1 < c2 < . . . < cl.

There are two cases:
Case 1: (c1 = 0) Then let π ∈ Br+1 be the (unique) signed permutation with

descent set Ti such that

{π(1), π(2), . . . , π(c1)} = {−1,−2, . . . ,−c1}
{π(c1 + 1), π(c1 + 2), . . . , π(c2)} = {−c1 − 1,−c1 − 2, . . . ,−c2}

...

{π(cl + 1), π(cl + 2), . . . , π(r + 1)} = {−cl − 1,−cl − 2, . . . ,−r − 1}

THE WEAK ORDER AND FLAG h-VECTOR INEQUALITIES 17

Now let π′ ∈ Br+1 be any signed permutation such that π ≤w π′ in Br+1. It is
clear by the algorithmic definition of the weak order in Br+1 presented earlier
that:

{π′(1), π′(2), . . . , π′(c1)} = {−1,−2, . . . ,−c1}
{π′(c1 + 1), π′(c1 + 2), . . . , π′(c2)} = {−c1 − 1,−c1 − 2, . . . ,−c2}

...

{π′(cl + 1), π′(cl + 2), . . . , π′(r + 1)} = {−cl − 1,−cl − 2, . . . ,−r − 1}

and hence Dσ(π′) ⊇ {c1, c2, . . . , cl} = Ti. As φ(π) ∈ D(Sj) for some j with
π ≤w φ(π), this demonstrates that

Ti = {c1, c2, . . . , cl} ⊆ Sj .

Case 2: (c1 6= 0) Then let π ∈ Br+1 be the (unique) signed permutation with
descent set Ti such that

{π(1), π(2), . . . , π(c1)} = {1, 2, . . . , c1}
{π(c1 + 1), π(c1 + 2), . . . , π(c2)} = {−c1 − 1,−c1 − 2, . . . ,−c2}

...

{π(cl + 1), π(cl + 2), . . . , π(r + 1)} = {−cl − 1,−cl − 2, . . . ,−r − 1}

Now let π′ ∈ Br+1 be any signed permutation such that π ≤w π′ in Br+1.
Similar to the above, it is clear by the algorithmic definition of the weak order
in Br+1 that:

{π′(1), π′(2), . . . , π′(c1)} ⊆ {±1,±2, . . . ,±c1}
{π′(c1 + 1), π′(c1 + 2), . . . , π′(c2)} = {−c1 − 1,−c1 − 2, . . . ,−c2}

...

{π′(cl + 1), π′(cl + 2), . . . , π′(r + 1)} = {−cl − 1,−cl − 2, . . . ,−r − 1}

and hence Dσ(π′) ⊇ {c1, c2, . . . , cl} = Ti. As φ(π) ∈ D(Sj) for some j with
π ≤w φ(π), this demonstrates that

Ti = {c1, c2, . . . , cl} ⊆ Sj .

�

5. Computer Based Approach

As has been shown thus far, injections preserving the weak order in Sr+1 and
Br+1 are interesting objects. In order to experiment with these injections, it was
necessary to write computer programs to search for them. The following section
presents some background information describing how the resultant programs
work and what features are currently implemented. The full source code for
these programs is contained in the appendices of this paper.

THE WEAK ORDER AND FLAG h-VECTOR INEQUALITIES 18

The programs, called weak-Sn and weak-Bn, were developed in the scripting
language Python. The program weak-Sn was specifically designed to seek weak
order respecting bijections in Sr+1, while the program weak-Bn was designed to
handle the same task on Br+1. Both programs are composed primarily of three
distinct components:

Component 1: The Matching Algorithm. A core element of each program
is the implementation of a matching algorithm for bipartite graphs. Given a
bipartite graph G with vertex set V = X∪Y , the matching algorithm employs a
method designed by Hopcroft and Karp (“the most efficient sequential algorithm
known” [BL]) to return an edge set of G corresponding to a maximum matching
on G. The code for this component was freely available on the web, and can be
attributed to the author David Eppstein [Ep].

Component 2: The Weak Ordering Component. The function of this com-
ponent is to discover the actual injections sought after in this study. The way
in which weak-Sn handles this task is as follows. This component of the pro-
gram is given two basic inputs: a set of descent sets T1, . . . , Tm and a set of
descent sets S1, . . . , Sn. The program then creates a bipartite graph G whose
vertex set is V = D(T1) ∪ . . . ∪ D(Tm) ∪ D(S1) ∪ . . . ∪ D(Sn), where there is
an edge between π1 ∈ D(T1) ∪ . . . ∪ D(Tm) and π2 ∈ D(S1) ∪ . . . ∪ D(Sn) if
and only if π1 ≤w π2. After the graph G is generated, the matching algorithm
is called to find a maximum matching on G. It is clear that if this matching
has cardinality equal to |D(T1) ∪ . . . ∪D(Tm)| , then this matching corresponds
to an injection φ from D(T1) ∪ . . . ∪ D(Tm) to D(S1) ∪ . . . ∪ D(Sn) such that
π ≤w φ(π) for all π ∈ D(T1) ∪ . . . ∪ D(Tm). It is also clear that if the cardi-
nality of the matching is less than |D(T1) ∪ . . . ∪D(Tm)| , then there is no such
matching. Hence this component is used to determine whether or not a given
set of subsets S1, . . . , Sn dominates another set of subsets T1, . . . , Tm. For the
program weak-Bn the method is analogous (simply replace each D above with
Dσ). The way in which the weak order for Br+1 is implemented in weak-Bn is
by using the “poset definition” presented earlier.

Component 3: The Interface. The last major component of each program
is the interface by which all of the program’s functions can be accessed. The
interface of weak-Sn splits its capabilities into two classes: manual and auto-
matic. Manual mode gives the user full control to examine whether or not one
collection of sets dominates another. Automatic mode gives the user the ability
to run some more complex, batch tasks. Currently there are two options: the
user can see if all subsets of [r] of cardinality i are dominated by all subsets of
[r] of cardinality r − i, or the user can run through all tuples of descent sets
of different sizes to seek one tuple which dominates another. The interface of
weak-Bn exhibits similar capabilities (as weak-Bn was built up from weak-Sn),
however weak-Bn has the added capability of being able to check if all i-subsets
of {0, 1, . . . , r} are dominated by all (i + 1)-subsets of {0, 1, . . . , r} for i < b r

2c.
Undoubtedly the interface of each program is likely to evolve as more is done
to investigate the work at hand.

THE WEAK ORDER AND FLAG h-VECTOR INEQUALITIES 19

6. Results Generated by the Programs

The following section outlines the most noteworthy results that have been
verified/discovered with the help of weak-Sn and weak-Bn.

First, at the end of Section 3, it was noted that some interesting results
may be obtained by examining triples of descent sets which dominate triples of
descent sets. Namely, this allows us to give a combinatorial flag h-vector proof
of the fact that h2 ≤ h3 in all geometric lattices L of rank greater than or equal
to 6. Specifically, it has been verified by weak-Sn that:

{1, 3}, {1, 5}, {2, 4} is dominated by {1, 2, 4}, {1, 3, 5}, {2, 3, 4} in S6

{2, 3}, {2, 5}, {3, 5} is dominated by {1, 2, 5}, {2, 3, 5}, {2, 4, 5} in S6

{1, 4}, {3, 4} is dominated by {1, 3, 4}, {1, 4, 5} in S6

{1, 2} is dominated by {1, 2, 3} in S6

{4, 5} is dominated by {3, 4, 5} in S6

which shows that the collection of all subsets of [5] of cardinality 2 is dominated
by the collection of all subsets of [5] of cardinality 3, proving the result stated
above.

In examining descent sets on Br+1, many of the same difficulties arise as in
the case of Sr+1. For instance, using weak-Bn it was verified that the descent
set {1} is not dominated by any 2-subset of {0, 1, 2} in B3. Thus a proof that
the collection of all 1-subsets of {0, 1, 2} is dominated by the collection of all 2-
subsets of {0, 1, 2} in B3 can not be obtained simply by examining single descent
sets. It was also verified using weak-Bn that this result can not be obtained by
moving to doubles of descent sets either. Even so, some results may be obtained
by examining doubles of descent sets in other groups. For instance, using weak-
Bn, it has been shown that:

{0}, {1} is dominated by {0, 2, 3}, {1, 2, 3} in B4

{2}, {3} is dominated by {0, 1, 2}, {0, 1, 3} in B4

which shows that the collection of all 1-subsets of {0, 1, 2, 3} is dominated by
the collection of all 2-subsets of {0, 1, 2, 3} in B4.

weak-Sn and weak-Bn were also used to examine the following three conjec-
tures concerning descent set domination. The first is a conjecture attributed to
Stanley:

Conjecture 6.1. In Sr+1: The collection of all i-subsets of [r] is dominated by
the collection of all (r− i)-subsets of [r], for i ≤ b r

2c. In Br+1: The collection of
all i-subsets of {0, 1, . . . , r} is dominated by the collection of all (r+1−i)-subsets
of {0, 1, . . . , r}, for i ≤ b r+1

2 c.

Using weak-Sn, the above conjecture was verified in Sr+1 for all r ≤ 8. Using
weak-Bn, the above conjecture was verified in Br+1 for all r ≤ 5.

Another conjecture is the following:

THE WEAK ORDER AND FLAG h-VECTOR INEQUALITIES 20

Conjecture 6.2. In Sr+1: The collection of all i-subsets of [r] is dominated by
the collection of all (i+1)-subsets of [r], for i < b r

2c. In Br+1: The collection of
all i-subsets of {0, 1, . . . , r} is dominated by the collection of all (i + 1)-subsets
of {0, 1, . . . , r}, for i < b r+1

2 c.

The above conjecture went largely unstudied in Sr+1, but was proved by
weak-Bn to be true in Br+1 for all r ≤ 5.

Note that by Theorem 2.4, a proof of Conjectures 6.1 and 6.2 would yield
a combinatorial proof of Theorem 1.2. Additionally, a proof of Conjecture 6.1
would yield a proof of Conjecture 6.2. To see why this is true for Sr+1, note
that if the collection of all i-subsets of [r] is dominated by the collection of all
(r − i)-subsets of [r] for some r and i ≤ b r

2c, then it is not hard to see that
the collection of all i-subsets of [r + 1] is dominated by the collection of all
(r− i)-subsets of [r + 1]. Taking i to be such that i + 1 = r− i, this shows that
a proof of Conjecture 6.1 would imply that the collection of all i-subsets of [r]
is dominated by the collection of all (i + 1)-subsets of [r] for all r ≥ 2i. Similar
reasoning applies for Br+1.

The third conjecture was formulated in [NS]:

Conjecture 6.3. Let T ⊆ [r] and let T ◦ β ⊆ [r] be defined by

T ◦ β = {i ∈ [r] : r − i + 1 6∈ T}.

Then if T ⊆ T ◦ β, T ◦ β dominates T in Sr+1.

In [NS] it was mentioned that the above conjecture was verified by computer
for r ≤ 8. Using weak-Sn, this has now been verified for r = 9. Note that
Theorems 3.4 and 3.6 above represent special cases of the preceding conjecture.

The above three conjectures represent likely directions in which one can search
for the injections which will ultimately reveal flag h-vector inequalities. By
following these conjectures and implimenting both the Subset Principles and
the techniques employed in the proof of Theorems 3.2, 3.4 and 3.6, it is hoped
that general principles regarding these interesting injections will unfold.

7. Applications to Finite Distributive Lattices

The preceding sections of this paper have dealt mostly with investigating
properties of the weak ordering on Sr+1 and Br+1, motivated by what these
connections imply about inequalities relating to the h-vector of the order com-
plex of geometric lattices. In this section and in the one to follow it will be
shown that these applications represent only the beginning, and that study of
this order relation has implications for other classes of simplicial complexes.

The first simplicial complex that we examine is the order complex of what is
known as a distributive lattice. A lattice L is said to be a distributive lattice if
the following two distributive laws hold for all x, y, z ∈ L:

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).

THE WEAK ORDER AND FLAG h-VECTOR INEQUALITIES 21

Some interesting things can be said about the underlying structure of all finite
distributive lattices, but some further terminology must be developed in order
to understand these statements.

Let P be a poset. Define an order ideal of P to be a subset I ⊆ P such that
if x ∈ I, then y ∈ I for all y ≤P x. Note that a new poset can be formed from
P by taking the set of all order ideals of P ordered by inclusion. This poset is
denoted by J(P).

Theorem 7.1. (Birkhoff) Let L be a finite distributive lattice. Then there exists
a unique (up to isomorphism) finite poset P such that L ∼= J(P) (where here ∼=
is used to denote equivalence by lattice isomorphism).

For a proof of the above theorem, known as the fundamental theorem of finite
distributive lattices, see [St].

For any finite distributive lattice L, one defines the order complex of L (de-
noted by ∆(L)) just as was done for geometric lattices. Earlier it was noted
that the structure of geometric lattices is such that the flag h-vector of their
order complexes has a nice combinatorial interpretation. As we shall soon see,
the structure of finite distributive lattices (as revealed by the above theorem) is
such that the flag h-vectors of their order complexes may also be given a nice
combinatorial interpretation.

So let L be a finite distributive lattice, and let P be the corresponding finite
poset such that L ∼= J(P). Label the elements of P by [r+1] in such a way that
P is a natural ordering, that is if i ≤P j, then i ≤ j in the usual ordering on
[r +1]. Then for any edge (I, I ′) in the Hasse diagram of J(P) (hence L), define
a label on the edge (I, I ′) by λ(I, I ′) = j, where j ∈ [r+1] is the unique element
of the set I ′ − I. Note that j is well defined as the fact that I ′ covers I implies
that I ⊆ I ′ and that |I ′ − I| = 1. This edge labeling introduces a lexicographic
ordering on the facets of ∆(L), where each such F is given a label λ(F) as an
ordered tuple of the edges of which it is comprised (from 0̂ to 1̂). As shown
in [St], this is actually an EL-labeling. Hence we have the same combinatorial
interpretation of the flag h-vector of ∆(L) as afforded in Proposition 2.3.

To see what the weak order on Sr+1 can say about the flag h-vector of the or-
der complex of a distributive lattice, first note the following lemma (an analogue
of the Switching Lemma presented earlier).

Lemma 7.2. (Switching Lemma for Distributive Lattices) Let L be a finite
distributive lattice of rank r + 1 and let (b1, . . . , bi, bi+1, . . . , br+1) be the label-
ing of a facet of ∆(L). If bi > bi+1 in the natural ordering on [r + 1], then
(b1, . . . , bi+1, bi, . . . , br+1) is also the labeling of a facet of ∆(L).

We briefly note that this lemma is essentially the “reverse” of the Switching
Lemma presented earlier. The implications of this fact will be felt in Theorem
7.3 below.

Proof. By definition, (b1, . . . , bi, bi+1, . . . , br+1) is the labeling of the maximal
chain

0̂ < I1 < I2 < . . . < Ir < 1̂ in J(P) ∼= L

THE WEAK ORDER AND FLAG h-VECTOR INEQUALITIES 22

where Ii = {b1, b2, . . . , bi} for i ∈ [r]. Now it is clear by the definition of the
labeling that (b1, . . . , bi+1, bi, . . . , br+1) is the labeling of a facet of ∆(L) if and
only if the following is a facet of ∆(L):

0̂ < I1 < I2 < . . . < Ii−1 < I ′ < Ii+1 < . . . < Ir < 1̂

where I ′ = {b1, b2, . . . , bi−1, bi+1}. This is because the labeling of a maximal
chain of J(P) uniquely determines the chain.

So in order to prove the theorem, it must be shown that the above “chain”
truly is a chain of J(P), and it is clear that this is true only if I ′ is an element
of J(P). We prove this fact by contradiction.

Assume that I ′ ⊆ [r + 1] is not an order ideal of P, i.e. there exists some
j ∈ I ′ and some j′ ∈ P such that j′ ≤P j but j′ /∈ I ′. As

Ii−1 = {b1, b2, . . . , bi−1} = I ′ − {bi+1}
is an order ideal of P, j = bi+1. Also, as

Ii+1 = {b1, b2, . . . , bi+1}
is an order ideal of P, j′ ≤P j implies that j′ ∈ Ii+1. So j′ ∈ Ii+1 − I ′, i.e.
j′ = bi. But as bi > bi+1 in the natural ordering on [r + 1], it can not be true
that bi = j′ ≤P j = bi+1 (as the partial ordering on P respects the natural
ordering on [r + 1]). This is a contradiction.

Thus I ′ is an order ideal of P, completing the proof. �

Using this lemma, the following theorem can be proved.

Theorem 7.3. Let L be a distributive lattice of rank r + 1 and let ∆(L) be the
corresponding order complex. Let S, T ⊆ [r] and assume that S dominates T .
Then if |T | = j and |S| = r − j for some j ≤ b r

2c,
hT (L) ≥ hS(L).

And if |T | = j and |S| = j + 1 for some j < b r
2c,

hSC (L) ≥ hT C (L)

where SC = [r]− S and TC = [r]− T.

Proof. To prove the first claim, assume that |T | = j and |S| = r− j for j ≤ b r
2c.

By assumption, there exists an injection φ : D(T) → D(S) which respects the
weak order on Sr+1. But as S, T ⊆ [r] and |S| = r−|T | , |D(T)| = |D(S)| . Hence
φ is in fact a bijection. Then the inverse function φ−1 is an injection from D(S)
to D(T) which reverses the weak order on Sr+1. By the switching lemma for
distributive lattices and the definition of the weak order on Sr+1, φ−1 induces
an injection from those facets of ∆(L) whose labels have descent set S to those
whose labels have descent set T. Hence by the combinatorial interpretation of
the flag h-vector of ∆(L), this yields hS(L) ≤ hT (L).

To prove the second part of the theorem, assume that |T | = j and |S| = j +1
for j < b r

2c. As before, let φ : D(T) → D(S) be the implied injection. We wish
to define a function φ2 on D(TC), but to do so it is necessary to develop some
preliminary notation.

THE WEAK ORDER AND FLAG h-VECTOR INEQUALITIES 23

Let π = a1a2 . . . ar+1 ∈ Sr+1, and define the permutation πR ∈ Sr+1 by
πR = ar+1ar . . . a1. Note that if π ∈ D(T) then πR ∈ D(TC) and vice versa
(similarly if we replace T with S or any other descent set). Then define the
function φ2 : D(TC) → D(SC) by

φ2(π) = (φ(πR))R for any π ∈ TC .

The fact that πR
1 = πR

2 if and only if π1 = π2 coupled with the fact that φ
is an injection implies that φ2 is likewise an injection. As one can also check,
π1 ≤w π2 for π1, π2 ∈ Sr+1 implies that πR

1 ≥w πR
2 . Thus for any π ∈ TC :

πR ≤w φ(πR) (by definition of φ)

⇒ π = (πR)R ≥w (φ(πR))R = φ2(π)

So φ2 is an injection from D(TC) to D(SC) which reverses the weak order on
Sr+1. As before, this yields hT C (L) ≤ hSC (L). �

It was shown in [BF] that for L a distributive lattice of rank r+1, the following
inequalities hold

hj(∆(L)) ≥ hr−j(∆(L)) for j ≤ br
2
c

and hr−j−1(∆(L)) ≥ hr−j(∆(L)) for j < br
2
c,

but just as with Theorem 1.2 the proof is not combinatorial in nature. A
proof of Conjectures 6.1 and 6.2 in Sr+1, along with the result the preceding
theorem, would provide the necessary material for a combinatorial proof of these
inequalities.

As a final note, recall that the fundamental theorem of finite distributive
lattices indicates a structural link between each finite poset and an associated
distributive lattice. Thus the above inequalities (and hence the weak order on
Sr+1) are actually linked to the structure of arbitrary finite posets.

8. Applications to Supersolvable Lattices

As a further application of the results of this paper, a link is noted between
the weak order in Sr+1 and what are known as supersolvable lattices. A finite
lattice L is said to be supersolvable if there exists a maximal chain C on L such
that the sublattice generated by C and any other chain of L is a distributive
lattice. In this section we will be interested only in those supersolvable lattices
L whose Möbius function µ satisfies µ(x, y) 6= 0 for all x <L y in L.

In a paper yet to be published, Jay Schweig proved the following proposition
about such supersolvable lattices.

Proposition 8.1. (Jay Schweig) Let L be a finite supersolvable lattice of rank
r+1 whose Möbius function satisfies the above restriction. Then there exists an
EL-labeling on the edges of L and a partition of the maximum chains of L such
that the following property holds: if C is a maximal chain of L labeled by

(b1, b2, . . . , bi, bi+1, . . . , br+1) with bi < bi+1

THE WEAK ORDER AND FLAG h-VECTOR INEQUALITIES 24

then there exists a maximal chain C ′ of L in the same block as C whose labeling
is obtained by transposing bi and bi+1 in the labeling of C. That is, the labeling
of C ′ is given by

(b1, b2, . . . , bi+1, bi, . . . , br+1).

From the above proposition, the following theorem follows.

Theorem 8.2. Let L be a finite supersolvable lattice of rank r+1 whose Möbius
function satisfies the above restriction, and let ∆(L) denote the order complex
of L. Let S, T ⊆ [r] and assume that S dominates T. Then hT (L) ≤ hS(L).

Proof. By assumption, there exists an injection φ : D(T) → D(S) respecting
the weak order on Sr+1. But by Proposition 8.1 and the definition of the weak
order, it follows that for any chain C ∈ ∆(L) whose labeling λ(C) has descent
set T, there exists a chain C ′ ∈ ∆(L) whose labeling is φ(λ(C)) (where here
we make use of the natural correspondence between maximum chain labelings
and permutations of [r + 1]). Hence there exists a chain C ′ whose labeling has
descent set S. Thus by the combinatorial interpretation of the flag h-vector of
the order complex of an EL-labeled lattice, this shows that hT (L) ≤ hS(L). �

As has also been shown by Jay Schweig, the following inequalities hold for L
such a supersolvable lattice (with rank r + 1):

hj(∆(L)) ≤ hr−j(∆(L)) for j ≤ br
2
c

and hj(∆(L)) ≤ hj+1(∆(L)) for j < br
2
c,

but again the proof of this fact is not combinatorial in nature. A proof of
Conjectures 6.1 and 6.2 in Sr+1, along with the result the Theorem 8.2, would
provide the basis for a combinatorial proof of these inequalities.

9. Future Research Directions

There are many directions in which research on this problem can progress.
We end this paper with a list of the more tenable choices:

(1) A useful step in the continuation of the research begun in [NS] and
continued here would be to enhance the code of weak-Sn and weak-Bn,
including implementing new automated tasks in each program’s inter-
face, optimizing the code for speed, making the code more readable, etc.
As more properties of weak order preserving injections are discovered,
they can be implemented into the computer programs in order to boost
efficiency.

(2) Another step would be to adapt weak-Sn and weak-Bn to handle all finite
Coxeter groups. In particular, it would probably be a rather simple
task to adapt these programs to study the group Dr+1 of even-signed
permutations (the subgroup of Br+1 consisting of signed permutations
having an even number of negative signs). The weak order on Dr+1 is

THE WEAK ORDER AND FLAG h-VECTOR INEQUALITIES 25

harder to define, but could be examined by computer just as with Sr+1

and Br+1.
(3) One could also examine the weak order on finite products of Ar+1 and

Br+1, defined in the obvious way, to see what can be concluded from
what is already known of Ar+1 and Br+1. What can be said about subset
domination on products of Ar+1 and Br+1 given what is known about
the sets individually?

(4) A significant amount has been said about the implications of the weak
order on the h-vector of various simplicial complexes, but there are still
many implications which were not studied in this paper. For instance,
one could investigate the link between the permutation group Sr+1 and
the f - and h-vectors of the face lattice of zonotopes (as discussed in
[BER]).

Appendix A. Code for weak-Sn

What follows is the Python code for the program weak-Sn. Because the
layout of tabs and carriage returns is so important to the structure of a Python
program, we make the following two notes concerning the manner in which this
code was typset. First, all tabs have been represented by a series of three spaces.
Additionally, the symbol “>>>” has been used to indicate that what follows is
a continuation of the previous line of text.

WEAK-SN

import sys

def automated1(pBar):
Function designed to handle the automated task of finding a
matching from all those permutations having descent set of size
j to all those permutations having descent set of size
n - 1 - j.

n = input(’Enter the number of elements which we will be permu
>>>ting: ’)

print "We attempt to find a matching from descent sets having"
print "size j into descent sets having size %i - j" % (n-1)
j = input(’Enter your choice for j: ’)
L1 = generateList("choose1",n-1,j,[])
L2 = generateList("choose1",n-1,n-1-j,[])
seekMatching(L1,L2,n,False,pBar)

def automated2(pBar):
Function designed to handle the automated task of finding a
matching from all those permutations in some given number of
descent sets of a certain size to all those pemutations in the

THE WEAK ORDER AND FLAG h-VECTOR INEQUALITIES 26

same number of descent sets of a different size.
n = input(’Enter the number of elements which we will be permu

>>>ting: ’)
g = input(’Enter how many sets you would like to be in each de

>>>scent list collection: ’)
dSize1 = input(’Enter the size of the descent sets which you w

>>>ould like to match: ’)
L1 = generateList("choose1",n-1,dSize1,[])
M1 = generateList("choose0",len(L1),g,[])
numForce = input(’How many descent sets would you like to forc

>>>e to be checked every time? ’)
for i in range(numForce):

forceSet = input("Please enter such a descent set (#%i): "
>>>% (i+1))

dex = descentIndex(L1,forceSet)
M1 = forceDescSet(M1,dex)

dSize2 = input(’Enter the size of the descent sets which you a
>>>re matching into: ’)

L2 = generateList("choose1",n-1,dSize2,[])
M2 = generateList("choose0",len(L2),g,[])
numForce = input(’How many descent sets would you like to forc

>>>e to be checked every time? ’)
for i in range(numForce):

forceSet = input("Please enter such a descent set (#%i): "
>>>% (i+1))

dex = descentIndex(L2,forceSet)
M2 = forceDescSet(M2,dex)

dSetsList1,dSetsList2 = [],[]
for i in M1:

for ind1 in i:
dSetsList1 = dSetsList1 + [L1[ind1]]

for j in M2:
for ind2 in j:

dSetsList2 = dSetsList2 + [L2[ind2]]
seekMatching(dSetsList1,dSetsList2,n,True,pBar)
dSetsList2=[]

dSetsList1=[]

def bipartiteMatch(graph):
Hopcroft-Karp bipartite max-cardinality matching and max
independent set
David Eppstein, UC Irvine, 27 Apr 2002

’’’Find maximum cardinality matching of a bipartite graph
(U,V,E). The input format is a dictionary mapping members of U
to a list of their neighbors in V. The output is a triple

THE WEAK ORDER AND FLAG h-VECTOR INEQUALITIES 27

(M,A,B) where M is a dictionary mapping members of V to their
matches in U, A is the part of the maximum independent set in
U, and B is the part of the MIS in V. The same object may
occur in both U and V, and is treated as two distinct vertices
if this happens.’’’

initialize greedy matching (redundant, but faster than full
search)
matching = {}
for u in graph:

for v in graph[u]:
if v not in matching:

matching[v] = u
break

while 1:
structure residual graph into layers
pred[u] gives the neighbor in the previous layer for u in
U
preds[v] gives a list of neighbors in the previous layer
for v in V
unmatched gives a list of unmatched vertices in final
layer of V, and is also used as a flag value for pred[u]
when u is in the first layer
preds = {}
unmatched = []
pred = dict([(u,unmatched) for u in graph])
for v in matching:

del pred[matching[v]]
layer = list(pred)

repeatedly extend layering structure by another pair of
layers
while layer and not unmatched:

newLayer = {}
for u in layer:

for v in graph[u]:
if v not in preds:

newLayer.setdefault(v,[]).append(u)
layer = []
for v in newLayer:

preds[v] = newLayer[v]
if v in matching:

layer.append(matching[v])
pred[matching[v]] = v

THE WEAK ORDER AND FLAG h-VECTOR INEQUALITIES 28

else:
unmatched.append(v)

did we finish layering without finding any alternating
paths?
if not unmatched:

unlayered = {}
for u in graph:

for v in graph[u]:
if v not in preds:

unlayered[v] = None
return (matching,list(pred),list(unlayered))

recursively search backward through layers to find
alternating paths
recursion returns true if found path, false otherwise
def recurse(v):

if v in preds:
L = preds[v]
del preds[v]
for u in L:

if u in pred:
pu = pred[u]
del pred[u]
if pu is unmatched or recurse(pu):

matching[v] = u
return 1

return 0

for v in unmatched: recurse(v)

def descentIndex(descList,descSet):
For a list of descent sets descList, this function returns the
index at which the descent set descSet is located.

n,index = len(descList),-1
for i in range(n):

if sContains(descList[i],descSet) and sContains(descSet,des
>>>cList[i]):

index = i
return index

def descentPerms(prefix, descSet, permSize):
Recursive function meant to generate all the permutations
having the given descent set (descSet), for permutations on
permSize elements.

THE WEAK ORDER AND FLAG h-VECTOR INEQUALITIES 29

L=[]
n = len(prefix)
if n == permSize:

L = L + [prefix]
elif n in descSet:

if prefix[n-1] != 1:
for i in range(1,prefix[n-1]):

if (i in prefix) == False:
L = L + descentPerms(prefix + [i],descSet,permSize

>>>)
else:

if prefix[n-1] != permSize:
for i in range(prefix[n-1]+1,permSize+1):

if (i in prefix) == False:
L = L + descentPerms(prefix + [i],descSet,permSize

>>>)
return L

def forceDescSet(indexList,descIndex):
This function takes a list of sets of indices (indexList), and
returns a modified list in which all sets of indices not
including the index descIndex have been removed.

L = []
for i in indexList:

if sContains([descIndex],i):
L = L + [i]

return L

def genChoose(prefix, n, i):
Recusive function meant to generate all the subsets of [n]
having cardinality i, where [n] = {1,2,...,n} or [n] =
{0,1,...,n-1}.

L = []
size =len(prefix)
if size == i:

L = [prefix]
else:

for j in range(prefix[size-1]+1,n+1):
L = L + genChoose(prefix+[j],n,i)

return L

def generateList(listType,size,k,descSet):
This function is meant to interface with the functions
genChoose and descentPerms. We can think of this function as
taking care of the base case for each of these recursive

THE WEAK ORDER AND FLAG h-VECTOR INEQUALITIES 30

functions.
L = []
if listType == "permutations":

for i in range(size):
L = L + descentPerms([i+1],descSet,size)

elif listType == "choose0":
for i in range(size):

L = L + genChoose([i],size-1,k)
elif listType == "choose1":

for i in range(1,size+1):
L = L + genChoose([i],size,k)

return L

def genGraph(invList1,invList2,pBarVal):
Generates the actual graph between lists of permutations, given
the inversion sets for each permutation.

edgeSet={}
if pBarVal:

counter = 0
print " Generating Graph (progress indicated below)"
print " 0%--------25%--------50%--------75%------100%"
print " ",

for i in range(len(invList1)):
for j in range(len(invList2)):

if sContains(invList1[i],invList2[j]):
if edgeSet.has_key(j):

edgeSet[j].append(i)
else:

edgeSet[j]=[i]
if pBarVal:

count2 = (45*(i+1))/(len(invList1))
if count2 != counter:

for k in range(count2-counter):
sys.stdout.write(".")

counter = count2
if pBarVal:

print ""
return edgeSet

def invSet(permutation):
Calculates the inversion set of the given permutation.

L=[]
for i in range(len(permutation)):

for j in range(i+1,len(permutation)):
if permutation[i] > permutation[j]: L.append((permutatio

THE WEAK ORDER AND FLAG h-VECTOR INEQUALITIES 31

>>>n[i],permutation[j]))
return L

def sContains(list1,list2):
Boolean function to test whether the list list1 is contained in
the list list2.

contain = True
for i in list1:

if (i in list2) == False:
contain = False
break

return contain

def seekMatching(dSetsList1,dSetsList2,permSize,printTitle,pBar):
Function that coordinates the entire task of finding a matching
given the descent sets of the permutations under investigation
and the size of the permutation group to be studied.

if printTitle:
print "Matching",
for i in dSetsList1:

print i,
print "-->",
for i in dSetsList2:

print i,
print ""

leftList,rightList=[],[]
invLeft,invRight=[],[]
for i in dSetsList1:

leftList = leftList + generateList("permutations",permSize,
>>>0,i)

for i in dSetsList2:
rightList = rightList + generateList("permutations",permSiz

>>>e,0,i)
print "(a) The lists have been computed."
if pBar[0]:

counter = 0
print " Generating Inversions (progress indicated below)"
print " 0%--------25%--------50%--------75%------100%"
print " ",

for i in range(len(leftList)):
invLeft = invLeft + [invSet(leftList[i])]
if pBar[0]:

count2 = (22*(i+1))/(len(leftList))
if count2 != counter:

for k in range(count2-counter):

THE WEAK ORDER AND FLAG h-VECTOR INEQUALITIES 32

sys.stdout.write(".")
counter = count2

if pBar[0]:
counter = 0

for i in range(len(rightList)):
invRight = invRight + [invSet(rightList[i])]
if pBar[0]:

count2 = (23*(i+1))/(len(rightList))
if count2 != counter:

for k in range(count2-counter):
sys.stdout.write(".")

counter = count2
if pBar[0]:

print ""
print "(b) The inversion sets have been computed."
D = genGraph(invLeft,invRight,pBar[1])
print "(c) The graph has been generated."
match = bipartiteMatch(D)[0]
print "(d) A maximal matching has been computed."
if len(match.keys()) == len(leftList):

print "*** A complete matching was found (on %i vertices)!
>>>***" % len(leftList)

outChoice = raw_input(’Would you to write this matching to
>>>a file (enter "yes" if so)? ’)

if outChoice in (’YES’,’yes’,’Y’,’y’):
filename = raw_input(’Please enter a file name: ’)
writeMatch(filename,match,leftList,rightList)

else:
print " A complete matching was not found."
print " Only %i out of %i of the ’left’ permutations were

>>>matched." % (len(match.keys()),len(leftList))

def setBools():
Function that sets certain boolean values based on settings in
a configuration file (’weakorder.ini’). The settings in this
file determine whether to display a progress bar while the
inversion sets are being generated (if invBar is True) and
whether to display a progress bar while the graph is being
generated (if grapBar is true).

invBar,grapBar = False,False
iniVals = open(’weakorder.ini’, ’r’)
S = iniVals.readline()
while S[0] == ’:’:

S = iniVals.readline()
if S[:8] == "invBar=1":

THE WEAK ORDER AND FLAG h-VECTOR INEQUALITIES 33

invBar = True
S = iniVals.readline()
while S[0] == ’:’:

S = iniVals.readline()
if S[:9] == "grapBar=1":

grapBar = True
return invBar,grapBar

def writeMatch(filename, matching,list1,list2):
Function designed to write the matching (injection) whenever a
full matching exists.

matchOutput = open(filename, ’w’)
for i in matching.keys():

matchOutput.write("%s - %s\n" % (list1[i],list2[matching[i]
>>>]))

return None

What follows is the main body of the program, whose primary
purpose is to present an interface to the user.
pBar = setBools()
print "Please select from one of the following menu options:"
print "/------------------------------."
print "| (a) Automated Matching Tasks |"
print "| (m) Manual Matching Tasks |"
print ".------------------------------/"
menuChoice = raw_input("Enter your choice: ")
if menuChoice in (’a’,’A’):

print "Please choose among the following tasks:"
print "/--

>>>------."
print "| (1) Matching descent sets of size j into those of siz

>>>e d-j |"
print "| (2) Matching collections of descent sets

>>> |"
print ".--

>>>------/"
menu2Choice = input("Enter your choice: ")
if menu2Choice == 1:

automated1(pBar)
elif menu2Choice == 2:

automated2(pBar)
else:

print "Invalid Input"
elif menuChoice in (’m’,’M’):

L1,L2 = [],[]

THE WEAK ORDER AND FLAG h-VECTOR INEQUALITIES 34

n = input(’Enter the number of elements which we will be permu
>>>ting: ’)

m = input(’Enter the number of descent sets on each side of th
>>>e graph: ’)

print ’For the permutations to be matched:’
for i in range(m):

dSet = input(’Enter descent set #%i (as a list, i.e. [2,3])
>>>: ’ % (i+1))

L1 = L1 + [dSet]
print ’For the permutations we will match into:’
for i in range(m):

dSet = input(’Enter descent set #%i (as a list, i.e. [2,3])
>>>: ’ % (i+1))

L2 = L2 + [dSet]
seekMatching(L1,L2,n,True,pBar)

else:
print "Invalid Input"

Included below is a sample configuration file, called weakorder.ini, which is
read by the program weak-Sn.
: Configuration file for WEAK-SN the program
:
: The following flag enables (1) or disables (0) the inversion
: progress bar
: (note: the inversion progress bar is not entirely accurate)
invBar=1
: The following flag enables (1) or disables (0) the graph
: progress bar
grapBar=1

Appendix B. Code for weak-Bn

This section contains the code for weak-Bn. The formatting conventions used
in this section are just as they were in the last. Note that in weak-Bn, the
possible descent positions for the group Br+1 are labeled by the numbers 1
through r+1. This is slightly different from the convention adopted in the body
of this paper, where the descent positions for the group Br+1 are labeled by the
numbers 0 through r.

WEAK-BN

def bipartiteMatch(graph):
This function is exactly as in weak-Sn, and is hence omitted.

def genChoose(prefix, n, i):
This function is exactly as in weak-Sn, and is hence omitted.

THE WEAK ORDER AND FLAG h-VECTOR INEQUALITIES 35

def generateList(listType,size,k,descSet):
This function is meant to interface with the functions
genChoose and descentPerms. It is analagous in function
(although slightly different in structure) to generateList from
weak-Sn.

L = []
if listType == "signed_permutations":

L = SPdescentPerms([0],descSet,size)
for i in L:

del i[0]
elif listType == "choose1":

for i in range(1,size+1):
L = L + genChoose([i],size,k)

return L

def sContains(list1,list2):
This function is exactly as in weak-Sn, and is hence omitted.

def SPBruhatLEQ(leftPerm,rightPerm,permSize):
Function which checks whether leftPerm is less than or equal to
rightPerm in the weak ordering on the signed permutation group.

isLEQ = 1
for i in range(1,permSize):

for j in range(i+1,permSize+1):
tempLEQ = SPLattComp(SPLatticeVal(SPFindPair(leftPerm,(i

>>>,j))),SPLatticeVal(SPFindPair(rightPerm,(i,j))))
if tempLEQ != 1:

isLEQ = 0
break

if isLEQ == 0: break
return isLEQ

def SPdescentPerms(prefix, descSet, permSize):
Recursive function meant to generate all the permutations
having the given descent set (descSet), for permutations on
permSize elements. Specifically designed for signed
permutations

L=[]
n = len(prefix)
if n == permSize + 1:

L = L + [prefix]
elif n in descSet:

if prefix[n-1] != -1*permSize:
for i in range(-1*permSize,prefix[n-1]):

if ((i in prefix) == False) and ((-1*i in prefix) ==

THE WEAK ORDER AND FLAG h-VECTOR INEQUALITIES 36

>>>False):
L = L + SPdescentPerms(prefix + [i],descSet,permSi

>>>ze)
else:

if prefix[n-1] != permSize:
for i in range(prefix[n-1]+1,permSize+1):

if ((i in prefix) == False) and ((-1*i in prefix) ==
>>>False):

L = L + SPdescentPerms(prefix + [i],descSet,permSi
>>>ze)

return L

def SPFindPair(signPerm,pair):
Given a signed permutation and a pair of positive integers,
this function returns an ordered pair corresponding to the way
in which this original pair of numbers appears in the signed
permutation.

if pair[0] in signPerm:
iIndex = signPerm.index(pair[0])

else:
iIndex = signPerm.index(-1*pair[0])

if pair[1] in signPerm:
jIndex = signPerm.index(pair[1])

else:
jIndex = signPerm.index(-1*pair[1])

if iIndex < jIndex:
newPair = (signPerm[iIndex],signPerm[jIndex])

else:
newPair = (signPerm[jIndex],signPerm[iIndex])

return newPair

def SPgenGraph(permList1,permList2,permSize):
Generates the graph from which descent set matchings will be
found.

edgeSet={}
for i in range(len(permList1)):

for j in range(len(permList2)):
if SPBruhatLEQ(permList1[i],permList2[j],permSize):

if edgeSet.has_key(j):
edgeSet[j].append(i)

else:
edgeSet[j]=[i]

return edgeSet

def SPLattComp(leftVal,rightVal):

THE WEAK ORDER AND FLAG h-VECTOR INEQUALITIES 37

Given two values of the signed permutation poset, this function
returns a 1 if leftVal < rightVal in this poset and returns a 0
otherwise.

isLEQ = 0
if leftVal == 0: geq = [0,1,2,3,4,5,6,7]
elif leftVal == 1: geq = [1,3,4,6]
elif leftVal == 2: geq = [2,5,6,7]
elif leftVal == 3: geq = [3,4,6]
elif leftVal == 4: geq = [4,6]
elif leftVal == 5: geq = [5,6,7]
elif leftVal == 6: geq = [6]
else: geq = [6,7]
if rightVal in geq:

isLEQ = 1
return isLEQ

def SPLatticeVal(pair):
Given an ordered pair, this function returns an integer
designating where that pair falls in the signed permutation
poset.

val = 0
if abs(pair[0]) > abs(pair[1]): val = val + 1
if abs(pair[0]) != pair[0]: val = val + 2
if abs(pair[1]) != pair[1]: val = val + 4
return val

def SPSeekMatching(dSetsList1,dSetsList2,permSize):
Analogue of the function seekMatching in weak-Sn, but designed
for signed permutations.

if not(subsetPrin(dSetsList1,dSetsList2)):
print "Matching fails to exist by the Subset Principle."

else:
leftList,rightList = [],[]
for i in dSetsList1:

leftList = leftList + generateList("signed_permutations"
>>>,permSize,0,i)

for i in dSetsList2:
rightList = rightList + generateList("signed_permutation

>>>s",permSize,0,i)
print "(a) the lists have been computed."
D = SPgenGraph(leftList,rightList,permSize)
print "(b) the graph has been generated."
match = bipartiteMatch(D)[0]
print "(c) a maximal matching has been computed."
if len(match.keys()) == len(leftList):

THE WEAK ORDER AND FLAG h-VECTOR INEQUALITIES 38

print "*** A complete matching was found (on %i vertices
>>>)! ***" % len(leftList)

outChoice = raw_input(’Would you to write this matching
>>>to a file (enter "yes" if so)? ’)

if outChoice in (’YES’,’yes’,’Y’,’y’):
filename = raw_input(’Please enter a file name: ’)
writeMatch(filename,match,leftList,rightList)

else:
print " A complete matching was not found."
print " Only %i out of %i of the ’left’ permutations we

>>>re matched." % (len(match.keys()),len(leftList))

def subsetPrin(descList1,descList2):
Function which determines whether or not the subset principle
holds for descList1 (the left list) and descList2 (the right
list).

for i in descList1:
principle = False
for j in descList2:

if sContains(i,j):
principle = True
break

if not(principle):
break

return principle

def writeMatch(filename,matching,list1,list2):
This function is exactly as in weak-Sn, and is hence omitted.

What follows is the main body of the program, the primary
purpose of which is to present an interface to the user.
print "Please select the task in which you wish to engage:"
print " (1) Match from j to n - j"
print " (2) Match from j into j + 1"
print " (3) Automated descent set matchings"
print " (4) Match descent sets manually"
print " (5) Check number of elements in descent set"
menu = input(’>>> ’)
if menu == 1:

n = input(’Enter the number of elements which we will be permu
>>>ting: ’)

print "We attempt to find a matching from descent sets having"
print "size j into descent sets having size %i - j" % n
j = input(’Enter your choice for j: ’)

THE WEAK ORDER AND FLAG h-VECTOR INEQUALITIES 39

L1 = generateList("choose1",n,j,[])
if L1 == []:

L1 = [[]]
L2 = generateList("choose1",n,n-j,[])
#print L1
#print L2
SPSeekMatching(L1,L2,n)

elif menu == 2:
n = input(’Enter the number of elements which we will be permu

>>>ting: ’)
print "We attempt to find a matching from descent sets having"
print "size j into descent sets having size j + 1"
j = input(’Enter your choice for j: ’)
L1 = generateList("choose1",n,j,[])
if L1 == []:

L1 = [[]]
L2 = generateList("choose1",n,j+1,[])
SPSeekMatching(L1,L2,n)

elif menu == 3:
dSet1, dSet2 = [], []
n = input(’Enter the number of elements which we will be permu

>>>ting: ’)
m1 = input(’Enter the size of the descent sets you would like

>>>to match: ’)
m2 = input(’Enter the size of the descent sets you would like

>>>to match into: ’)
l = input(’Enter the number of descent sets on each side: ’)
L1 = generateList("choose1",n,m1,[])
if L1 == []:

L1 = [[]]
L2 = generateList("choose1",n,m2,[])
L1CHOOSE = generateList("choose1",len(L1),l,[])
L2CHOOSE = generateList("choose1",len(L1),l,[])
for i in L1CHOOSE:

for k in i:
dSet1 = dSet1 + [L1[k-1]]

for j in L2CHOOSE:
for k in j:

dSet2 = dSet2 + [L2[k-1]]
print "Matching",
for k in dSet1:

print k,
print "-->",
for k in dSet2:

print k,

THE WEAK ORDER AND FLAG h-VECTOR INEQUALITIES 40

print ""
SPSeekMatching(dSet1,dSet2,n)
dSet2 = []

dSet1 = []
elif menu == 4:

dSet1, dSet2 = [], []
n = input(’Enter the number of elements which we will be permu

>>>ting: ’)
m1 = input(’Enter the number of descent sets you would like to

>>> match: ’)
m2 = input(’Enter the number of descent sets you would like to

>>> match into: ’)
for i in range(m1):

dSet1 = dSet1 + [input(’Enter the descent set (#%i) you wou
>>>ld like to match: ’ % (i+1))]

for i in range(m2):
dSet2 = dSet2 + [input(’Enter the descent set (#%i) you wou

>>>ld like to match into: ’ % (i+1))]
SPSeekMatching(dSet1,dSet2,n)

elif menu == 5:
list = []
n = input(’Enter the number of elements which we will be permu

>>>ting: ’)
m = input(’Enter the number of descent sets you would like to

>>>count: ’)
for i in range(m):

dSet = input(’Enter descent set #%i (i.e. [2,3], etc.): ’ %
>>> (i+1))

list = list + generateList("signed_permutations",n,0,dSet)
print "There are %i signed permutations with the given descent

>>> set" % len(list)
else:

print "menu choice invalid"

References

[BL] H.A. Baier Saip and C.L. Lucchesi. Matching algorithms for bipartite graphs. Techni-
cal Report DCC-03/93. Departmento de Cincia da Computao, Universidade Estudal de
Campinas, 1993.

[BER] L.J. Billera, R. Ehrenborg and Margaret Readdy. The c-2d-Index of Oriented Matroids.
Journal of Combinatorial Theory, 80:1 79-105, 1997.

[BF] A. Björner and J.D. Farley. Chain polynomials of distributive lattices are 75 % unimodal.
2004, arXiv:math.CO/0411610.

[Ep] D. Eppstein. Hopcroft-Karp bipartite matching.
http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/123641.

[Ni] I. Niven. A combinatorial problem on finite sequences. Nieuw Arch. Wisk., 16: 116-123,
1968.

THE WEAK ORDER AND FLAG h-VECTOR INEQUALITIES 41

[NS] K. Nyman and E. Swartz. Inequalities for the h-vectors and flag h-vectors of geometric
lattices. Discrete and Comput. Geom., 32: 533-548, 2004.

[St] R.P. Stanley. Enumerative Combinatorics, Volume I. Cambridge University Press, 1997.

E-mail address: tdd2@cornell.edu

Cornell University

