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1 Introduction

The study of the distribution of the primes first came into focus in the late 18th

century when Adrien-Marie Legendre conjectured what is now known as the Prime

Number Theorem. The proof of the theorem which did not arise for another century

was in itself quite enlightening. A seemingly simple statement in number theory could

not be explained without the use of complex analysis.

Both Jacques Hadamard and Charles de la Vallée-Poussin proved the theorem

independently in 1896. They showed:

Prime Number Theorem. Let Π(x) be the number of prime numbers less than or

equal to x. Then Π(x) ∼ x

log x
. [MB06, 40]

The relation ∼, meaning “is asymptotic to” is an equivalence relation over the set

of functions where f ∼ g is limx→∞ f(x)/g(x) = 1. Stated another way, the Prime

Number Theorem says that the density of the primes in the integers is approximately

1/ log x.

Despite the PNT’s not yielding to easy proof, very elementary methods show that

x/ log x is the right order of magnitude of Π(x). (Both Paul Erdös and Atle Selberg

discovered elementary proofs of the PNT in 1949. [Erd49, Sel49])

Theorem 1.1. There exist positive constants A, B such that for sufficiently large x,

Ax

log x
≤ Π(x) ≤ Bx

log x
.

Sketch Proof. The proof requires defining some functions related to Π(x). First,

Λ(n) =





log p, n = pk for some prime p

0, otherwise.

And second,

T (x) =
∑

1≤n≤x
Λ(n)

⌊x
n

⌋
(1)

where b·c is the greatest integer function. While defining the sum over 1 ≤ n ≤ x

may seem strange, it allows for x not to be an integer which will be important in

relating it to Π(x) as Π(x) takes an argument that need not be an integer.
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First, it is important to note that

T (x) =
∑

1≤n≤x
log n

which is shown as follows. Let n be an integer such that its prime factorization is
∏

i p
αi
i . (Note that

∏
here is a product, not the Π function.) Then

Λ(pi)

⌊
x

pi

⌋
=

⌊
x

pi

⌋
log pi

= log p

j
x
pi

k

i

= log pαii .

Applying the fundamental theorem of arithmetic (the unique factorization of all in-

tegers into prime numbers) and that log a + log b = log(ab) gives the desired result

about T .

Then, by approximating the sum by the integral of the summand:

T (x) =
∑

1≤n≤x
log n =

∫ x

1

log tdt+O(log x) = x log x +O(log x). (2)

(Note: Unless otherwise specified, f(x) = O(g(x)) refers to the asymptotic behavior

of f as x→∞. This follows by noting that:

∫ n+1

n

log tdt− log n = (n+ 1) log
n + 1

n
− 1,

so that:

1

log x

(∫ x

1

log tdt−
x∑

n=1

logn

)
=
∑

1≤n≤x

(n+ 1) log n+1
n
− 1

log x
.

The result then follows by using the Taylor expansion of log n+1
n

= log(1 + 1
n
) ≈ 1

n

and noting that allowing x to be non-integer has negligible effect.

Applying the definition of T (equation 1):

T (x)− 2T
(x

2

)
=
∑

1≤n≤x
Λ(n)

(⌊x
n

⌋
− 2

⌊ x
2n

⌋)
, (3)
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and applying equation 2:

T (x)− 2T
(x

2

)
= x log 2 +O(log x). (4)

Then, it is important to note that for real α, 0 ≤ b2αc − 2bαc ≤ 1. The result is

trivial if α is an integer; otherwise, let γ denote the fractional part of α (i.e., α−bαc).
Then

b2αc = b2bαc+ 2γc
≥ b2bαcc because b·c is non-decreasing

= 2bαc because bαc ∈ Z.

Further, noting that γ < 1 and thus 2γ < 2:

b2αc = b2bαc+ 2γc
= 2bαc+ b2γc
≤ 2bαc + 1.

This shows in particular that

0 ≤
⌊x
n

⌋
− 2

⌊ x
2n

⌋
≤ 1.

Thus, equation 3 implies

T (x)− 2T
(x

2

)
≤
∑

1≤n≤x
Λ(n).

Further the terms for n = pi for p a prime contribute at most log p to the sum, and

there are at most blogp xc ≤ logp x = log x
log p

such primes. Then,

T (x)− 2T
(x

2

)
≤
∑

p≤x
(log p)

log x

log p
= Π(x) log x.

This gives the result (from equation 4)

Π(x) ≥ x log 2

log x
+O(1).

(Note that log 2 ≈ 0.693, so this is not far from the bound given in the Prime Number

Theorem of A = 1.)
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Further, taking into account the slow growth of the logarithm function, an upper

bound on the number of primes between x
2

and x may be found:

Π(x)− Π(x/2) ≤ x log 2

log x
2

+O(1).

Applying this identity taking x← x/2 repeatedly and summing over k0 such inequal-

ities gives:

Π(x) ≤ 3 + 2

k0∑

k=1

x/2k

log x/2k
+O(k0)

for appropriately chosen k0. This ultimately leads to the result that

Π(x) ≤ Bx

log x

for sufficiently large x where B is any constant larger than 20
9

. � [MB06, 40-43]

Using better estimates, in 1850, Pafnuty Chebyshev was able to show that

0.921x

log x
≤ Π(x) ≤ 1.105x

log x

for sufficiently large x. [MB06, 40] This result is very close to the PNT. Though the

PNT is a stronger result, it is still worth noting that Euclid proved the that there

are infinitely many primes long before Hadamard and de la Vallée-Poussin proved the

Prime Number Theorem.

Theorem 1.2. There are infinitely many primes.

Proof. By contradiction.

Suppose there is a finite number of primes. Let (pi)
N
i=1 be an ordered enumeration

of the primes; i.e., pi < pi+1. Then pN ! + 1 has a remainder of 1 when divided by any

prime pi. Thus, pN ! + 1 must have a prime factor larger than pN . �

While Euclid’s is one of the earliest known proofs of the infinitude of the primes,

proofs of this nature show-up many times throughout this study. Theorem 1.1 (and

the PNT) both imply that there are infinitely many primes because Π(x) > Ax/ log x

for some A > 0 for sufficiently large x, and x/ log x is unbounded.
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Almost fifty years before Hadamard and de la Vallée-Poussin proved the Prime

Number Theorem, Bernhard Riemann laid some of the important groundwork in

a seemingly minor paper entitled “On the Number of Primes Less Than a Given

Magnitude.” The paper, a mere 8 pages, proposed one of the most famous unsolved

conjectures in mathematics.

Riemann studied what most calculus students know as the p−series. He studied

the analytic properties of

ζ(s) =
∞∑

n=1

1

ns

known as the Riemann zeta function. Initially defined as a function for real s > 1 and

trivially extended to a function for Re(s) > 1, Riemann successfully found an analytic

continuation of ζ to the entire complex plane except for a simple pole at s = 1. It is

easy to show that ζ = 0 for all values −2m for m a natural number. These are known

as the trivial zeros of the zeta function. Riemann further conjectured, without proof:

Riemann Hypothesis. All non-trivial zeros of the Riemann zeta function lie on the

line parameterized by 1
2

+ it, t ∈ (−∞,∞). [MB06, 51,55]

Both Hadamard and de la Vallée-Poussin proved the Prime Number Theorem by

showing that there are no zeros of the ζ function with real part 1 or greater. The

statement of the Prime Number Theorem and the fact that there are no zeros of ζ

with real part 1 or greater are, in fact, equivalent. The Riemann Hypothesis, in fact,

implies better bounds on Π(x) (see equation 5).

The study of the Riemann Hypothesis and the zeta functions was further enhanced

by Richard Dedekind in the late 19th century. Dedekind explored the distribution of

primes in different number fields. He extended the notion of a zeta function:

ζK(s) =
∑

I

1

||I||s

where the sum is taken over all non-trivial ideals of the ring of integers of a number

field K. (The Dedekind zeta function measures the properties of the ring of integers

of a number field which is a Dedekind ring. For more details, see the appendix.) Note

that ζQ(s) is the Riemann zeta function. As will be shown, the Dedekind zeta function
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encodes interesting information about the distribution of prime ideals in the ring of

integers of the number field K. Further, by extending the notion of the zeta function,

Dedekind extended the Riemann Hypothesis to a more generalized statement that ζK

and related L-functions have all of their zeros of the form 1
2

+ it or −2m where t is

real and m is a natural number for all number fields K.

An interesting consequence of the Riemann Hypothesis (RH) is a statement stronger

than the Prime Number Theorem. The RH is equivalent to the statement:

Π(x) =

∫ x

0

dt

log t
+O(

√
x log x) (5)

as x → ∞. [Dav00, 113] The function
∫ x

0
dt

log t
is often written Li(x), the logarithmic

integral. It has been shown empirically that a better result than this is highly unlikely

as deviations in Π(x) are at least Li(
√
x) log log log x. [Bom00, 4] The best known

bounds on the error term in equation 5 is O
(
xe
− A(log x)3/5

(log log x)1/5

)
for some A > 0. [Wei]

The logarithm of this new error term is log x+A(log x)3/5/(log log x)1/5. The logarithm

of the RH error term is 1
2
x + log log x. The first term of the logarithm of the known

error term is, thus, twice as large as what the RH gives, and the second term of the

known error term grows very slowly compared to the RH term. For example, for

x = 10100, it is just 3.4 times larger than the RH term. These, being exponential,

however, are a great deal worse than the RH bounds.

While it has been shown that all zeros of the zeta functions are either of the form

−2m for natural m or in the so-called “critical strip” with real values between 0

and 1, neither the General Riemann Hypothesis nor the original Riemann Hypothesis

has yet been proven. Much work has, however, been done to both ends. A slew of

computational work, for example, has shown that in certain ranges, the Dedekind zeta

functions of certain number fields satisfy the RH (e.g., for a given number field, all

zeros in the critical strip with imaginary parts between 1 and 100 are on the critical

line). Computational efforts to shine light on the Riemann Hypothesis have led to

results including the verification of the Riemann Hypothesis in various neighborhoods

of the critical strip, notably including a neighborhood of 1
2

+ 1022i. [Odl01]
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2 Early Results Regarding Zeta Functions

It is first important to note the convergence of ζ.

Theorem 2.1. For all Re(s) > 1, ζ converges absolutely, and, in particular

1

s− 1
≤ ζ(s) ≤ 1 +

1

s− 1
.

Proof. Let fs(x) = 1
xs

. Then ζ(s) approximates the integral fs in the following way:

∫ ∞

1

fs(x)dx ≤ ζ(s) ≤ 1 +

∫ ∞

1

fs(x)dx.

The first inequality may be seen by viewing ζ(s) as the left-hand sum approximation

of the integral of fs from 1 to ∞, noting that fs is decreasing. Further, the second

inequality follows because ζ(s) is the right-hand sum approximation of the integral of

fs from 1 to ∞ plus the first term of 1. (The first term is problematic in the integral

as 1
xs

has a pole as x = 0.)

Finally, the integral
∫∞

1
fs(x)dx = 1

s−1
, establishing the desired result.

� [Lan70, 157]

A simple modification of the proof above also shows:

Corollary 2.2. ζ is absolutely convergent for all complex s with Re(s) > 1 except

for a simple pole at s = 1 with residue 1.

Proof. The residue at s = 1 follows simply from the inequality in theorem 2.1,

and the absolute convergence for all s with Re(s) > 1 follows from noting that

|zσ+it| = |z|σ for σ, t ∈ R. �

Further, all Dedekind zeta functions are absolutely convergent for s > 1. The

result follows from a result on Dirichlet series, sums of the form
∑

an
ns
.

Lemma 2.3. Let (ak)k be an arbitrary sequence of complex numbers such that

∣∣
n∑

k=1

ak
∣∣ = O(nσ0)
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for some σ0 > 0. Then the sum
∞∑

n=1

an
ns

converges for all s with Re(s) > σ0.

Proof. Let m ≥ n with both m,n large enough so that

∣∣
m∑

k=1

ak
∣∣ ≤ Cmσ0

(respectively, the sum from 1 to n) for some C ∈ R. It will be shown that the partial

sums of
∑
ann

−s form a Cauchy sequence. For Re(s) > σ0,

m∑

k=1

ak
ks
−

n∑

k=1

ak
ks

=
m∑

k=1

ak
ns

+
m−1∑

k=n+1

( k∑

i=1

ai
)( 1

ks
− 1

(k + 1)s

)

=
m∑

k=1

ak
ns

+
m−1∑

k=n+1

( k∑

i=1

ai
)
s

∫ k+1

k

dx

xs+1
.

Let ε > 0,Re(s) ≥ σ0 + ε. Then,

∣∣∣
( k∑

i=1

ai
) ∫ k+1

k

1

xs+1
dx
∣∣∣ ≤ C

∫ k+1

k

1

xRe(s)−σ0+1
.

Thus,
∣∣
m∑

k=1

ak
ks
−

n∑

k=1

ak
ks

∣∣ ≤ C
( 1

nε
+

|s|
ε(m + 1)ε

)
.

� [Lan70, 156-157]

Theorem 2.4. For any number field K, ζK is absolutely convergent for all s with

Re(s) > 1.

Proof. The number of ideals of a given order is at most [K : Q], so |ζK| ≤ [K : Q]|ζ|.

� [Lon77, 123-124]
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Further, it is not apparent that there should be any relationship between the

Riemann zeta functions and the distribution of primes. By invoking the fundamen-

tal theorem of arithmetic, however, the result becomes clear for the Riemann zeta

function.

Theorem 2.5. For all s > 1,

ζ(s) =
∏

p

(
1− p−s

)−1

where the product is taken over all primes p.

Proof.

∞∑

n=1

1

ns
=
∏

p

∞∑

i=1

1

(pi)s
by the fundamental theorem of arithmetic

=
∏

p

1

1− p−s by simplifying the geometric series.

�

Note that this implies Euclid’s theorem on the infinitude of primes. The fact that

ζ has a pole at s = 1 means that there must be an infinite number of primes in order

to make the product above infinite.

This theorem extends similarly to Dedekind zeta functions:

ζK(s) =
∏

P

1

1− ||P ||−s (6)

where the product is taken over all prime ideals P , suggesting a distribution of prime

ideals in the ring of integers of a number field K similar to that of the distribution

of the primes in the integers. (For short-hand, the ideals of the ring of integers of a

number field will be abbreviated as the ideals of the number field.) Note that this

theorem makes use of the multiplicativity of || · ||. Further, note that this theorem

is important in that Dedekind rings are not generally unique factorization domains;

that is, elements of the rings do not factor uniquely. Instead, ideals factor uniquely,
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providing the analog for primes in the integers (which are in a one-to-one, natural

correspondence with the prime ideals).

Another important property of the Riemann zeta function is its analytic continu-

ation (except at s = 1). The continuation to Re(s) > 0 involves a simple trick.

Theorem 2.6. ζ may be extended to a meromorphic function for all Re(s) > 0 with

a simple pole at s = 1.

Proof. Let ζ2(s) =
∑∞

n=1(−1)n+1n−s which converges (conditionally) for Re(s) > 0

by lemma 2.3 (as the partial sums of the numerator are either 1 or 0).

Then

ζ(s) = ζ2(s) +
2

2s
ζ(s), so

ζ(s) =
ζ2(s)

1− 21−s

which provides a meromorphic extension except for possible poles at 1 + 2πin
log 2

for

n ∈ Z. A similar construction,

ζ3(s) =
1

1s
+

1

2s
− 2

3s
+

1

4s
+

1

5s
− 2

6s
+ · · ·

shows, however, that the poles may only occur where 2n = 3m which is impossible as

(2, 3) = 1. � [Mar77, 184-186]

Finally, ζ may be extended analytically to all s ∈ C except for s = 1. A functional

equation for ζ relates ζ(s) to ζ(1− s). (Note that in the functional equation below,

Λ is not the same as the Λ function used in the proof of theorem 1.1. The use of the

letter Λ is maintained as it is standard notation for both.)

Functional Equation. Let Λ(s) = π−s/2Γ( s
2
)ζ(s). Then Λ(s) = Λ(1− s), and s(1−

s)Λ(s) is analytic on the entire complex plane.

Proof. In order to prove the functional equation of ζ, a function with a known

functional equation will be used. The function

θ(t) =
∞∑

n=−∞
e−πn

2t
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has an easy to verify functional equation:

θ(t) =
1√
t
θ

(
1

t

)
.

This follows directly from the fact that e−πx
2

is its own Fourier transform and the

Poisson summation formula. This is the functional equation for θ. Further, let

ψ(t) =
∞∑

n=1

e−πn
2t

so that θ(t) = 1 + 2ψ(t).

Then using that Γ(z) =
∫∞

0
e−ttz−1dt, evaluating at s/2 and using the change of

variables t← n2πt,

π−s/2Γ(s/2)n−s =

∫ ∞

0

e−πn
2tts/2−1dt.

Then, summing over n from 1 to infinity,

π−s/2Γ(s/2)ζ(s) =

∫ ∞

0

ψ(t)ts/2−1dt

for Re(s) > 1. Note that the integral and sum may be interchanged as both are

absolutely convergent for Re(s) > 1. Noting that this is the expression for Λ(s), and

substituting for θ:

Λ(s) =

∫ ∞

1

ψ(t)ts/2
dt

t
+

1

2

∫ 1

0

θ(t)ts/2
dt

t
− 1

2

∫ 1

0

ts/2
dt

t

=

∫ ∞

1

ψ(t)ts/2
dt

t
+

1

2

∫ 1

0

θ(t)ts/2
dt

t
− 1

s
.

Then, using the change of variables t ← 1
t

and applying the functional equation

for θ:

1

2

∫ 1

0

θ(t)ts/2
dt

t
=

1

2

∫ ∞

1

θ(
1

t
)t−s/2

dt

t

=
1

2

∫ ∞

1

θ(t)t
1−s

2
dt

t

=

∫ ∞

1

ψ(t)t
1−s

2
dt

t
+

1

2

∫ ∞

1

t
1−s

2
dt

t

=

∫ ∞

1

ψ(t)t
1−s

2
dt

t
− 1

1− s.
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Thus,

Λ(s) =

∫ ∞

1

ψ(t)
(
t
s
2 + t

1−s
2

)dt
t
− 1

s
− 1

1− s
which is clearly invariant under s← 1− s and analytic when multiplied by s(1− s).

� [Bum]

The functional equation has several important consequences. First, noting that

Γ has a pole at −n, ζ(−2n) must be 0 to satisfy the functional equation as Λ(−2n)

is finite. Second, Γ has a simple pole at s = 0, so ζ(0) is not a pole. (If it were,

then the pole of ζ at s = 1 would not be simple.) Further, it implies that all of

the other zeros of ζ are in the critical strip 0 ≤ Re(s) ≤ 1. There are no zeros for

Re(s) > 1 by the product formula for ζ; thus, there are no zeros other than those

−2m in the regions Re(s) > 1,Re(s) < 0. Further, the zeros in the critical strip are

distributed symmetrically about Re(s) = 1
2
. It also leads to the proof of the PNT (in

its equivalent form about the zeros of ζ).

Theorem 2.7. There are no zeros of ζ on the line Re(s) = 1.

Sketch Proof. From theorem 2.5,

log ζ(s) =
∑

p

∞∑

m=1

m−1p−ms.

Equivalently, letting σ = Re(s), t = Im(s),

log ζ(s) =
∑

p

∞∑

m=1

m−1p−mσe−m log t .

If ζ(1 + it) were zero for some real t, then Re(log ζ(1 + it)) would tend to −∞ as

σ → 1+. This would imply that the real part of the sum,

Re log ζ(s) =
∑

p

∞∑

m=1

m−1p−ms cos(tm log p) (7)

would be dominated by negative terms. However, this would seem to imply that

cos(2tm log p) should also be dominated by negative values. If that were true, then
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Re log ζ(σ + 2it) would also tend to −∞ as σ → 1+. It will be shown that this is a

contradiction.

The result follows from a trigonometric identity. Applying the fact that cos 2θ =

2 cos2 θ − 1, it can be shown that:

0 ≤ 2(1 + cos θ)2 = 3 + 4 cos θ + cos 2θ.

Then, taking θ = t log pm gives

3 cos 0 + 4 cos(t log pm) + cos(2t log pm) ≥ 0.

Multiplying each term by m−1p−mσ and summing over p,m gives:

3 log ζ(σ) + 4Re log(σ + it) + Re log ζ(σ + 2it) ≥ 0

which gives (by exponentiation and noting that the real eRe(z) = |z|)

ζ3(σ)
∣∣ζ4(σ + it)ζ(σ + 2it)

∣∣ ≥ 1 (8)

for σ > 1. (Note that it is necessary that σ > 1 as the product formula for ζ only

applies in this case.)

Further, because s = 1 is a simple pole of ζ, ζ(s) = 1
s−1

+ o( 1
s−1

) as s → 1.

However, if ζ(1 + it) = 0 for some t 6= 0, then

|ζ(σ + it)| < A(σ − 1)

for some A as σ → 1 from the right. However, it can be shown that ζ(σ + 2it) is

bounded, giving a contradiction with inequality 8. This bound on ζ(σ + 2it) follows

from finding a summation formula similar to equation 7 for Re
(
ζ′(s)
ζ(s)

)
.

� [Dav00, 84-87]

Corollary 2.8. There are no zeros of ζ on the line Re(s) = 0.

Proof. This follows directly from the functional equation and theorem 2.7.

The Dedekind zeta function, further, satisfies a functional equation similar to that

of the Riemann zeta function. (For definitions of these terms, see the appendix.)
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Functional Equation. Let r1 denote the number of real embeddings of K, and let

r2 denote the number of conjugate pairs of complex embeddings of K. Then let

ΛK(s) = Γ
(s

2

)r1
Γ(s)r2

(√
|disc(K)|
π

[K:Q]
2 2r2

)s

ζK(s)

Then

ΛK(s) = ΛK(1− s).

Part of what makes the Generalized Riemann Hypothesis and the study of the

Dedekind zeta functions so important is the relationship between a complex function

and inherent properties of number fields. In addition to the discriminant and the

index of the number field in Q, the Dedekind zeta function also contains information

about the regulator of K and the class number. In particular the residue of the pole

at s = 1 combines many important constants:

Theorem 2.9. Let hK denote the class number of K. Let r1 and r2 be the number

of real embeddings and complex conjugate pairs of embeddings of K, respectively.

Let Reg(K) be the regulator of K. And let w be the number of roots of unity in K.

Then

lim
s→1

(s− 1)ζK(s) = hk
2r1(2π)r2Reg(K)

w
√
|disc(K)|

.[Lan70, 161]

The study of so-called L-functions allows for further analysis of Dedekind zeta

functions as well. Let G = (Z/mZ)∗, the multiplicative group of Z/mZ. Then χ is

a character mod m if it is a multiplicative homomorphism G → C∗. Let f denote

the quotient homomorphism Z→ G. Then m is called the conductor of χ if χ is not

induced by a homomorphism G → (Z/lZ)∗; that is, if there is no proper divisor l of

m so that χ is also a character mod l. In this case, χ is called primitive. Then, by

slight abuse of notation, taking χ(n) := χ(f(n)) if (m,n) = 1 and 0 otherwise, the

L-functions are defined for Re(s) > 1

L(s, χ) =
∞∑

n=1

χ(n)

ns
.

Note that the sum may be taken over n with (m,n) = 1 as χ(n) = 0 if (m,n) 6= 1.

The characters χ which are everywhere 1 are generally referred to as the trivial
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characters. Further, most L-functions can trivially be extended to functions that

converge for Re(s) > 0

Theorem 2.10. For χ non-trivial, the sum L(s, χ) converges for all Re(s) > 0.

Proof. Let g0 ∈ G so that χ(g0) 6= 1. (Note that here it is being used that χ is

non-trivial; trivial characters are always 1.) Then the sum

∑

g∈G
χ(g) =

∑

g∈G
χ(g0g) =

∑

g∈G
χ(g0)χ(g) = χ(g0)

∑

g∈G
χ(g).

Thus, the sum must be zero, so the partial sums are O(1), so lemma 2.3 implies the

desired result. �

Further, if χ is trivial, then L(s, 1) = ζ(s). In addition to this result, there is

a functional equation for each L-function that gives an analytic continuation to the

entire complex plane. Also, in a manner similar to the product formulas for ζ and

ζK, L(s, χ) may be written as the product over all primes p:

L(s, χ) =
∏

p

(1− χ(p)p−s)−1 (9)

for Re(s) > 1. Further, the main result on L-functions and ζK allows, for certain K,

a decomposition of ζK into a product of L-functions.

Theorem 2.11. Let K be the field generated by a primitive nth root of unity. Then

ζK(s) =
∏

χ

L(s, χ)

where the product is taken over χ with conductors dividing n.

Proof. Note that because ζK and L both have analytic extensions (except, in the

cases of ζK and L(s, 1) for a simple pole at s = 1), the result will follow if it is shown

for the defining regions of the functions, Re(s) > 1.

Note that by applying the product formulas in equations 6, 9 and taking the

reciprocal of both sides, the result is equivalent to

∏

P |(p)
(1− ||P ||−s) =

∏

χ

(1− χ(p)p−s) (10)
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where the product is taken over all prime ideals lying under (p).

Let r ≥ 0, m ≥ 1 be integers so that n = prm and (m, p) = 1. Then let

{P1, P2, . . . Pg} be the set of prime ideals in the ring of integers of K lying under

(p) so that (P1P2 · · ·Pg)e = (p) where e = φ(pr), the number of divisors of pr. (φ is

often called the Euler totient function.) Then let f be the order of p mod m; that

is, ||Pi|| = pf . Finally, then e, f, g must satisfy efg = φ(n) because n is the degree of

K. This leads to the result that the left-hand side of equation 10 is

g∏

i=1

(1− ||Pi||−s) =

g∏

i=1

(1− p−fs) = (1− p−fs)g.

Now it will be shown that the right-hand-side of 10 is equal to this. Let χ be

a character whose conductor divides n. Let fχ denote the conductor of χ. Then, if

fχ 6 |m, then p|fχ. (This follows from p being prime and dividing n.) In this case,

χ(p) = 0 so that the right-hand side of equation 10 may be written

∏

fχ|m
(1− χ(p)p−s). (11)

Further, for all χ such that fχ|m, there is some χ′ on (Z/mZ)∗ that is induced

by the quotient homomorphism (Z/mZ)∗ → (Z/fχZ)∗. As χ runs through fχ|m, χ′

runs through the dual of (Z/mZ)∗. (An important result in the theory of characters

is that all χ′ on (Z/mZ)∗ are induced by a unique primitive χ.)

Then if z ∈ (Z/mZ)∗ is congruent to p mod m then χ(p) = χ′(z) (because χ′ is

induced by χ). Further, since the order of z is f (by definition), χ′(z) is an f th root

of unity. Then as χ′ runs through all characters on (Z/mZ)∗, χ′(z) runs through the

group of f th roots of unity. In particular, χ′(z) takes the value of each f th root of

unity φ(m)
f

= g times as there are φ(m) elements of (Z/mZ)∗.

This finally allows equation 11 to be reduced to the product over the f th roots of

unity: ∏

ωf=1

(1− ωp−s)−g = (1− p−fs)g.

� [Lon77, 126-127]

More generally, as can be shown by extending the proof above,
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Theorem 2.12. Let G = Aut(K/Q). If G is abelian then

ζK(s) =
∏

χ

L(s, χ)

where the product is taken over all χ where the conductor of χ divides the discriminant

of K. [Lon77, 129], [IK04, 126]

Note, in particular, that if K is a quadratic extensions, Aut(K/Q) is abelian.

3 Zeros of the Zeta Functions

Attempts to prove the Riemann Hypothesis have resulted in much study of the zeta

function. For example, Riemann himself outlined a proof that

Theorem 3.1. Let N(T ) be the number of zeros in the with imaginary part between

0 and T and real part at least 1
2
. Then

N(T ) =
T

2π
log

T

2π
+O(logT ).

Sketch Proof. First, it is useful to define the function

ξ(s) =
1

2
s(s− 1)π−s/2Γ

(s
2

)
ζ(s) =

1

2
s(s− 1)Λ(s).

The function ξ(s) has all of the zeros of ζ with added zeros at s = 0, 1. The advantage

to using Λ(s) over ζ(s) is its symmetry, and the advantage to using ξ(s) over Λ(s) is

that is has no poles (as shown in the proof of the functional equation) and satisfies

the symmetry conditions:

ξ(σ + it) = ξ(1− σ − it); ξ(σ + it) = ξ(σ − it) (12)

for σ, t real. The first statement of symmetry is the same as the functional equation,

and the second basically says that ξ admits conjugates. Further it is important to

note that since sΓ(s) = Γ(s+ 1),

ξ(s) = (s− 1)π−s/2Γ(
s

2
+ 1)ζ(s). (13)
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Without loss of generality, assume T is not a zero of ξ. (If T is a zero then taking

N(T+δ) or N(T−δ) for some δ > 0 should give the desired value of N . It is desirable

that T not be a zero so that the argument principle or Cauchy integral formula may

be applied.) Then let R be the rectangle with vertices {2, 2+iT,−1+iT,−1} oriented

counter-clockwise; that is, R is the boundary of the convex hull of these points.

Then

2πN(T ) = ∆R arg ξ(s)

where ∆R denotes the change along R. Note that the Cauchy integral formula implies

the so-called “argument principle” that for a complex function f , ∆R arg f(s) is equal

to the sum of the residues of the simple poles of f enclosed in R.

Noting the symmetries given in equation 12, the change from 1
2

+ iT to −1 + iT

to −1 is the same as the change from 2 to 2 + iT to 1
2

+ iT . Thus

πN(T ) = ∆L arg ξ(s)

where L is the set of points on the lines connecting 2 to 2 + iT and then 2 + iT to
1
2

+ iT .

Before evaluating N(T ), it is important to note a few results. The first, regarding

the Γ−function, is known as Stirling’s formula which says that as |s| → ∞,

log Γ(s) =

(
s− 1

2

)
log s− s +

1

2
log 2π +O(|s|−1). (14)

(Note that this is analogous to Stirling’s formula for factorials: n! =
√

2πn(n/e)n(1 +

O( 1
n
)).) Further, for real T ,

tan−1 2T =
π

2
+O(T−1)

as shown:

Note that this is equivalent to showing that:

lim
T→∞

∣∣∣T
(

tan−1 2T − π

2

)∣∣∣

is bounded. This is shown by applying L’Höpital’s rule:

lim
T→∞

tan−1 2T − π
2

1
T

= lim
T→∞

2
1+4T 2

− 1
T 2

= −1

2
.
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Then letting σ = Re(s), t = Im(s) and evaluating the change in argument of each

factor of ξ from equation 13:

∆L arg(s− 1) = tan−1(2T ) =
1

2
π +O(T−1)

∆L arg π−
1
2
s = ∆L arg π−

1
2
σe−i

t
2

log π

= ∆L

(
− t

2
log π

)
= −T

2
log π

Further, for the Γ function, applying equation 14,

∆L arg Γ

(
1

2
s+ 1

)
= arg Γ

(
1

4
+ i

T

2
+ 1

)
− arg Γ(2)

= arg Γ

(
5

4
+ i

T

2

)

= Im log Γ

(
5

4
+ i

T

2

)

= Im

((
3

4
+ i

T

2

)
log

(
5

4
+ i

T

2

)
− 1

2
− 5

4
+

1

2
log 2π +O(T−1)

)

=
1

2
T log

1

2
T − 1

2
T +

3

8
π +O(T−1).

Then collecting all of the argument changes above and using equation ??:

N(T ) =
T

2π
log

T

2π
− T

2π
+

7

8
+ ∆L arg ζ(s) +O(T−1).

The remainder of the proof requires showing that ∆L arg ζ(s) = O(logT ). The

crux of this part of the proof is bounding the sum (1+(T−γ)2)−1 where γ runs over the

imaginary parts of the non-trivial zeros of ζ. This sum is, in fact, O(logT ) which ulti-

mately implies ∆L arg ζ(s) isO(logT ) also, completing the proof.� [Dav00, 73, 97-100]

Further, it has been shown that the zeros of the Dedekind zeta functions satisfy:

Theorem 3.2. Let NK(T ) denote the number of zeros of ζK in the critical strip.

Then

NK(T ) ∼ [K : Q]

π
T log T. [HB77, 169]

This theorem leads immediately to the result:
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Corollary 3.3. Let N ′K(T ) denote the number of zeros on the critical line. Then

N ′K(T ) = O(T log T ).

And trivially, if the Riemann Hypothesis is true, then N ′K(T ) ∼ [K:Q]
π
T logT , but

the upper bound has not been shown unconditionally. Letting NK(σ, T ) denote the

number of zeros of ζK(s) with Im(s) ≥ σ, the best unconditional bound is that given

ε > 0, there exists C so that

NK(σ, T ) = O(T ([K:Q]+ε)(1−σ) logC T ). [HB77]

An interesting question remains, however, what the pattern of the low zeros of

the Dedekind zeta function is. It has been shown that

Theorem 3.4. Fix the degree of K. Then for all T , there exists some c(T ) > 0 so

that

NK(T ) = c(T ) log |disc(K)|+ o(|disc(K)|). [Odl01, 11]

It is important to note that this result is not a statement on the asymptotic

behavior of NK as T → ∞, but rather, as |disc(K)| → ∞. In particular, this result

gives the behavior of the small zeros of ζK.

Note that the functional equation shows that the zeros in the critical strip are

distributed symmetrically about Im(s) = 0. Further, the product formula given in

theorem 2.11 shows that ζK for quadratic K shares all of the zeros of the Riemann

zeta function. The first zero of the Riemann zeta function occurs near s = 1
2

+14.135,

and, thus, the first zero of each quadratic Dedekind zeta function can have imaginary

part no larger than 14.135. It has, in fact, been shown that the first zero of every

Dedekind zeta function has imaginary part less than 14. It has further been shown

that the first zero of the Dedekind zeta function is at height 0.54 + o(1) as the degree

of K increases without bound. [Odl89, 11] Let t0(K) denote the first zero of the

Dedekind zeta function for the field K. Then, the following result is conditional:

Theorem 3.5. Assuming GRH,

t0(K) = O

(
1

log2 |[K : Q]|

)
.[Oma02, 1− 2]



Senior Thesis Evan Marshak 24

Further, for a fixed degree, it has been shown conditionally

Theorem 3.6. Assuming GRH,

t0(K) = O

(
1

log log |disc(K)|

)
.[Oma00]

Both of these results follow from an identity due to André Weil.

Theorem 3.7. Let F be a function from the reals to the reals satisfying the two

conditions:

1) F is continuously differentiable except at a finite number of points where it has

a discontinuity of the first kind; i.e., F (x0) = 1
2

(
limx→x+

0
F (x) + limx→x−0 F (x)

)

where x0 is a point of discontinuity.

2) There exists b > 0 such that both F (x) and F ′(x) are O
(
e−( 1

2
+b)|x|

)
as |x| → ∞.

Then let

Φ(s) =

∫ ∞

−∞
F (x)e(s− 1

2
)xdx.

Further, let n = [K : Q], and define the functions

J(F ) =

∫ ∞

0

F (x)

cosh x
2

dx, I(F ) =

∫ ∞

0

(
F (x)

2 sinh x
2

− e−x

x

)
dx.

Then summing over the non-trivial zeros ρ = β + iγ of ζK:

∑

ρ

Φ(ρ) = Φ(0) + Φ(1)− 2
∑

P,m

log ||P ||
||P ||m/2F (m ln ||P ||)+

F (0) (log |disc(K)| − n log(2π))− r1J(F )− nI(F ).[Oma01, 1608]

The sum on the right-hand-side is taken over all prime ideals P and all natural

numbers m.

The result of theorem 3.6, for example, can be found by taking

F (x) =





(1− x) cos πx+ 3
π

sin πx, x ∈ [0, 1]

0, otherwise. [Oma00, 63]

Further, empirically, it seems that an ever better result is possible:



Senior Thesis Evan Marshak 25

Conjecture 3.8. Fixing the signature of K (that is, the numbers r1, r2 which corre-

spond to the number of real, complex embeddings of K, respectively),

t0(K) = O

(
1

log |disc(K)|

)
.[Tol97, 1318]

The fact that the signature is fixed means that the implied constant depends on

(r1, r2).

An interesting follow-up question to the location of the first zero is what hap-

pens to the value of ζK(1
2
). It seems, at first glance, that ζK(1

2
) might tend to 0 as

|disc(K)| → ∞. However, this is not implied by any of the above results. It is easy to

construct a function on a line where the first zero of the function tends to zero, but

the value of the function at 0 is unbounded. Consider the sequence of functions ln

which are lines connecting the points ( 1
n
, 0) and (0, n). Then, the first (only) zero of

ln tends to zero as n→∞, but ln(0)→∞ as n→∞. The value of ζK(1
2
) is explored

more in section 4.

Several factors suggest that t0 should decrease as |disc(K)| increases. First, a

result akin to theorem 2.11 actually applies to all fields where Aut(K) is abelian. For

these fields, as the degree of the field extension increases, there are more L-functions

in the product. When any of these functions has a zero, ζK has a zero. Further,

although theorem 3.2 is a statement about the asymptotic density of zeros, it says

that the density of the zeros of the zeta functions as |disc(K)| increases.

3.1 Methods

The first set of data examines what happens to t0(K) as disc(K) increases.

GP/Pari was used which uses an algorithm due to Emmanuel Tollis. [Tol97] In

order to compute ζK, Tollis’s algorithm first computes several invariants of the field

K related to ζK but not dependent on the choice of s. These invariants include all of

the values in theorem 2.9.

Utilizing the GP/Pari algorithm, zeros were found by starting from s = 1
2
+it, t = 0

and moving up the imaginary axis in increments of ∆t = 1
10

. Let τ(t) denote the zero

given by 3 iterations of Newton’s Method with a starting point of t. Then τ(t) was
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computed and rejected unless |t− τ(t)| < 1
10

in an effort to find the lowest zero. Once

a suitable τ(t) was found, five more iterations of Newton’s Method were run to refine

the estimate. Finally, to ensure that this was, in fact, the lowest zero of ζK, the

integral
1

2πi

∫

γ(τ(t))

ζ ′K(s)

ζK(s)
ds (15)

was computed. Here, γ(τ(t)) is a circle about the point s = 1
2

of radius τ(t). This

gives the number of zeros contained in the circle by the residue theorem. Thus, the

first zero could be verified by ensuring that the this integral minus the trivial zeros

contained in γ (where applicable) and the values of the poles at s = 0, 1 is equal to 1.

Note that while it may seem more computationally efficient to integrate to integrate

around γ(τ(t)) after the first three iterations of Newton’s Method, in practice, it

is more time consuming to compute the integral than a few iterations of Newton’s

Method. Additionally, the first zeros computed by Newton’s Method (for small t)

were often not the lowest zeros.

Further, in an attempt to test the relationship given in theorem 3.4, data were

taken for the number of zeros between imaginary parts 0 and the values 2 log 2, 3 log 3,

4 log 4, 5 log 5, 6 log 6, 7 log 7, and 8 log 8 (approximately 1.39, 3.30, 5.55, 8.05, 10.75,

13.62, and 16.64, respectively) were taken. These were computed using the integral

15 with radii as given (in place of τ(t)). Note that these values were used to get a

distribution of values in a range of small numbers; there is no special significance of

the values n log n.

The values given for the number zeros is generally not integral due to rounding

errors in the computation of the integral. Additionally, though it may seem more

computationally efficient not to compute the integral around such a large circle and,

instead, compute the integrals about several circles and add them, rounding error

makes this difficult. In particular, when the circle of integration is near a zero of ζK,

the rounding may cause errors that are quite large.

Data were collected using fields of the form Q[ m
√
d] (a degree m extension of Q)

with d = 2n + 1. Statistical data and graphs were created using gnuplot. All best-fit

curves were computed as best-fit lines; for example, for NK(T ) = c(T ) log |disc(K)|,
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T c2(T ) Error

1.386 0.172 0.0150

3.296 0.432 0.0225

5.545 0.809 0.0214

8.047 1.217 0.0227

10.751 1.636 0.0132

13.621 2.155 0.0200

16.636 2.579 0.0361

Table 1: Values of c2(T ) (i.e., c(T ) for quadratic fields).

a plot was made of log |disc(K)| versus NK(T ).

3.2 Asymptotic Behavior of NK(T ) as |disc(K)| Grows

As per theorem 3.4, the relationship NK(T ) = c(T ) log |disc(K)| was tested first. The

data for c(T ) are quite suggestive. See, for example, figure 1. In this section, cn(T )

will refer to c(T ) for fields of degree n. (Note that in this section, only the degree of

K matters; the signature does not.) For quadratic and cubic fields, and for all values

of T , the value cn(T ) was found with a relatively high accuracy. The data presented

in tables 3.2 and 3.2 give the values of T , cn(T ), and an error value σ. The last value

corresponds to 2 standard errors, giving a probability of 95.5% that the actual value

of c2(T ) is in the range [c(T )− σ, c(T ) + σ].

Plotting values of c(T ) vs. T gives fairly compelling evidence that the relationship

is simply linear. For quadratic fields, the relationship

c2(T ) = 0.154T

works fairly well as shown in figure 2. The coefficient 0.154 has a standard error of

less than 0.002, meaning that there is a greater than 95.5% chance that the coefficient

is between 0.150 and 0.158. Combining these results,
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T c3(T ) Error

1.386 0.129 0.0294

3.296 0.424 0.0206

5.545 0.747 0.0292

8.047 1.187 0.0426

10.751 1.651 0.0388

13.621 2.142 0.0487

16.636 2.605 0.0687

Table 2: Values of c3(T ) (cubic fields).

Observed Relationship 3.9. For quadratic K and small T (less than 20),

NK(T ) = 0.154T log |disc(K)|.

Further, the coefficient for cubic K is 0.154 ± 0.005. (Here, ± denotes twice the

standard error, corresponding to the same confidence intervals as earlier.)

Figure 1: NK(8 log 8) vs. log |disc(K)| for cubic fields.

The result in observation 3.9 is quite interesting in that is says that the asymptotic

behavior of the zeros of ζK is different from that of small zeros. In particular, as
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Figure 2: c2(T ) vs. T with best-fit line c2(T ) = 0.154T.

T →∞, NK(T ) ∝ T log T as per theorem 3.2, yet they are infinitely less dense in the

regions observed. For small T , NK(T ) ∝ T .

3.3 Asymptotic Behavior of t0(K) as |disc(K)| Grows

Despite conjecture 3.8 being based only on computational evidence, the evidence

found here not only reinforces the work in [Tol97], but makes it seem that the rela-

tionship proposed therein is quite natural. That is, it seems that one may not be able

to improve upon the result

t0(K) = O

(
1

log |disc(K)|

)

as the variations from C
log |disc(K)| for appropriate C are small.

For quadratic fields K with signature (1, 0), the best-fit line for t0 vs. 1
log |disc(K)|

has a slope of 0.961 ± 0.064. This relationship is shown in figure 3. The fact that

the best-fit line has a slope of almost 1 and that its standard error is so low indicates

that this may be close to the best bound possible. In particular, if the coefficient

had a large standard error, it would be reasonable to assume either that t0 is not

bounded above by a multiple of (log |disc(K)|)−1 or that there is a smaller bounding
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function. For example, attempting to fit a curve of the form (log log |disc(K)|)−1 as

per theorem 3.6 yields a significantly larger standard error (in relative terms, more

than twice as large).

Figure 3: t0 vs. 1
log |disc(K)| for quadratic fields. The best-fit line t0 = 0.961

log |disc(K)| is

included.

Note that cubic fields of the form Q[ 3
√
a] for real a have signature (1, 1) as 3

√
a

may be mapped to itself or to a 3
√
ae2πi/3 or 3

√
ae4πi/3. Thus all cubic fields used

here have signature (1, 1). For cubic fields, the same relationship was found; here the

coefficient was found to be 10.942± 0.649. This relationship is reflected in figure 4.

For sixth-degree fields, best-fit straight line has a slope of 21.277± 2.912. (Note that

the larger error here is due to there being less data as the discriminant of sixth-degree

fields grow quite quickly.) This relationship is reflected in figure 5.

4 Values of ζK(1
2
) For Various Number Fields

A natural follow-up to conjecture 3.8 is: What is the value of ζK(1
2

+ 0i) for various

K? It is an open conjecture whether ζK(1
2
) < 0 for all number fields K, but there is

a preponderance of empirical data suggesting that it is true. [Tol97, 1314] First, for

the Riemann zeta function:
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Figure 4: t0 vs. 1
log |disc(K)| for cubic fields with signature (1, 1) along with the best-fit

line which has a slope of 10.942.

Theorem 4.1.

ζ
(1

2

)
< 0.

Proof. Consider the meromorphic extension of ζ given in the proof of theorem 2.6:

ζ(s) =
1

1− 21−s ζ2(s). Then ζ(1
2
) = − 1√

2− 1
ζ2(1/2) so it remains to show that

ζ2(1/2) > 0. This is easily shown:

ζ2

(1

2

)
= 1− 1√

2
+

1√
3
− 1√

4
− · · ·

Grouping pairs of terms:

ζ2

(1

2

)
=
(
1− 1√

2

)
+
( 1√

3
− 1√

4

)
+ · · · ,

all pairs of terms have a positive sum. �

Corollary 4.2. Assuming the Riemann Hypothesis, ζ is negative on (0, 1).

Proof. The Riemann zeta function is real-valued on the real line, and the Riemann

Hypothesis implies that ζ is never zero on (0, 1), so it may not ever be positive either

by the Intermediate Value Theorem. �
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Figure 5: t0 vs. 1
log |disc(K)| for sixth-degree fields with signature (2, 2). The best-fit

line is included; it has a slope of 21.277.

Note that if ζK(1
2
) < 0 for all number fields K, then the General Riemann Hy-

pothesis implies that all Dedekind zeta functions are negative on (0, 1) by similar

reasoning.

Applying theorem 2.11, in order to show that ζK(1
2
) is negative, it remains to show

that the product over the non-trivial characters of the L-functions is positive so long

as Aut(K/Q) is abelian. Though the result is not known in general, the problem is

most approachable when K is a quadratic extension of Q. In these cases, there is

only one non-trivial L-function. For example,

Theorem 4.3. Let K = Q[
√

5]. Then ζK(1
2
) < 0.

Proof. As above, it suffices to show that the quadratic L-function of conductor 5 is

always positive. Then noting that 1 and 4 are squares mod 5 and 2 and 3 are not

(and letting χ be the only non-trivial quadratic character mod 5):

L(s, χ) =
∞∑

n=1

(
1

(5n+ 1)s
− 1

(5n+ 2)s
− 1

(5n+ 3)s
+

1

(5n+ 4)s

)
.

Then evaluating just the summand at s = 1
2
, L
(

1
2
, χ
)

is the sum as n varies from
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1 to ∞ of

1√
(5n+ 1)(5n+ 2)(5n+ 3)(5n+ 4)

(√
5n+ 2

√
5n+ 3

√
5n+ 4 −

√
5n+ 1

√
5n+ 3

√
5n+ 4−

√
5n+ 1

√
5n+ 2

√
5n + 4+

√
5n+ 1

√
5n + 2

√
5n + 3

)
.

The result will then follow if it can be shown that the numerator is positive. The

numerator is equal to:

√
5n+ 3

√
5n+ 4(

√
5n+ 2−

√
5n+ 1) +

√
5n+ 1

√
5n+ 2(

√
5n + 3−

√
5n+ 4)

≥
√

5n+ 1
√

5n+ 2
(
(
√

5n+ 2−
√

5n+ 1)− (
√

5n+ 4−
√

5n+ 3)
)
.

The difference (
√

5n + 2−
√

5n + 1) − (
√

5n+ 4 −
√

5n+ 3) is the difference in the

slopes of two secant lines; these slopes decrease as n increases because
√
x is concave

down. �

4.1 Methods

In order to test the hypothesis that ζK(1
2
) < 0 for all K, the algebra package PARI was

used. Quadratic fields were tested, so it required showing that quadratic L-functions

are positive for s = 1
2
. In order to facilitate theoretical work, however, it was not

simply tested whether or not L( 1
2
, χ) > 0; as in the proof of theorem 4.3, sequences

of length disc(K) were tested. The purpose of testing strings of this length is that it

motivates theoretical proof by a similar method as above.

The L-functions were initialized by creating a vector χi of length disc(K) that

contained the values of χ(i) for 1 ≤ i ≤ disc(K). In particular, χi has ϕ(disc(K))

non-zero entries as χ(n) = 0 if n is not an element of (Z/disc(K)Z)∗. Let K = Q[
√
p]

with p prime. Then if p is 1 mod 4, then the discriminant of K is p, and entries of

χi were simply given by 1 if i is a square mod p and −1 if i is not a square mod p.

For p ≡ 3 mod 4, the discriminant of K is 4d, so there are fewer entries in χi than

simply 4d− 1. The vector was initialized to zero, and then the values of χi were then

filled in for values of i that were prime and less than 4d. The remaining elements of

(Z/disc(K)Z)∗, those that are coprime with 4d but not prime were then calculated

based on their prime factorizations.
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Finally, the tests were performed for fields Q[
√
p] for primes up to 104, and the

first 1000 terms were tested.

4.2 Findings

The results were verified in all cases tested. The computations suggest that an al-

gebraic solution may be plausible for the general quadratic case. For higher degree

extensions of Q, however, the summation formula is less useful than the product for-

mula as L(s, χ) is not, in general, real for s real, and the formula may only be directly

applied for K with abelian Aut(K/Q). A simple example requires looking at a cubic

character; here two-thirds of the non-zero values are mapped to either e
2πi
3 or e

4πi
3 .

(It is important to note, however, that the product of all of the cubic L-functions of

a given conductor must be real for s real as the product is ζk(s).)

It is also interesting to note that ζK(1
2
) being negative for all K is a surprising

asymmetry for an analytic function satisfying a functional equation relating ζK(s)

to ζK(1 − s). In particular, the zeroes of the zeta functions in the critical strip are

distributed symmetrically about the real axis and the line Re(s) = 1
2

despite the fact

that ζK(1
2
) is not zero.

5 Future of the Riemann Hypothesis

One of the most important applications of the Riemann Hypothesis today is in pri-

mality testing. The RSA encryption algorithm, in which factoring large numbers

that are the product of exactly two primes is equivalent to cracking the cipher, has

brought primality testing into the forefront of computational theory. For example,

Gary Miller has developed a primality testing algorithm that runs in O(log4 n) time

assuming the GRH. The search for a fast and unconditional algorithm ultimately led

in 2004 to the discovery of a comparatively very fast algorithm for primality testing

that requires only O(log15/2 n) time to compute. The so-called AKS algorithm’s va-

lidity is unconditional; that is, its primality testing capability does not depend on

the truth of the RH. This is a fairly astounding result and shows that proving the
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Riemann Hypothesis (in one form or another) may be helpful to the study of primes,

but there may still be room for improvement without the GRH. [Sar04, 4]

Further, the testing of the Riemann Hypothesis itself does not seem to be yielding

to computational force yet; that is, computations have not yet disproved the RH (or

GRH) which might lead one to assume that either the scale of computation must be

drastically increased to find a counterexample, or the RH is true. Unfortunately, at

the present time, computations for large discriminants (1010 and larger) are slow and

resource-intensive. Because the algorithm implemented in GP/Pari requires calculat-

ing many invariants of the field before computing ζK, it requires on the order of 1

gigabyte of memory. (Some calculations required upwards of 3 to 4 gigabytes while

others required only a few kilobytes.) Further, a long list of primes must be computed

to increase the precision of calculations and have a list that can be accessed on-the-fly.

Further, calculation times were anywhere from 10 seconds to almost a week.

Locating the low zeros of the Dedekind zeta functions took a couple of minutes for

low discriminants (on the order of 100) and a couple of days for large discriminants (on

the order of 1010). Computation times were significantly larger for counting zeros on

the critical line, ranging from minutes to the better part of a week. All computations

were performed on a 3.60 GHz Intel Xeon. These CPUs use a 64-bit architecture and

have a 2 megabyte on-chip cache.

Future theoretical work might try to prove the relation in theorem 3.8. Interest-

ingly, the theorem has not even been shown conditionally; it has only been verified

computationally for a range of finite discriminants. Any unconditional bound better

than the current would be welcomed, as the current bound is t0(K) is bounded above

by a constant plus o(1) which does not relate any properties of K to t0(K) despite a

fair deal of evidence that there is such a relation.

Lastly, an obvious extension of the work done here is to attempt the same compu-

tations with larger degree fields. Despite the relatively slow computations of ζK for

large discriminants (and thus large degree), they are not so insurmountable that the

calculations cannot be completed given a reasonable amount of time, nor are they

outside of the reach of standard computing technology. An interesting twist, however,

is a paper written by Wim van Dam suggesting fast algorithms for approximating the
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zeros of some zeta functions using quantum computers. [vD04]
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A Terms and Notation

∝ f(x) ∝ g(x) means that f(x) = cg(x) for some c ∈ R.

|| · || For an element x of a ring A, ||x|| is the order of A/xA.

Class Number Two ideals A,B are said to be equivalent if there exist nonzero α, β

such that αA = βB. The class number is the number of classes of

ideals under this equivalence relation. [Mar77, 5] The class number of

Z is 1. An important (and computationally difficult) problem in

algebraic number theory is finding the class number of the ring of

integers for an arbitrary number field.

Dedekind Ring A ring where every ideal may be factored into prime ideals. Equivalently,

Equivalently, Dedekind rings are Noetherian, integrally-closed rings where

all nonzero prime ideals are maximal. [Lon77, 1] Examples include the

ring of integers of a number field.

Discriminant An invariant of a number field K (under automorphism) derived from

the determinant of the matrix whose entries are σiwj where σi are

the embeddings of K in C and wj are n elements of K. [Lon77, 80-81]

Embedding An embedding of a number field K is a homomorphism K → K ′ ⊂ C
such that the K ′, the image of K is isomorphic to K. Such

homomorphisms must map Q to itself. Consider the field Q[x]/f(x) for

irreducible f(x) ∈ Z[x]. Then all real embeddings take roots of f to

values of the same degree, and complex embeddings take them to complex

value of the same degree. It becomes clear why complex embeddings

should come in pairs when noting that they rotate a root r around the

circle |r|eiθ .
Ideal A subset of a ring which is closed under addition and scalar multiplication

(where scalars are elements of the ring).

Number Field A number field is a subfield of C with finite degree over Q. [Mar77, 12]

o(·) f(x) = o(g(x)) if and only if f(x)
g(x) → 0 as x tends to some limit; unless

otherwise specified, the implied limit is x→∞. Generally, o(·) is used

as an error term meaning that the error term is o(·).
O(·) f(x) = O(g(x)) for functions f, g : R→ R if and only if there exists

C ≥ 0, x0 ∈ R such that for all x ≥ x0, f(x) ≤ Cg(x). Equivalently, f(x)
g(x)

is bounded as x→∞. As with o(·), it is generally used to bound an

error term. In this paper, O(·) may also be used to refer to the limit as

|x| → ∞ which is be made explicit.

Prime Ideal An ideal P of a ring R such that P/R is an integral domain. In general,

in the ring of integers of a number field, one cannot expect to be able to

uniquely factor every number. Instead, in Dedekind rings, there is a

unique factorization of ideals into prime ideals.

Pole A function f has a pole at z0 if limz→z0 f(z) =∞.
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Regulator An invariant of a number field that appears in the class number formula.

For details, see [Mar77, chapter 6].

Residue In complex analysis, the residue of a function f at z0 is

the coefficient of (z − z0)−1 in the Laurent series of f . In particular, f

has a simple pole as z0, its residue is limz→z0(z − z0)f(z).

Signature The ordered pair (r1, r2) where r1 is the number of real embeddings of a

number field K and r2 is the number of conjugate pairs of complex

embeddings. Note that r1 + 2r2 is the degree of K.

Simple Pole A pole z0 of a function f where limz→z0(z − z0)f(z) exists (and is equal

to the residue.)

Ring of Integers The ring of integers of a number field K is the set of all roots in K of

monic polynomials in Z[x].



Senior Thesis Evan Marshak 39

References

[Bom00] Enrico Bombieri. The Riemann Hypothesis. In Problems of the Millennium.

Institute for Advanced Study, 2000.

[Bum] Daniel Bump. The zeta function. http://www.maths.ex.ac.uk/∼mwatkins/zeta/bump-

fnleqn.ps.

[Dav00] Harold Davenport. Multiplicative Number Theory. Springer, 3rd edition,

2000.

[Erd49] Paul Erdös. On a new method in elementary number theory which leads

to an elementary proof of the pr ime number theorem. Proceedings of the

National Academy of Sciences, 35:374–384, 1949.

[HB77] D.R. Heath-Brown. On the density of the zeros of the Dedekind zeta func-

tion. Acta Arithmetica, pages 169–181, 1977.

[IK04] Henryk Iwaniec and Emmanuel Kowalski. Analytic Number Theory, vol-

ume 53 of Colloquium Publications. American Mathematical Society, 2004.

[Lan70] Serge Lang. Algebraic Number Theory. Addison-Wesley, 1970.

[Lon77] Robert L. Long. Algebraic Number Theory. Marcel Dekker, 1977.

[Mar77] Daniel A. Marcus. Number Fields. Springer-Verlag, 1977.

[MB06] Steven J. Miller and Ramin Takloo Bighash. An Invitation to Modern Num-

ber Theory. Princeton University Press, 2006.

[Odl89] A.M. Odlyzko. Bounds for discriminants and related estimates for class

numbers, regulators and zeros of zeta functions: A survey of recent results.
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