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GRADIENTS OF LAPLACIAN EIGENFUNCTIONS
ON THE SIERPINSKI GASKET

JESSICA L. DEGRADO, LUKE G. ROGERS, AND ROBERT S. STRICHARTZ

(Communicated by Michael T. Lacey)

Abstract. We use spectral decimation to provide formulae for computing the
harmonic tangents and gradients of Laplacian eigenfunctions on the Sierpinski
Gasket. These formulae are given in terms of special functions that are defined
as infinite products.

1. Introduction

There are few functions more ubiquitous in Euclidean analysis than the sine, co-
sine and exponential, which are the eigenfunctions of the Laplacian on an interval
in R. In the theory of analysis on fractals, the Laplacian eigenfunctions arguably
have an even more prominent role, as the Laplacian is the fundamental differential
operator on which the analysis is based. Despite this, there are a number of in-
teresting open questions about the structure of such eigenfunctions. In this paper
we consider the local behavior of Laplacian eigenfunctions on the Sierpinski Gas-
ket (SG), in terms of the harmonic tangents and gradients introduced by Teplyaev
in [9]. Using the spectral decimation method of Fukushima and Shima [1] (see also
Chapter 3 of [8]) we give infinite product formulae for the tangents at boundary
points and use them to describe the one-sided tangents at junction points. These
results may be seen as a Sierpinski Gasket version of the well-known formulae for
the derivatives of the sine and cosine functions on an interval, though the precise
analogue on [0, 1] is more complicated (see Equations 2.2–2.4). Calculations of this
type are significant in the setting of p.c.f. self-similar fractals like SG because of the
importance of recursive self-similar constructions that rely on matching properties
of the harmonic tangent and gradient at junction points. The best known of these
is Kigami’s construction of the Green’s function [3]. Our results should allow these
methods to be generalized from piecewise harmonic functions to piecewise eigen-
functions. In particular, they will be used in a forthcoming paper [2] to obtain the
resolvent of the Laplacian on SG by a method analogous to that used by Kigami.

The Sierpinski Gasket is the simplest non-trivial example of a fractal to which the
standard theory of analysis on fractals applies. We refer to the monographs [3, 8]
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for detailed proofs of all results we use from this theory. Recall that SG ⊂ R
2 is the

attractor of an iterated function system consisting of three maps Fi(x) = (x+qi)/2,
where the points q0, q1 and q2 are the vertices of an equilateral triangle. This
means that SG =

⋃
i Fi(SG), where the sets Fi(SG) are usually referred to as

1-cells. For a length m word w = w1 . . . wm with letters wj ∈ {0, 1, 2} we define
Fw = Fw1 ◦ · · · ◦ Fwm

and call Fw(SG) an m-cell. The points qi, i = 0, 1, 2, are
the boundary of SG; the set of boundary points is V0, and we use Vm to denote
points of the form Fw(qi), where w is a word of length m. These Vm are vertices
of the usual graph approximation of SG at scale m, in which vertices x and y are
joined by an edge (written x ∼m y) if they belong to a common m-cell. Clearly
V∗ =

⋃
m Vm is dense in SG.

The Laplacian ∆ on SG is a renormalized limit of graph Laplacians ∆m on the
m-scale graphs:

∆u(x) =
3
2

lim
m→∞

5m∆mu(x),(1.1)

∆mu(x) =
∑

y∼mx

(
u(y) − u(x)

)
for x ∈ Vm \ V0,(1.2)

and we say u ∈ dom(∆) if the right side of (1.1) converges uniformly on V∗ \ V0 to
a continuous function. The function is extended to SG by continuity and density
of V∗. At a boundary point qi ∈ V0 there is an associated normal derivative defined
(with qi+3 = qi) by

∂nu(qi) = lim
m→∞

(5
3

)m(
2u(qi) − u(Fm

i (qi+1)) − u(Fm
i (qi+2))

)
.

A harmonic function h is one for which ∆h = 0, and for any assignment of values
on V0 there is a unique harmonic function with these boundary values. For this
reason we identify the harmonic functions with the space of functions on V0. The
harmonic functions are also graph harmonic, so it is elementary to compute the
values of h on V1 from those on V0, and recursively to obtain the values on Vm

for any m. It will be useful to formalize this by defining the harmonic extension
matrices Ai, which map the values of h on V0 to those on Fi(V0), by⎛

⎝h ◦ Fi(q0)
h ◦ Fi(q1)
h ◦ Fi(q2)

⎞
⎠ = Ai

⎛
⎝h(q0)

h(q1)
h(q2)

⎞
⎠

and more generally
(
h◦Fw(q0), h◦Fw(q1), h◦Fw(q2)

)T = Aw

(
h(q0), h(q1), h(q2)

)T ,
where Aw = Awm

Awm−1 · · ·Aw1 . We usually write this in the compact form

h
∣∣
FwV0

= Awh
∣∣
V0

.

The matrices are

A0 =
1
5

⎛
⎝5 0 0

2 2 1
2 1 2

⎞
⎠ , A1 =

1
5

⎛
⎝2 2 1

0 5 0
1 2 2

⎞
⎠ , A2 =

1
5

⎛
⎝2 1 2

1 2 2
0 0 5

⎞
⎠ .

The structure of the eigenfunctions of the Laplacian is similar to that of the
harmonic functions. Specifically, it is true on SG that if m is sufficiently large,
then the restriction of a function u satisfying −∆u = λu from SG to Vm gives an
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eigenfunction of the graph Laplacian −∆mu = λmu, with

λm(5 − λm) = λm−1,(1.3)

λ =
3
2

lim
m→∞

5mλm.(1.4)

Note that (1.3) implies that λm is one of 1
2 (5 ±

√
25 − 4λm−1), but the positive

root is permitted to occur only for finitely many values of m in order that the
limit in (1.4) exists. This spectral decimation property was first recognized by
Fukushima and Shima [1]. It is not true on all fractals, but on those where it is
valid, it gives both a method for computing the spectrum and a recursion for the
eigenfunctions [4]. Let us define

A0(λ) =
1

(5 − λ)(2 − λ)

⎛
⎝(5 − λ)(2 − λ) 0 0

(4 − λ) (4 − λ) 2
(4 − λ) 2 (4 − λ)

⎞
⎠(1.5)

A1(λ) =
1

(5 − λ)(2 − λ)

⎛
⎝(4 − λ) (4 − λ) 2

0 (5 − λ)(2 − λ) 0
2 (4 − λ) (4 − λ)

⎞
⎠(1.6)

A2(λ) =
1

(5 − λ)(2 − λ)

⎛
⎝(4 − λ) 2 (4 − λ)

2 (4 − λ) (4 − λ)
0 0 (5 − λ)(2 − λ)

⎞
⎠(1.7)

provided λ �= 2, 5. The essence of the spectral decimation method on SG may then
be summarized in the following theorem, which we have taken from Sections 3.2
and 3.3 of [8].

Theorem 1.1 (Spectral Decimation Method). If (∆ + λ)u = 0, then there is
a sequence {λm}m≥m0 satisfying (1.3) and (1.4), and such that λm �= 2, 5, 6 for
m > m0, with the property that (∆m +λm)u

∣∣
Vm

= 0 for all m ≥ m0. The values of
u on Vm for m > m0 can be constructed recursively using the matrices from (1.5),
(1.6), and (1.7) as follows. If w = w1w2 . . . wm, then

(1.8) u
∣∣
Fw(V0)

= Awm
(λm)Awm−1(λm−1) · · ·Awm0+1(λm0+1)u

∣∣
Fw1...wm0

(V0)
,

and we call this the spectral decimation relation.
If λ is not a Dirichlet eigenvalue, then we may assume m0 = 0, at which point

the condition (∆m0 + λm0)u
∣∣
Vm0

= 0 is taken to be vacuous. The corresponding
eigenspace is 3-dimensional and parametrized by the values of u on V0.

If λ is Dirichlet, several possibilities occur. We indicate the initial configurations,
all of which may then be continued by the spectral decimation formula. Spanning
sets for the configurations when m0 = 1 are shown in Figure 1. The one on the
left has λ1 = 2 while those on the right have λ1 = 5. If m0 ≥ 2, then λm0 = 5
or λm0 = 6, and in the latter case λm0+1 = 3. Those with λm0 = 5 are formed
from scaled and rotated copies of the functions on the right in Figure 1, arranged
so that their normal derivatives cancel. A basis of chains for m0 = 2 is shown in
Figure 2; those for general m are naturally indexed by the loops in Vm, plus two
strands connecting points of V0. In the case λm0 = 6 the eigenfunctions are indexed
by points in Vm0−1 \ V0; a basis is obtained by scaling and rotating two copies of
the function on the left in Figure 3 and gluing them at the chosen point, as shown
on the right in Figure 3 for the case m0 = 2 and a point in V1.
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Figure 1. Dirichlet eigenfunctions with m0 = 1
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Figure 2. A basis of chains for m0 = 2 and λm0 = 5
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Figure 3. Eigenfunction construction in the case λm0 = 6

2. Tangents and gradients of eigenfunctions

In [9], Teplyaev introduced the notion of a harmonic gradient and harmonic
tangent for functions on the Sierpinski Gasket. He also proved that functions in
the domain of the Laplacian have harmonic gradients at all points in a set of
full measure and that functions with Hölder continuous Laplacian have harmonic
gradients at all points. Eigenfunctions of the Laplacian fall into the latter category
because of the well-known fact that continuity of ∆2u implies Hölder continuity of
∆u ([3], Lemma 2.2.5).

Definition 2.1. Let w = w1w2 . . . be an infinite word, and [w]m = w1w2 . . . wm

be the length m truncation of w. If u is a function on SG, we let H[w]mu be the
harmonic function on SG which coincides with u on F[w]m(V0), so

(2.1) H[w]mu = A−1
[w]m

u
∣∣
F[w]m (V0)

= A−1
w1

· · ·A−1
wm

u
∣∣
F[w]m (V0)

.

Define the harmonic tangent Twu of u at w to be limm→∞ H[w]mu if the limit
exists. It should be remarked that there can be two words w and w′ such that
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Fw(SG) = Fw′(SG). We will nonetheless treat the tangents Tw and Tw′ separately,
as they are rarely equal.

The harmonic gradient Gradw u is defined in the same way, but using the space
of harmonic functions with zero mean value and the projection of the action of the
matrices Ai to this subspace. It is evident that if u is continuous, then the gradient
exists whenever the tangent exists, and conversely. See [7] for details.

If we consider the interval [0, 1] rather than the Sierpinski Gasket, then it is
clear that the harmonic tangent at x0 is the vector

(
L(0), L(1)

)T characterizing
the unique linear function L(x) having the properties L(x0) = f(x0) and L′(x0) =
f ′(x0). For an eigenvalue λ ∈ R which is not equal to π2k2 for any k ∈ N, it may
readily be verified that the harmonic tangent is given by

(2.2) M(x0)
(

f(0)
f(1)

)
,

where

(2.3) M(x0) =
1

sin
√

λ

(
a + b a − b
a − b a + b

)

and

(2.4) a = sin
(
(1 − x0)

√
λ
)

, b =
√

λx0 cos
(
(1 − x0)

√
λ
)

.

We cannot obtain as explicit a description of the harmonic tangent on SG; however,
we produce formulae that permit its computation at any point of V∗. The key
observation is that when u is an eigenfunction, the computation of the tangent has
a particularly elegant structure. Recall from Theorem 1.1 that the values of u on
F[w]m(V0) may be computed using the spectral decimation method, meaning that
starting from a scale m0 they can be obtained as in (1.8). Combining this with (2.1)
we see that

Twu = lim
m→∞

A−1
w1

· · ·A−1
wm

· Awm
(λm) · · ·Awm0+1(λm0+1) u

∣∣
Fw1...wm0

(V0)

=
(
A−1

w1
· · ·A−1

wm0

)
·

·
(

lim
m→∞

A−1
wm0+1

· · ·A−1
wm

· Awm
(λm) · · ·Awm0+1(λm0+1)

)
u
∣∣
Fw1...wm0

(V0)
(2.5)

in which we know the limit exists by Theorem 3 of [9]. A special case occurs when
Fw(SG) is a point in V∗, because in this case all but finitely many letters in the
word w are equal to a single letter i. By taking m0 to be sufficiently large we see
that it is useful to understand the limit

lim
k→∞

A−k
i · Ai(λm0+k) · · ·Ai(λm0+1)

and it is evident from the symmetry of the matrices Ai and Ai(λ) that it suffices
to deal with the case i = 0.
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Theorem 2.2. Let α = (0, 1, 1)T , β = (0, 1,−1)T , γm = (4, 4 − λm, 4 − λm)T . If
neither of the values 2 or 5 occurs in the sequence {λm}m>m0 , then

lim
k→∞

A−k
0 · A0(λm0+k) · · ·A0(λm0+1) α=

4λ

3 · 5m0λm0(2 − λm0+1)

∞∏
j=2

(
1−λm0+j

3

)
α,

lim
k→∞

A−k
0 · A0(λm0+k) · · ·A0(λm0+1) β=

2λ

3 · 5m0λm0

β,

lim
k→∞

A−k
0 · A0(λm0+k) · · ·A0(λm0+1) γm0 = (4, 4, 4)T .

Proof. Observe that α and β are eigenvectors of A0(λ), with the eigenvalues
(6 − λ)(2 − λ)−1(5 − λ)−1 and (5 − λ)−1 respectively, provided λ �= 2, 5. As
A0 = A0(0) is a special case, we compute immediately that

lim
k→∞

A−k
0 · A0(λm0+k) · · ·A0(λm0+1)β = lim

k→∞
5k

k∏
j=1

(5 − λm0+j)−1β.

However, induction on (1.3) implies that λm0 = λm0+k

∏k
j=1(5−λm) and therefore

lim
k→∞

A−k
0 · A0(λm0+k) · · ·A0(λm0+1)β = lim

k→∞
5kλm0+kλ−1

m0
β =

2λ

3 · 5m0λm0

β.

The corresponding computation for α can be simplified by observing from (1.3)
that (6 − λm) = (3 − λm+1)(2 − λm+1), whereupon

lim
k→∞

A−k
0 · A0(λm0+k) · · ·A0(λm0+1)α

= lim
k→∞

(5
3

)k k∏
j=1

(6 − λm0+j)
(5 − λm0+j)(2 − λm0+j)

α

= lim
k→∞

(
2 − λm0+k

2 − λm0+1

)(
5k

k∏
j=1

1
5 − λm0+j

)(
3−k

k∏
j=1

(3 − λm0+j+1)
)

α

=
(

2
2 − λm0+1

)(
2λ

3 · 5m0λm0

) k+1∏
j=2

(
1 − λm0+j

3

)
α,

where we used the previously computed limit for the middle factor and the fact
that λm = O(5−m) as m → ∞ from (1.4).

For γm the situation is a little different. Observe that

A0(λm+1)γm = (2−λm+1)−1(5−λm+1)−1

⎛
⎝ 4(2 − λm+1)(5 − λm+1)

4(4 − λm+1) + (4 − λm)(6 − λm+1)
4(4 − λm+1) + (4 − λm)(6 − λm+1)

⎞
⎠ .

However, we can perform the following simplification from (1.3):

4(4 − λm+1) + (4 − λm)(6 − λm+1)

= 4(4 − λm+1) + (4 − 5λm+1 + λ2
m+1)(6 − λm+1)

= 4(4 − λm+1) + (4 − λm+1)(1 − λm+1)(6 − λm+1)

= (4 − λm+1)(10 − 7λm+1 + λ2
m+1)

= (4 − λm+1)(5 − λm+1)(2 − λm+1).



LAPLACIAN EIGENFUNCTIONS ON THE SIERPINSKI GASKET 537

Inserting this into the previous computation shows that A0(λm+1)γm = γm+1 pro-
vided λm �= 2, 5, and therefore A0(λm0+k) · · ·A0(λm0+1)γm0 = γm0+k. To proceed
we must apply A−k

0 to γm0+k, which is most easily done by writing it in terms of
eigenvectors as γm0+k = (4, 4, 4)T − λm0+kα. The result is

lim
k→∞

A−k
0 · A0(λm0+k) · · ·A0(λm0+1)γm0 = lim

k→∞
A−k

0

(
(4, 4, 4)T − λm0+kα

)

= lim
k→∞

(
(4, 4, 4)T −

(5
3

)k

λm0+k

)

= (4, 4, 4)T

because λm = O(5−m) as m → ∞. �

Theorem 2.3. Suppose that w is a word of the form w = [w]k0000 · · · , that
(∆ + λ)u = 0 and that m0 is chosen large enough that the spectral decimation
formula holds with λm �= 2, 5, 6 when m > m0. If k = max{k0, m0}, then

(2.6) Twu =
(
A−1

w1
· · ·A−1

wk

)
M0(λ, k) Awk

(λk) · · ·Awm0+1(λm0+1) u
∣∣
Fw1...wm0

(V0)
,

where

(2.7) M0(λ, k) =

⎛
⎜⎝

1 0 0
1 − (4−λk)λτk(λ)

3·5kλk

λ(2τk(λ)+1)
3·5kλk

λ(2τk(λ)−1)
3·5kλk

1 − (4−λk)λτk(λ)
3·5kλk

λ(2τk(λ)−1)
3·5kλk

λ(2τk(λ)+1)
3·5kλk

⎞
⎟⎠

and

τk(λ) =
1

(2 − λk+1)

∞∏
j=2

(
1 − λk+j

3

)
.

Proof. From (2.5) we have

Twu =
(
A−1

w1
· · ·A−1

wk

)(
lim

m→∞
A

−(m−k)
0 · A0(λm) · · ·A0(λk+1)

)
u
∣∣
Fw1...wk

(V0)

=
(
A−1

w1
· · ·A−1

wk

)(
lim

m→∞
A

−(m−k)
0 · A0(λm) · · ·A0(λk+1)

)

· Awk
(λk) · · ·Awm0+1(λm0+1) u

∣∣
Fw1...wm0

(V0)

because wj = 0 for j ≥ k and spectral decimation applies for j ≥ m0. The result is
therefore equivalent to

M0 = lim
m→∞

A
−(m−k)
0 · A0(λm) · · ·A0(λk+1),

which follows from Theorem 2.2. �

Projection onto the subspace of harmonic functions with mean zero immediately
yields the harmonic gradient.
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Corollary 2.4. Under the hypotheses of Theorem 2.3, the harmonic gradient is
given by

Gradw u =
(
A−1

w1
· · ·A−1

wk

)
M0(λ, k) Awk

(λk) · · ·Awm0+1(λm0+1) u
∣∣
Fw1...wm0

(V0)

−
((

1 − 2(4−λk)λτk(λ)
325kλk

)
, 4λτk(λ)

325kλk
, 4λτk(λ)

325kλk

)

· Awk
(λk) · · ·Awm0+1(λm0+1) u

∣∣
Fw1...wm0

(V0)

⎛
⎝1

1
1

⎞
⎠ .

Proof. We obtain Gradw u from Twu by subtracting the mean value. Since all of
the Ai matrices preserve constants, it suffices to find the mean value of

M0(λ, k) Awk
(λk) · · ·Awm0+1(λm0+1) u

∣∣
Fw1...wm0

(V0)
,

which is simply(
1 − 2(4−λk)λτk(λ)

325kλk
, 4λτk(λ)

325kλk
, 4λτk(λ)

325kλk

)
·Awk

(λk) · · ·Awm0+1(λm0+1) u
∣∣
Fw1...wm0

(V0)
.

�

Remark 2.5. The function τk(λ) may appear to depend on the sequence {λj}, but
in fact this sequence is uniquely determined by λ. Indeed, there is an entire analytic
function Ψ(z) with the property that λj = Ψ(5−jλ). To see this, let ψ(z) = z(5−z)
and ψm(z) = ψ◦m( 2

35−mz). The sequence ψm(z) consists of entire functions with
ψm(0) = 0 and ψ′

m(0) = 2
3 , so is normal with limit Ψ(z), a power series for which

may be computed recursively. It is then clear that Ψ(5−jλ) = limm Ψ( 3
25m−jλm) =

limm ψm−j(λm) = λj . Moreover, we may define

(2.8) Υ(λ) =
1

(2 − Ψ(5−1λ))

∞∏
j=2

(
1 − Ψ(5−jλ)

3

)
,

at which point τk(λ) = Υ(5−kλ). In the same way that certain functions (e.g. Bessel
and Gamma functions) that frequently arise in the study of differential equations
in Euclidean analysis are termed “special functions”, we suggest that the common
occurrence of the functions Ψ(λ) and Υ(λ) in analyzing differential equations on
SG (see for example [5, 6]) qualifies them as special functions in analysis on the
Sierpinski Gasket. In terms of these functions, (2.7) has the form

M0(λ, k) =

⎛
⎜⎜⎝

1 0 0

1 − λ
(
4−Ψ(5−kλ)

)
Υ(5−kλ)

3·5kΨ(5−kλ)

λ
(
2Υ(5−kλ)+1

)
3·5kΨ(5−kλ)

λ
(
2Υ(5−kλ)−1

)
3·5kΨ(5−kλ)

1 − λ
(
4−Ψ(5−kλ)

)
Υ(5−kλ)

3·5kΨ(5−kλ)

λ
(
2Υ(5−kλ)−1

)
3·5kΨ(5−kλ)

λ
(
2Υ(5−kλ)+1

)
3·5kΨ(5−kλ)

⎞
⎟⎟⎠ .

As a particular consequence we may compute the normal derivatives of the eigen-
functions at points of V0, because they are the same as the normal derivatives of
the tangent functions. This is an important step in giving an explicit construction
of the resolvent of the Laplacian on the Sierpinski Gasket, which will be the subject
of a later paper [2].
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Corollary 2.6. If (∆ + λ)u = 0 and the spectral decimation formula holds with
λm �= 2, 5, 6 for m > 0, then the normal derivative of u at q0 is

∂nu(q0) =
(
(4 − λ0)u(q0) − 2u(q1) − 2u(q2)

)2λΥ(λ)
3λ0

.

It is necessary to exclude the values 2,5 and 6 from the sequence {λm} in The-
orems 2.2 and 2.3 and Corollary 2.4 because they occur precisely in the Dirichlet
case, where the boundary data vanishes and cannot be used to determine the tan-
gent or gradient. Nonetheless, Theorem 2.3 may be applied to find tangents to
Dirichlet eigenfunctions in a simple fashion, and Corollary 2.4 may be used in the
same manner to obtain the gradients. The reason is that the description of the
Dirichlet eigenfunctions given in Theorem 1.1 ensures that we need only compute
the harmonic tangents and gradients of the functions in Figure 1 and the left of
Figure 3. All harmonic tangents and gradients of Dirichlet eigenfunctions are then
obtained from these by scaling and taking suitable linear combinations.

For the basic element used to construct the 6-series (Figure 3) we can directly
apply Theorem 2.3 or Corollary 2.4 with λ1 = 6 and λ2 = 3. For example, if the
top vertex in Figure 3 is q0 and w = 0 · · · we have

Twu =
λ

9

⎛
⎝ 0

1
−1

⎞
⎠ .

To calculate the harmonic tangents or gradients of the basic element of the
2-series (on the left in Figure 1) we apply Theorem 2.3 (respectively Corollary 2.4)
to the function shown at the left in Figure 4, starting the spectral decimation at
each of the values λ1 = 5±

√
17

2 . For the 5-series there are two basic elements (shown
at the right in Figure 1), and we proceed by calculating for the initial configurations
shown in the center and on the right of Figure 4, starting with λ1 = 5±

√
5

2 . The
harmonic tangents and gradients of all 2 and 5-series eigenfunctions then coincide
with scaled and rotated copies of these pieces and their negatives, assembled in the
obvious manner.
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Figure 4. Computing harmonic tangents of 2 and 5-series eigenfunctions
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