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THE MAGNUS REPRESENTATION OF THE TORELLI GROUP Ig,1

THOMAS CHURCH AND AARON PIXTON

Abstract. The Magnus representations rk are defined on the Johnson filtration of the map-
ping class group. We focus on r2 : Ig,1 → GL2g(Z[H]), where Ig,1 is the Torelli subgroup
of the mapping class group and H = H1(Sg,1) is the first homology of the surface. After
restricting r2 to the Johnson kernel Kg,1, we classify all relations between pairs of Dehn twists
in the image.

1. Introduction

Let Sg,1 be a compact oriented surface of genus g with one boundary component. We define
the mapping class group of Sg,1 (relative to the boundary) to be Mg,1 = Homeo(Sg,1)/ ∼,
where ∼ is the isotopy equivalence relation on (orientation-preserving) homeomorphisms of
Sg,1, and we require that all homeomorphisms and isotopies fix the boundary ∂Sg,1 pointwise.
The structure of the mapping class group has important implications in several areas of math-
ematics, such as the study of Teichmuller space and low-dimensional topology. Despite various
results of Johnson and Morita, this structure is still not well understood.

The Torelli group Ig,1 is defined to be the subgroup of the mapping class group Mg,1 that
acts trivially on the first homology of the surface. In [3] Johnson determined the abelianization
of Ig,1 and defined a series of homomorphisms corresponding to the Johnson filtration of the
mapping class group. The Johnson filtration is a sequence of subgroups M(1) ≥ M(2) ≥ · · ·
such that M(1) = Mg,1, M(2) = Ig,1, and for each k ≥ 2, M(k + 1) is the kernel of the
Johnson homomorphism τk from M(k) to a certain abelian quotient. Johnson showed in [3]
that the “Johnson kernel” M(3) = Kg,1 is precisely the subgroup generated by Dehn twists
about separating curves in Sg,1. Morita studied these Johnson homomorphisms further in [4]
and [5], but there are many open questions about this filtration. In particular, very little is
known about the structure of the Johnson kernel M(3) = Kg,1, although Biss and Farb [2]
have proven that Kg,1 is not finitely generated for g ≥ 2.

There is an important sequence of representations of the terms of the Johnson filtration.
For each natural number k, there is the kth Magnus representation rk : M(k) → GL2g(Z[Nk]),
where Nk is the kth nilpotent quotient of the fundamental group of the surface Sg,1. These
representations were originally defined using Fox calculus, but Suzuki demonstrated in [7] that
there is an equivalent topological definition, which we will use throughout this paper. Given a
homeomorphism of Sg,1, we can lift it to a homeomorphism of the kth nilpotent covering space
of Sg,1 and then look at its action on the first homology of this cover, which is isomorphic
to Z[Nk]2g. Note that r1 is simply the symplectic representation of the mapping class group,
r1 : Mg,1 → Sp2g(Z). We are most interested in r2 : Ig,1 → GL2g(Z[H]), where H = N2

is the first homology of Sg,1. Using a modification of Suzuki’s method in [6] of defining a
“higher intersection form” on homology elements of the abelian cover, we derive simple formulae
describing the restriction of r2 to Kg,1.

Suzuki ([6], Corollary 4.4) characterized when the commutator of two Dehn twists around
separating curves [Tγ1 , Tγ2 ] is in ker r2. Our methods rederive this result, and they also yield
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the following extension, which states that no relations besides commutation can arise between
pairs of Dehn twists in the image of the Magnus representation.

Theorem 5.2. Suppose that γ1 and γ2 are separating curves on Sg,1 with lifts c1, c2 ∈ Z[H]2g

such that 〈c1, c2〉 6= 0. Then there are no relations between r2(Tγ1) and r2(Tγ2) in GL2g(Z[H]),
i.e. no nontrivial word in Tγ1 and Tγ2 is in ker r2.

We thank Masaaki Suzuki for kindly providing us with his unpublished preprint [7], which
provided the impetus for this work. Much of this paper was written during the REU program
at Cornell University in 2005 under the supervision of Tara Brendle, funded by the National
Science Foundation; we thank the REU and Cornell for their support and hospitality.

We are grateful to Tara Brendle and Benson Farb for reading early versions of this paper,
and for their valuable comments and advice. We also thank Ken Brown, Keith Dennis, Allen
Hatcher, Martin Kassabov, and Karen Vogtmann for helpful discussions. The first author
would like to additionally thank the Cornell Presidential Research Scholars program, whose
support in part made possible the completion of this paper.

2. Setup

We first fix a set of generators for the free group Γ1 = π1(Sg,1) as shown in Figure 1. We fix a
basepoint b ∈ ∂Sg,1, and choose A1, . . . , Ag, B1, . . . , Bg to be loops based at b. Note that all the
Ai, Bi freely generate π1(Sg,1); that if ai, bi are the homology classes of Ai, Bi respectively, then
a1, . . . , ag, b1, . . . , bg form a symplectic basis for H1(Sg,1); and that the product of commutators
[A1, B1] · · · [Ag, Bg] is a loop around the boundary component.

Let p : Ŝ → Sg,1 be the universal abelian cover of Sg,1; that is, the regular covering space
corresponding to the commutator subgroup of Γ1. A homeomorphism of Sg,1 lifts to a home-
omorphism of Ŝ (though not uniquely), and we want to examine the action of this lifted
homomorphism on the homology of Ŝ. We can lift our basis of Γ1 to a Z[H]-module basis of
H1(Ŝ, p−1(b); Z) ≈ Z[H]2g, where H = H1(Sg,1; Z), as follows.

Choose a point b̂ ∈ p−1(b) ⊂ ∂Ŝ that is a lift of our basepoint b ∈ ∂Sg,1. For each i = 1, . . . , g,
define αi ∈ H1(Ŝ, p−1(b)) as the unique lift of Ai starting at b̂, and similarly define βi to be the
lift of Bi starting at b̂. Each of these arcs must have its endpoints in p−1(b), so each describes
an element of H1(Ŝ, p−1(b)). We will complete our description of H1(Ŝ, p−1(b)) after describing
the deck transformations of the abelian cover.

The group of deck transformations of Ŝ → Sg,1 is isomorphic to Z2g, the abelianization of
Γ1, but we can actually find an identification with H itself. Define the deck transformation ai

Figure 1. A basis of π1(Sg,1)
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to be that which translates the tail of the arc αi (that is, b̂) to its head, and similarly let bi be
the deck transformation translating b̂ to the head of βi. Then the obvious identification of this
deck transformation ai with the element ai ∈ H gives an isomorphism to H.

This gives an isomorphism between H0(p−1(b)) and Z[H]: H0(p−1(b)) is generated by the
points in p−1(b), so for every element h ∈ H, we can identify the point h(̂b) ∈ p−1(b) with the
element h ∈ Z[H] (where h(̂b) is the image of b̂ under the deck transformation h).

Viewing the group of deck transformations as isomorphic to H gives rise to a Z[H]-action
on H1(Ŝ, p−1(b)): given c ∈ H1(Ŝ, p−1(b)) and h ∈ H, define h · c to be h(c), the image of
γ under the deck transformation h. This H-action extends linearly to a Z[H]-action. Un-
der this Z[H]-action, we can regard H1(Ŝ, p−1(b)) as a Z[H]-module of rank 2g, with basis
α1, . . . , αg, βi, . . . , βg.

We can also examine the long exact sequence of homology for the pair (Ŝ, p−1(b)). The only
nonzero section of this sequence is

0 → H1(Ŝ) → H1(Ŝ, p−1(b)) ∂−→ H0(p−1(b)) ε−→ H0(Ŝ) → 0

where ε is the augmentation map ε : Z[H] → Z and ∂ is the boundary map on homology.
The Magnus representation r2 : Ig,1 → GL2g(Z[H]) was originally defined using Fox calculus

(see e.g. [1]). We use the topological definition given by Suzuki in [7]. An element of M(g, 1)
can be represented by a homeomorphism f of Sg,1. This lifts uniquely to a homeomorphism f̃

of Ŝ, if we require that f̃ fix b̂. We then examine the action of f̃ on H1(Ŝ, p−1(b)). This action
is obviously Z-linear, but unfortunately it is not Z[H]-linear — it is twisted by the action of f

on H. We thus restrict to Ig,1, ensuring that the lifts f̃ will act Z[H]-linearly on H1(Ŝ, p−1(b)).
Since H1(Ŝ, p−1(b)) ≈ Z[H]2g, this action of f̃ can be used to define the Magnus representation
r2 : Ig,1 → GL2g(Z[H]).

3. Visualizing the abelian cover

While it is possible to use this topological definition without ever visualizing the 2-manifold
with boundary Ŝ, a mental picture can be very useful to ground the algebraic concepts in
topological intuition. It also simplifies some calculations, and more importantly, makes the
results more illuminating. We give the most useful model that we know for visualizing the
abelian cover of Sg,1. The following description will agree naturally with the description of
first homology in the previous section.

In general, just as Sg can be gotten from Sg,1 by filling in the boundary, the abelian cover
of Sg will be just Ŝ with all the lifts of the boundary filled in. (If i : Sg,1 → Sg is the
obvious inclusion and i∗ : Γ1 → π1(Sg) the induced map on the fundamental groups, then
ker i∗ ≤ [Γ1,Γ1].) In the case g = 1, Ŝ has a simple representation; it is simply the plane
R2 with a disk removed at every point of the integer lattice Z2. Here, we see that filling in
the holes gives the simply-connected R2, but this only happens when g = 1, since the abelian
cover of S1,0 is also its universal cover. For the case g = 2, we already have a much more
complicated picture for Ŝ, the abelian cover of S2,1 (Figure 2). Although our description of Ŝ
works in general for arbitrary g, it is not qualitatively different for higher g, so we will illustrate
it by diagrams corresponding to either g = 1 or g = 2. (Note that the resulting picture as
constructed lives in four dimensions, of which we can depict only two at a time.) We now go
through the construction of the model shown in Figure 2. The surface is built up by attaching
strips to the edges of discs in a specific way.

Start with an integer lattice indexed by Z2g, and label the 2g directions, or factors, by
a1, . . . , ag, b1, . . . , bg. Take a regular 4g-gon, label its edges in order according to the word
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Figure 2. A partial depiction of the abelian cover of S2,1

[x1, y
−1
1 ] · · · [xg, y

−1
g ], and mark the vertex between the adjacent edges yg and x1, as in Figure

3. Now place a disjoint copy of this 4g-gon at every point of the Z2g lattice. All of the marked
points will be lifts of the basepoint b ∈ Sg,1. In the integer lattice there is one polygon at the
origin; the marked point in this polygon will be the specific lift b̂.

We now attach the ribbons, or strips, which we think of as long thin rectangles which will
be attached to sides of the polygons at their ends. We have labeled each direction in the lattice
by ai or bi. Attach a ribbon to the x1 side of each polygon, and attach the other end to the
x−1

1 side of its neighboring polygon in the a1 direction. Continue for the other sides; there will
be a ribbon from the xi side of each polygon to the x−1

i side of its neighbor in the ai direction,
and similarly from the yi side to the y−1

i side of the neighbor in the bi direction. This gives
the picture of Figure 2. None of the ribbons should twist; the polygons all have the same
orientation as the original 4g-gon, and the ribbons are attached so that all their orientations
agree, giving us an oriented surface with boundary.

We have now completed the description of the surface Ŝ, but we can describe a few more
features of it. The group of deck transformations is isomorphic to H; its generators are given
by moving the entire lattice rigidly by one unit in each of the 2g directions. We can associate
the shift in the a1 direction with a1 ∈ H itself, and so on. The identification of H0(p−1(b))
with Z[H] is then immediate, since that group is generated by all the marked points making
up p−1(b). Given a particular point p ∈ p−1(b), there is a unique deck transformation k that
translates b̂ to p, and we identify p with the generator h ∈ Z[H]. To see that the above
description of a surface indeed gives the abelian cover of Sg,1, consider the quotient surface
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Figure 3. The labeling on the 4g-gon

given by quotienting out by the action of H described above. This quotient surface is simply
a single octagon labeled as above by the word [x1, y

−1
1 ] · · · [xg, y

−1
g ], with ribbons attached

connecting the xi sides to the x−1
i sides and the yi sides to the y−1

i sides, and this is a well-
known description of Sg,1.

The main object of our study is H1(Ŝ, p−1(b)), and again we can find explicit realizations
of its elements. For example, α1 is represented by an arc running from b̂ to the x1 side of the
polygon that contains it, along the ribbon there in the a1 direction, and then ending at the
basepoint a1 on the neighboring polygon. The translation hα1 is similar, but it starts at the
point h rather than b̂. Note that −α1 must be the additive inverse of α1 in relative homology;
this means that the arc that begins at b̂, travels in the negative a1 direction, and ends at the
basepoint a−1

1 is not −α1, but −a−1
1 α1. The other generators of H1(Ŝ, p−1(b)) are realized

similarly.
A Dehn twist Tγ about a separating curve γ is often called a BSCC map (a separating curve

is also called a “bounding simple closed curve”). The lift of a BSCC map to Ŝ has a nice
realization. The other common type of generator of Ig,1 is a bounding pair map, of the form
Tγ1T

−1
γ2

, where γ1 and γ2 are homologous and non-zero in homology; it seems that the lift of
such a map has no correspondingly simple realization. This is the reason that our results focus
on BSCC maps and on Kg,1, which is generated by BSCC maps.

The lift of a separating curve γ is a curve c, while the lift of a non-separating curve is an
arc. Furthermore, c is disjoint from all its copies hc for h ∈ H. (Any curve, not necessarily
simple, which considered as an element of π1(Sg,1) = Γ1 lies within [Γ1,Γ1], lifts to a curve. In
contrast, the second claim depends on the fact that γ is simple; [A2

1, B
2
1 ] ∈ Γ1, which cannot be

realized simply, lifts to a curve c′ such that c′ and a1b1c
′ are never disjoint. See Lemma 4.3.) To

visualize T̃γ , we simply take all the disjoint curves hc over h ∈ H; T̃γ will be the simultaneous
twist around all of them. We can calculate the effect of this lifted twist on H1(Ŝ, p−1(b)) quite
easily. If d is the arc or curve in question, simply trace along d; for each intersection with a
lift hc, add or subtract hc ∈ H1(Ŝ, p−1(b)), depending on the orientation of the intersection.
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(This is discussed and simplified in Proposition 4.4.) Figure 4 shows the simplest example: T̃δ,
the lift of the Dehn twist about δ, the boundary of S1,1.

To calculate the lift of a bounding pair map TγT−1
γ′ , we would like to realize T̃γ as before. This

is difficult, though, since Tγ is not in Ig,1. Since γ is now nonseparating, its lift c ∈ H1(Ŝ, p−1(b))
will be an arc. If [γ] is the homology of γ, then the head of c will coincide with the tail of
[γ]c. Considering all lifts hc of γ, we find that rather than a collection of disjoint curves, we
have a collection of disjoint infinite lines. Together, these lines cut Ŝ into slices; each slice is
characterized by the number of times a path from b̂ to a point in that slice must cross the
lifts hc. For example, in Figure 5 we see that all the lifts of A1, the vertical lines, cut Ŝ into
strips characterized by the b1 component of a location in the lattice. A Dehn slide along such
a line is defined as the homeomorphism of Ŝ given by cutting along the line, then sliding one
side along the other until one end of hc has been translated to the other end. It is clear that
T̃γ is just the simultaneous Dehn slide along all our lines, but from the definition we see that
the resulting map is not particularly nice; notably, slices are translated along themselves by
a distance corresponding to their distance from the origin. Neither ∂Ŝ nor p−1(b) is fixed
pointwise, so the resulting map is not Z[H]-linear. We see that T̃γ(hd) = Tγ(h)T̃γ(d); the
action of T̃γ on H1(Ŝ, p−1(b)) is twisted by the action of Tγ on H. (This suggests that there is
no formula for the effects of bounding pair maps corresponding to Proposition 4.4 for BSCC
maps.) It is still possible to compute the effects of a lifted bounding pair map manually, but
care must be taken not to rely on the linearity of the two composed maps.

4. Higher intersection forms

Following the method of Suzuki in [6], we define a Z[H]-valued pairing for elements of
H1(Ŝ, p−1(b)) analogous to the algebraic intersection number of two elements of H1(Sg,1). We

Figure 4. The lifts of δ to the abelian cover of S1,1
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Figure 5. The lifts of A1 and B1 to the abelian cover of S2,1

then list some properties of this form and give applications to describing the kernel and image
of r2.

We first need to define the (Z-valued) intersection number of two elements of H1(Ŝ, p−1(b)).
Any element of H1(Ŝ, p−1(b)) can be realized as a linear combination of closed curves in Ŝ

and arcs in Ŝ with endpoints in p−1(b). Any pair of curves or a curve and an arc can be
homotoped so that they only intersect transversely, and then the orientation of Ŝ gives a
natural notion of algebraic intersection number. However, α1 and β1, for example, are two arcs
in H1(Ŝ, p−1(b)) that share one endpoint, so their intersection number is not well-defined by
the above procedure. In order to define their algebraic intersection number, we need to move
the basepoint of one arc slightly; there are two different ways of doing so, and we will keep
track of the resulting differences in the algebraic intersection number. This will give us two
Z-valued bilinear forms on H1(Ŝ, p−1(b))×H1(Ŝ, p−1(b)).

We now formalize the above discussion. Let b′ 6= b be a second basepoint in ∂Sg,1, and let
γ1, γ2 be the two arcs from b to b′ contained in ∂Sg,1, where γ1 is chosen to have orientation
consistent with that of Sg,1. For i = 1, 2 let ξi be the lift of γi to Ŝ based at b̂. Then we have
isomorphisms ϕi : H1(Ŝ, p−1(b)) → H1(Ŝ, p−1(b′)) defined by ϕi(x) = x + ∂x · ξi.

Because there is an induced orientation of Ŝ from Sg,1, we already have a Z-bilinear algebraic
intersection form defined on H1(Ŝ, p−1(b))×H1(Ŝ, p−1(b′)), and we denote this form by (·, ·).
We define two bilinear forms (·, ·)i on H1(Ŝ, p−1(b)) × H1(Ŝ, p−1(b)) by (c, d)i = (c, ϕi(d)),
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i = 1, 2. Now, define two forms 〈·, ·〉i for i = 1, 2 on H1(Ŝ, p−1(b))×H1(Ŝ, p−1(b)) by

(1) 〈c, d〉i =
∑
h∈H

(c, hd)ih ∈ Z[H]

Both forms 〈·, ·〉i are pseudo-bilinear; that is, they are linear in the first term and anti-linear
in the second: 〈hc + c′, d〉i = h〈c, d〉i + 〈c′, d〉i and 〈c, hd + d′〉i = h−1〈c, d〉i + 〈c, d′〉i. (This is
immediate from the definition and the linearity of the intersection forms (·, ·)i.) We call these
forms higher intersection forms because they lift the normal algebraic intersection form (·, ·)
on H. In other words, if p∗ : H1(Ŝ, p−1(b)) → H is the map on first homology induced by the
covering map p : Ŝ → Sg,1, then ε(〈c, d〉i) = (p∗(c), p∗(d)) for all c, d ∈ H1(Ŝ, p−1(b)).

The following lemma will be very important to us:

Lemma 4.1. Both forms 〈·, ·〉i are nondegenerate; that is, for x ∈ Z[H]2g\{0} and i = 1 or 2,
there exists y ∈ Z[H]2g such that 〈x, y〉i 6= 0.

Proof. This follows immediately from the fact that the forms (·, ·)i are nondegenerate, which
is a simple computational exercise. �

At this point, it is useful to define the isomorphism · : Z[H] → Z[H] given by h = h−1 and
linear extension to all of Z[H]. The following proposition tells us the difference between the
two higher intersection forms.

Proposition 4.2. When either c or d is a curve in Ŝ (that is, when c or d is in ker ∂),
〈c, d〉1 = 〈c, d〉2. In general, 〈c, d〉2 − 〈c, d〉1 = ∂c∂d.

Proof. Note that

(x, y)2 − (x, y)1 =
(
x, ϕ2(y)

)
−

(
x, ϕ1(y)

)
=

(
x, (y + ∂y · ξ1)− (y + ∂y · ξ2)

)
=

(
x, ∂y(ξ2 − ξ1)

)
=

(
x, (∂y)δ

)
where δ = ξ2 − ξ1 is a curve around the boundary (one lift of ∂Sg,1). Now we have

〈c, d〉2 − 〈c, d〉1 =
∑
h∈H

(c, hd)2h−
∑
h∈H

(c, hd)1h

=
∑
h∈H

(
c, ∂(hd)δ

)
h

= ∂d
∑
h∈H

(
c, hδ

)
h

= ∂d〈c, δ〉 = ∂d∂c.

In the last line, we used the fact that

〈c, δ〉 =
∑
h∈H

(
c, hδ

)
h =

∑
h∈H

(
h−1c, δ

)
h

=
∑
h∈H

const(∂(h−1c))h = ∂c,

where by analogy with power series, we use const(x) to mean the “constant term” of x ∈ Z[H];
formally, we can define the linear homomorphism const : Z[H] → Z that is the identity on
Z ≤ Z[H] and sends h to 0 for all h ∈ H\{0}. It now follows that when c or d is a curve, we
need only write 〈c, d〉, since 〈c, d〉1 = 〈c, d〉2. �
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We also have the following “antisymmetry” property of 〈∗, ∗〉i:

Lemma 4.3. Suppose {i, j} = {1, 2} and c, d ∈ H1(Ŝ, p−1(b)). Then 〈d, c〉i = −〈c, d〉j. In
particular, if c or d is a curve, then 〈d, c〉 = −〈c, d〉, so 〈c, d〉 = 0 ⇐⇒ 〈d, c〉 = 0.

Proof. Note that (f, e)i = −(e, f)j for any e, f ∈ H1(Ŝ, p−1(b)). Thus

〈d, c〉i =
∑
h∈H

(d, hc)ih = −
∑
h∈H

(hc, d)jh = −
∑
h∈H

(c, h−1d)jh = −
∑
h∈H

(c, hd)jh
−1 = −〈c, d〉j ,

as claimed. �

Note that this lemma does not imply that 〈c, c〉 = 0 if c is a curve. However, we do have the
weaker statement that 〈c, c〉 = 0 if c is a lift of a separating curve in the base surface Sg,1, as
the various lifts {hc |h ∈ H } are disjoint in this case.

The following proposition is fundamental for calculations involving the higher intersection
form. The result is analogous to the formula for the action of a Dehn twist on H given by
Tγ(h) = h + (h, γ)γ, where (h, γ) denotes the algebraic intersection number.

Proposition 4.4. Let γ be a separating curve in Sg,1 and let c ∈ H1(Ŝ, p−1(b)) be any
curve in Ŝ lifting γ. Then if Tγ is the Dehn twist around γ, the action of the lifted twist
on H1(Ŝ, p−1(b)) ≈ Z[H]2g is

(2) T̃γ(d) = d + 〈d, c〉c

for any d ∈ H1(Ŝ, p−1(b)).

(Recall that a curve γ in Sg,1 lifts to a curve rather than an arc exactly when γ is a separating
curve, so 〈d, c〉 = 〈d, c〉1 = 〈d, c〉2 in the above formula.)

Proof. The lifted homeomorphism T̃γ can be thought of as the simultaneous Dehn twist about
all lifts of γ, since these lifts are nonintersecting closed curves in Ŝ. For each intersection of d

with a lift γ̃ of γ, we add or subtract γ̃ ∈ H1(Ŝ, p−1(b)), depending on the orientation of the
intersection. But the lifts of γ are all the curves hc for h ∈ H. Thus

T̃γ(d) = d +
∑

eγ lifts γ

(d, γ̃)γ̃ = d +
∑
h∈H

(d, hc)hc.

From the definition in (1), this is just T̃γ(d) = d + 〈d, c〉c. �

5. Using the trace of the Magnus representation

We find it useful to analyze the trace of the Magnus representation r2; this trace gives a
class function on Ig,1 with values in Z[H]. The formula in Proposition 4.4 gives us a relatively
easy way to compute this function on Kg,1.

The following statement is equivalent to a theorem of Suzuki ([6], Corollary 4.4); we give a
new proof of the latter implication.

Theorem 5.1. Let γ1, γ2 be separating curves in Sg,1, and c1, c2 be lifts to Ŝ of γ1, γ2 respec-
tively. Then

[Tγ1 , Tγ2 ] ∈ ker r2 ⇐⇒ 〈c1, c2〉 = 0.

Proof. First, compute T̃γ1 T̃γ2 using (2):

T̃γ1 T̃γ2(d) = T̃γ1(d + 〈d, c2〉c2)

= d + 〈d, c2〉c2 + 〈d, c1〉c1 + 〈d, c2〉〈c2, c1〉c1

(3)
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for any d ∈ H1(Ŝ, p−1(b)).
The direction 〈c1, c2〉 = 0 =⇒ [Tγ1 , Tγ2 ] ∈ ker r2 follows immediately from (3). In this

case the last term vanishes, so the expression becomes symmetric in c1 and c2 and T̃γ1 and T̃γ2

commute in their actions on H1(Ŝ, p−1(b)), as desired.
The reverse implication follows from the formula

(4) tr
(
[T̃γ1 , T̃γ2 ]

)
= 2g + 〈c1, c2〉2〈c2, c1〉2

Given this formula, assume [Tγ1 , Tγ2 ] ∈ ker r2. Any f ∈ ker r2 must have trace tr(f̃) =
tr(r2(f)) = 2g. Thus 〈c1, c2〉2〈c2, c1〉2 = 0, implying that 〈c1, c2〉 = 〈c2, c1〉 = 0 because
〈c2, c1〉 = 0 ⇐⇒ 〈c1, c2〉 = 0 by Lemma 4.3. �

We perform explicitly the simpler computation tr
(
T̃γ1 T̃γ2

)
= 2g + 〈c1, c2〉〈c2, c1〉 (Theorem

4.4 in [6]) as an example; (4) follows by identical methods.
We have already computed the formula (3) for this linear transformation, and we note that

every term is linear in d (recall that 〈·, ·〉 is linear in its first factor). Thus the trace of the
whole expression is the sum of the traces of the terms (regarded as linear functions of d):

tr
(
T̃γ1 T̃γ2

)
= tr(d) + tr(〈d, c1〉c1) + tr(〈d, c2〉c2) + tr(〈d, c2〉〈c2, c1〉c1)

The first term is the trace of the identity, which has trace tr(I2g) = 2g. For the other terms,
recall that in general tr

(
x 7→ g(x)v

)
= g(v). Thus tr(〈d, c1〉c1) = 〈c1, c1〉 = 0 (as discussed after

Lemma 4.3), and similarly tr(〈d, c2〉c2) = 〈c2, c2〉 = 0 and tr(〈d, c2〉〈c2, c1〉c1) = 〈c1, c2〉〈c2, c1〉.
We conclude that

tr
(
T̃γ1 T̃γ2

)
= 2g + 〈c1, c2〉〈c2, c1〉.

In fact, we can show that the commuting relation of Theorem 5.1 is the only relation that
ever arises between the images of twists around separating curves.

Theorem 5.2. Suppose that γ1 and γ2 are separating curves on Sg,1 with lifts c1, c2 ∈ Z[H]2g

such that 〈c1, c2〉 6= 0. Then there are no relations between r2(Tγ1) and r2(Tγ2) in GL2g(Z[H]),
i.e. no nontrivial word in Tγ1 and Tγ2 is in ker r2.

Proof. Suppose for contradiction that w is a nontrivial word in Tγ1 and Tγ2 such that w ∈ ker r2.
Then without loss of generality, we can assume that w is a word of minimal length in its
conjugacy class (as an element of the free group generated by the symbols Tγ1 and Tγ2). Then
there are two possibilities. First, w might be Tn

γ1
or Tn

γ2
for some integer n 6= 0. But this is

impossible because

(5) r2(Tn
γi

)(d) = d + n〈d, ci〉ci

for all d ∈ Z[H]2g by Proposition 4.4, and 〈·, ·〉 is nondegenerate, so r2(w) 6= I2g. In the other
possibility, w can be chosen to be of the form

w = Tm1
γ1

Tn1
γ2
· · ·Tmk

γ1
Tnk

γ2
,

where m1, . . . ,mk and n1, . . . , nk are nonzero integers and k ≥ 1. Now, expanding r2(w)(d) via
the formula (5) and taking the trace as in the previous theorem, we clearly have that tr(r2(w)) is
a polynomial with integer coefficients in 〈c1, c2〉〈c2, c1〉 with leading term m1n1 · · ·mknk(〈c1, c2〉〈c2, c1〉)k.
But we also know that tr(r2(w)) = tr(I2g) = 2g, so 〈c1, c2〉〈c2, c1〉 ∈ Z[H] is the root of a non-
trivial polynomial in Z[X]. This implies that 〈c1, c2〉〈c2, c1〉 ∈ Z ≤ Z[H] since H is free abelian,
so every element of Q[H]\Q is transcendental over Q. But ε(〈c1, c2〉〈c2, c1〉) = (γ1, γ2)(γ2, γ1) =
0, so we have that 〈c1, c2〉〈c2, c1〉 = 0, which is a contradiction. �

Now suppose that 〈c1, c2〉 = 0. Then by Theorem 5.1 we know that r2(Tγ1) and r2(Tγ2) must
commute. But this is again the only relation that arises.
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Theorem 5.3. Suppose that γ1 and γ2 are nonisotopic separating curves on Sg,1 with lifts c1, c2

such that 〈c1, c2〉 = 0. Then the only relations between r2(Tγ1) and r2(Tγ2) in GL2g(Z[H]) are
“commuting” relations; r2(Tγ1) and r2(Tγ2) generate a free abelian group of rank 2.

Proof. This is a simple consequence of the fact that r2(Tm
γ1

Tn
γ2

)(d) = d+m〈d, c1〉c1 +n〈d, c2〉c2.
The lifts of two nonisotopic separating curves are linearly independent, so nondegeneracy of
〈·, ·〉 implies that Tm

γ1
Tn

γ2
∈ ker r2 only if m = n = 0, as desired. �
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