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Abstract

In this paper, we study the weak order of Coxeter systems and the combinatorial
properties of descent sets. There are three main results: (1) Given a Coxeter system
(W, S), some word v € W, some subset A C S disjoint from Dg(v), and some w € Wa,
we proved that Dgr(vw) C Dgr(v) U A. (2) We obtained an explicit map for AU B
to dominate B in the case when A, B are commuting disjoint sets, with B finite.
(3) We proved that for finite Coxeter systems (W,.S), with subsets A,B C S, if A
dominates B, then B C A. In particular, the third result is a generalization of a
proposition in [K. Nyman, E. Swartz, Inequalities for the h-vectors and flag h-vectors
of geometric lattices, Discrete Comput. Geom. 32 (2004) 533-548], while the second
result gives a partial answer to one of the problems posed in [E. Swartz, g-elements,
finite buildings and higher Cohen-Macaulay connectivity, J. Combin. Theory Ser. A
113 (2006) 1305-1320]. Also, this paper develops the theory of sequences of braid
moves, boundary pairs, and tagging letters in reduced expressions for the general
Coxeter system (W, S). A side application of inversion tables also yield an explicit
formula of a reduced expression for all words in Coxeter systems of type A,,. All these
results are new.
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Introduction

As the title suggests, this paper is about the weak order of Coxeter systems and
the combinatorial properties of descent sets. However, the motivation behind this
paper is very different in nature, and in this introduction, we shall first give a brief
historical overview. All terms and notations in this introduction will be defined in
later chapters.

In 1997, Chari introduced the notion of a convex ear decomposition [Cha97] and
proved that if A is a (d — 1)-dimensional simplicial complex with a convex ear decom-
position, then the h-vector of A must satisfy the inequalities h; 1 < h; and h; < hg_;
for all i < [4]. In 2004, Nyman and Swartz [NS04] proved that the order complex
of a geometric lattice has a convex ear decomposition, hence Chari’s result implies
the h-vector inequalities for geometric lattices. Using Bjorner’s result, which states
that the flag h-vector hg(P) of a graded poset P admitting an R-labelling counts the
number of maximal chains of P with labels having descent set S (See Theorem 2.7,
[Bjo80]), Nyman and Swartz also proved (in the same paper [NS04]) that given sets A
and B, A dominates B implies the flag h-vector inequality hg < hy for all geometric
lattices.

In 2005, the work in [NS04] was slightly extended by DeVries, a former Cornell stu-
dent, as part of his senior thesis project [DeV05]. DeVries worked on finding explicit
injections for A to dominate B, and trying two different approaches, he showed that
both approaches do not yield the desired injections. DeVries also proved two special
cases of Conjecture 5.7 in [NS04], and verified the original conjecture for all cases
r <9, the previous record being r < 8 in [NS04].

In 2006, Schweig studied the convex ear decompositions of posets in relation to the flag
h-vectors as part of his PhD thesis in [Sch08]. He proved that the order complex of a
rank-selected subposet of a geometric lattice admits a convex ear decomposition, hence
extending Nyman and Swartz’s result in [NS04]. Schweig also proved that the rank-
selected subposets of supersolvable lattices with nowhere-zero Mébius function and
the rank-selected subposets of face posets of Cohen-Macaulay simplicial complexes
have order complexes that admit convex ear decompositions [Sch08]. Consequently,
applying Chari’s result [Cha97], he obtained the flag h-vector inequalities analogous
to those obtained in [NS04]. These inequalities involve descent sets and the notion of
A dominating B for sets A and B.

Also in 2006, Swartz [Swa06] studied finite buildings and proved that if A is a finite
building of type (W,S), and if A, B C S such that A dominates B, then hg < hy.
Again, we get a connection between descent sets of Coxeter systems and another area,
this time being the theory of finite buildings.

Chari’s result on convex ear decomposition relies on a deep result by Stanley [Sta80],
which involves the hard Lefschetz Theorem from algebraic geometry. This means the
above results involving inequalities of the h-vector are all indirectly dependent on the
Lefschetz Theorem. It would then be very desirable to be able to give a combinatorial
proof to the inequalities of the flag h-vector and avoid using the Lefschetz Theorem,
hence providing a combinatorial proof to all the above-mentioned results.



Motivated by the results on dominating sets in [NS04], we study the descent sets
of general Coxeter systems, hoping to get a complete characterization of when A
dominates B via a combinatorial proof. If we can get such a characterization in
the general case of Coxeter systems, then applying to the Coxeter systems of type
A, there is an implied combinatorial proof at least for the flag h-vector inequalities,
without having to rely on the Lefschetz Theorem.

Although we are unable to give a complete characterization in this paper, we are
able to derive an explicit map for A U B to dominate B in the case when A, B are
commuting disjoint sets, with B finite (proven as Theorem 4.2.1 in the setting of
general Coxeter systems). This map is derived from another result we proved, which
states that given a Coxeter system (W,S), if v € W, and A C S is some subset
disjoint from Dg(v), then w € W4 implies Dp(vw) C Dr(v)UA. Also, we prove that
for finite Coxeter systems, A dominates B implies B C A (proven as Theorem 4.2.2),
hence generalizing Proposition 5.4 in [NS04], which is the special case of our result
for Coxeter systems of type A,. Our results also gives a partial answer to Problem
2.5 proposed in [Swa06].

In the process of deriving these results, we developed the theory of sequence of braid
moves, coining the term “boundary pairs”, and we introduced the idea of tagging an
element in a reduced expression of a Coxeter group. All of the discussion is made
with the aim of applying to descent sets of Coxeter systems. Most of the results in
Chapter 3 are new, and all of the results in Chapter 4 are new, which we apply to
settle previously unsolved problems. A lot of these results involve the careful study
of reduced expressions of words in Coxeter systems, in particular, how the various
letters of a reduced expression are changed in a sequence of braid moves, and the
ideas involved are purely combinatorial.

In this paper, we have set aside Chapters 1 and 2 to develop the necessary theory
needed to explain the results obtained in Chapters 3 and 4. Chapter 5 is an exposition
on the applications of our results to the recent work that was briefly discussed above.
As a side, we also give a treatment of how inversion tables can be applied to Coxeter
systems in Chapter 1.3, and we derive an explicit formula of a reduced expression for
all words in Coxeter systems of type A,,.

For notations, we adopt the notations used in [BB05] as far as possible. In particular,
for any n € Z*, [n] denotes the set of positive integers {1,...,n}. Each result (propo-
sition, theorem, corollary, lemma) is numbered consecutively within the sections. The
symbol [J denotes the end of a proof of a result.
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Chapter 1

Preliminaries

The notion of Coxeter systems was first introduced around 1960 by Jacques Tits as an
abstraction of finite reflection groups in geometry. Humphreys gives a good discussion
in [Hum92| on how the theory of Coxeter groups can be motivated from the theory of
reflection groups, from an algebraic and geometric perspective. In this paper, we give
a combinatorial perspective, and much of the basic properties of Coxeter systems we
will discuss follow closely the treatment of the combinatorics of Coxeter groups given
in [BB05].

In this chapter, we present the basic notations and combinatorial properties of Coxeter
groups. In particular, we will introduce the notion of inversion tables and descent sets,
and relate the combinatorics of inversion tables and descent sets to the combinatorial
properties of Coxeter groups.

1.1 Coxeter Systems

Definition. Let S be a set. A matrix M : S x S — Z*U{oo}, with m(s, s’) denoting
the (s, s’)-th entry of M, is a Cozeter matriz if M is a symmetric matrix satisfying

m(s,s)=1s=35" (1.1)

This matrix M can be represented by a Coxeter diagram, which is a graph with vertex
set S, and whose edges are the unordered pairs {s, s’} satisfying m(s,s’) > 3. By
convention, if m(s,s’) > 4, we label the edge {s, s’} by m(s,s’). The Cozeter group
of type M is the group W (M) given by the presentation

W(M) = (S| (ss")™%) = e, m(s,s') # o0, (1.2)

where e denotes the identity element of W (M). For brevity, we write W instead of
W (M), and it is tacitly understood that W corresponds to a Coxeter matrix M. The
pair (W, S) is called a Cozeter system of type M. S is the set of Cozeter generators of
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(W, S), or more briefly, the set of generators for W. The cardinality of S is called the
rank of (W, S). The system is irreducible if its Coxeter diagram is connected. Also, if
W is finite, then we say the Coxeter system (W, .S) is finite.

Example 1.1.1. For the set S = {s1, s2, $3, 54}, we have the following correspondence
between a possible Coxeter matrix with its Coxeter diagram:

1 oo 2 2 804
oo 1 3 5 5
2 3 1 2 50
o o
2 5 2 1 S1 S2 53

It is obvious from the definition that up to isomorphism, there is a one-to-one cor-
respondence between Coxeter matrices and Coxeter diagrams. Although it is also
true that up to isomorphism, there is a one-to-one correspondence between Coxeter
matrices and Coxeter systems, this is not immediately obvious. For a proof, see the
remark after Theorem 4.1.3 in [BB05].

In view of these correspondences, there is no ambiguity when referring to the corre-
sponding Coxeter matrix and the corresponding Coxeter diagram of a Coxeter system
(W, S), so the above definition of irreducible Coxeter systems makes sense. In par-
ticular, for a given fixed Coxeter matrix M, any two Coxeter systems of type M are
necessarily isomorphic, so it makes sense to talk about the Coxeter system (W, .S) of
type M. This implies any two Coxeter groups of type M are also isomorphic, so it
also makes sense to talk about the Coxeter group of type M. However, we add a word
of caution that for any two isomorphic Coxeter groups, it is not necessarily true that
they correspond to isomorphic Coxeter systems. See [BB05] for more details.

The notion of ‘type’ for a Coxeter system suggests there are different types of Cox-
eter systems. Indeed, all the information about a Coxeter system can be derived
from its corresponding Coxeter matrix, and this information is encoded in the Cox-
eter diagram, so we can classify Coxeter systems according to the structure of their
corresponding Coxeter diagrams.

One important class of examples are Coxeter systems of type A, (n € Z1), where A,
denotes the n x n matrix whose diagonal entries are all 1, whose entries adjacent to
the diagonal entries are all 3, and whose other entries are all 2. More explicitly, for
every i, j € [n], the (i, j)-th entry of A, is given by

1, ifi=j
2, otherwise

Proposition 1.1.2. The symmetric group S, +1 of degree n+ 1 is the Coxeter group
of type A,.

Proof: For each i € [n], let s; be the transposition (i, + 1) in S,1. We easily check
that S = {s1,...,s,} is a set of generators for S,,11, such that every pair (s;,s;) €
S x S satisfies (s;5;)47(%7) = Id, the identity permutation in S,11, 50 (Spi1,5)
is a Coxeter system of type A,. Consequently, by the remark before Example 77,
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(Sn+1,95) is the Coxeter system of type A,, and in particular, S, 11 is the Coxeter
group of type A,. For an alternative proof, see (Proposition 1.5.4, [BB05]). O

We remark that the notation of ‘type A,’ used in referring to the symmetric group
Sn+1 is standard in the literature of Coxeter groups. In fact, there is a complete
classification of all finite irreducible Coxeter systems, and a classification table can
be found in Appendix A. We shall henceforth adopt the standard notation in the
classification table when referring to finite irreducible Coxeter systems. For a proof
of this classification theorem, see (Chapters 2, 6 in [Hum92]).

Definition. Let n € Z" be given. For each k € [n], denote s, as the transposition
(k,k—+1) in the symmetric group Sy+1, and let S = {s1,...,s,}. Note that (S,41,S)
is a Coxeter system by Proposition 1.1.2. We shall then denote (S,11,S) as the
standard Coxeter system of Sp41-

For the rest of the paper, we denote (W, S) as a Coxeter system (not necessarily finite)
with corresponding Coxeter matrix M = (m(s,s'))s s eg, unless otherwise stated.
The case when |S| = 1 is trivial and uninteresting, so we shall assume [S| > 2. In
particular, we allow for S to be infinite. Note that (1.1) implies s> = e for all s € S,
so in the case when m(s,s’) # oo, the relation (ss')™(*5) = ¢ in the presentation
(1.2) is equivalent to

ss'ss's . =g'ss'ss’ .. (1.3)

—_—— ——

m(s,s’) m(s’,s)

In particular, the generators s and s’ commute if and only if m(s,s’) = 2, or equiv-
alently, if and only if s, s’ are distinct non-adjacent vertices in the corresponding
Coxeter diagram.

Definition. The elements of the Coxeter group W are called words. The generators
of W (i.e. elements in S) are also called letters, and we shall use the terms ‘letters’
and ‘generators’ interchangeably. Denote the set T' = {wsw™! : s € S,w € W}. The
elements of T" are called reflections. Also, the elements of S C T are called simple
reflections.

Definition. Every word w € W can be written as a finite product of generators w =
8189 -+ Sk, where s; € S are not necessarily distinct. This finite product syso -« sg
is called an expression for w. For any given expression w; for the word w, we say
the expression has expression length k (denoted by ¢(w;) = k) if there are k (not
necessarily distinct) letters appearing in the expression. In particular, the expression
5182+ -+ 8p has expression length k. If w; = s152---s; is an expression for w such
that ¢(w;) is minimized among all possible expressions w; for w, then ¢(w;) = k is
called the length of w (denoted by £(w) = k), and the expression syss - - - s is called
a reduced expression (or reduced decomposition or reduced word) for w. Alternatively,
we say $182 - - S is reduced. By default, the empty product (i.e. k¥ = 0) is necessarily
reduced, and it refers to the identity element e, with length ¢(e) = 0. We shall denote
R(w) as the set of all reduced expressions of w.

Let F(S) denote the free group generated by S, and let i : S — F(S) be the natural
inclusion map. From (1.2), we get W = F(S)/N, where N is the normal subgroup
of F(S) generated by {(ss')™®5) : m(s,s') # oo}. Let ¢ : F(S) — W be the natural
quotient map. At this stage, it is appropriate to remark that there is a distinction
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between words and expressions. An expression sp --- s, for the word w refers to an
element s;--- s in F(S) such that ¢(s1---sg) = w. Strictly speaking, a word w is
an equivalence class of expressions. We shall reserve the usage of u, v, w to represent
words in W, and in cases where the specific choice of expression does not matter, there
is no confusion of referring u, v, w as both words and expressions interchangeably. In
particular, for s1,...,s; € S, wsy---s; can be referred to either as a word, or an
expression, depending on the context given.

However, to avoid any possible confusion, when we attach subscripts u;, v;, w;, we shall
always mean that u;, v;, w; are specific expressions of the words u, v, w respectively.
In particular, for any u,v € W, and any expressions u;,v; of u,v respectively (not
necessarily reduced), we denote u;v; as the expression formed by concatenating the
expressions u; and v;, and we denote uv as the word represented by the expression
u;v;. This distinction becomes important in Chapters 3 and 4.

Note that the expression length function ¢ depends on the expression given. For
example, the expressions ss, ssss, ssssss have expression lengths 2,4, 6 respectively.
Fortunately, the length of a word w € W does not depend on the choice of expression,
and in our example, ss, ssss, ssssss all represent the same word e, so we have £(ss) =
U(ssss) = l(ssssss) = 0. One obvious consequence is that for any expression w;, we

always have £(w;) < ¢(w;). Before we derive some properties of the length function,
we prove a useful lemma.

Lemma 1.1.3. Themapeg : s — —1forall s € S, extends to a group homomorphism
e: W — {1}

Proof: By the universal property of free groups and the universal property of quotient
groups, there exist unique group homomorphisms ¢ : F(S) — {£1} and e : W —
{#1} such that the following diagram commutes:

q

§— F(S) 1%

N

{1}

O

Definition. Given a Coxeter system (W,.S), the group homomorphism € defined in
Lemma 1.1.3 is called the sign representation of (W,.S).

For any w € W, an immediate consequence of Lemma 1.1.3 is the following identity
e(w) = (=)™, (1.4)
which allows us to derive the following basis properties of the length function.

Proposition 1.1.4. For all k € Z* u,v,w € W, s, s1,...,s; € 9, the following hold:

(1) L(uw) = £L(u) + ¢(w) (mod 2),

If
S~
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(ili) £(sw) = £(w) £ 1,

(iv) Lw™) = b(w),

(v) l(w) —k < lwsy -+ sp) < L(w) + &,
(Vi) lw) —k < L(s1--spw) < L(w) + &,
(vii) [€(u) = £(v)] < £(uwv) < L(u) + £(v).

Proof: By considering e(uw) = e(u)e(w),e(ws) = e(w)e(s),esw = e(s)e(w), parts
(i),(i1) (iii) are direct consequences of (1.4). For part (iv), let s; ---s;, € R(w).
Since (s, - - Si, )Siy - - Siy = €, we have s;, ---s;, is by definition an expression for
w™t, so L(w™t) < k. Let sj,---s;, € R(w™'), where ¥ = {(w™!') < k. Since
(85, " 8j.,)8j,, -8, = e, we have s;  ---s; is by definition an expression for
(w™H)™! = w, so k = L(w) < K, and (iv) follows. By an inductive argument,
part (ii) easily implies (v). In particular, ¢(w) — k = f(wsy---sg) if and only if
l(wsy---s¢) = L(wsy---s.—1) — 1 for all ¢t € [k], and (w) + k = L(wsy - - sp) if and
only if l(wsy ---s;) = l(wsy---s4-1) + 1 for all ¢t € [k]. An application of parts (iv)
and (v) gives (vi). Finally, to show part (vii), if (u) > £(v), then (vii) is an appli-
cation of part (v), with w = wu,s1--- s € R(v), and if {(u) < £(v), then (vii) is an
application of part (vi), with w = v, s1--- s € R(u). O

In particular, following the proof of part (iv) above, we get:
s1---5x € R(w) & sp---51 € R(w™1). (1.5)

Note also that parts (i) and (iv) above imply ¢(wsw™!) = 1 (mod 2) for all w €
W,s € S, so by the definition of T, all reflections have odd lengths. These basic
properties will be used repeatedly in the rest of the paper.

1.2 Exchange Property and Deletion Property

The Exchange Property and the Deletion Property are two fundamental combinato-
rial properties of Coxeter systems, and in fact characterize all Coxeter systems. In
this section, we shall mainly state the relevant results and discuss some of their conse-
quences. Most of the proofs are omitted, and we refer the interested reader to [BB05]
for detailed proofs of these results.

We remark that there is a ‘stronger’ version for the Exchange Property, known as
the Strong Exchange Property. Although the Exchange Property is a special case of
the Strong Exchange Property, we shall see in Theorem 1.2.4 that they are in fact
equivalent characterizations of Coxeter systems.

Theorem 1.2.1. (Strong Exchange Property) Let w € W be a given word, and
let s1 « - - s be an expression (not necessarily reduced) for w. If £(tw) < £(w) for some
t €T, then tw = s1---§;---sp for some i € [k]. Similarly, if £(wt') < {(w) for some
t' €T, then wt' = sy ---§;--- s for some j € [k].
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Proof: £(t) is odd by the remark after (1.5), so Proposition 1.1.4 implies ¢(tw) and
¢(w) have different parities, which means ¢(tw) < £(w). (Theorem 1.4.3, [BB05]) then
gives the first assertion, and applying Proposition 1.1.4 to the first assertion, we get
the second assertion. g

Corollary 1.2.2. (Exchange Property) Let w € W be a given word, and let
s1 -+ 8k be a reduced expression for w. If £(sw) < ¢(w) for some s € S, then sw =
S1-++ 8- s for some i € [k]. Similarly, if {(ws’) < ¢(w) for some s’ € S, then
ws' =s1---§j sy for some j € [k].

Proof: This is a special case of Theorem 1.2.1. O

Theorem 1.2.3. (Deletion Property) Let w € W be a given word, and let s1 - - - s
be an expression such that (w) < k, then w = s1---§; -~ Sj - -+ sy for some distinct
i,j € [k].

Proof: See (Proposition 1.4.7, [BB05]). O

Temporarily dropping the assumption that (W, S) is a Coxeter system, let W be an
arbitrary group with identity element e, let S be a set of generators for W such that
s? = e for all s € S, and denote T' = {wsw™! : s € S,w € W}. The notions of
expression, length £(w),w € W, and reduced expression sy - - - Sk, 8; € S can be defined

analogously as earlier. Under these conditions, we make the following definitions:

Definition. Given any w € W and any expression s - - - s, (not necessarily reduced)
for w, if ¢(tw) < ¢(w) for any ¢ € T implies tw = s1---§; - - - s, for some ¢ € [k], then
we say (W, S) has the Strong Ezchange Property.

Definition. Given any w € W and any reduced expression s; - - - s, for w, if £(sw) <
L(w) for any s € T implies sw = s1---§;--- s} for some i € [k], then we say (W, S5)
has the Fxzchange Property.

Definition. Given any w € W and any expression s; - - - s, for w, if /(w) < k implies
w=81---8;---8§;-- s for some distinct ¢, j € [k], then we say (W, S) has the Deletion
Property.

Theorem 1.2.4. Let W be a group with identity element e, and let .S be a set of
generators for W such that s2 = e for all s € S. Then the following are equivalent:

(i) (W,S) is a Coxeter system.

(ii) (W, S) has the Strong Exchange Property.
(iii) (W, S) has the Exchange Property.
(iv) (W, S) has the Deletion Property.

Proof: (i) = (ii) follows from Theorem 1.2.1. (ii) = (iii) is obvious. The cases (iii)
= (i), (iii) = (iv), (iv) = (iii) are proven in (Theorem 1.5.1, [BB05]). O

We remark that for our definition of the Exchange Property and the Strong Exchange
Property in the general setting of arbitrary groups, although we have chosen left
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multiplication of ¢ and s in the respective conditions f(tw) < f(w) and ¢(sw) <
£(w), we could well have chosen right multiplication instead. The choice does not
matter, since the above theorem tells us any pair (W, S) that has the Strong Exchange
Property or the Exchange Property must necessarily be a Coxeter system, so Theorem
1.2.1 and Corollary 1.2.2 above give the corresponding results for both left and right
multiplication.

Having characterized Coxeter systems, we now return to the assumption that (W, S)
denotes a Coxeter system. Next, we shall give a few useful consequences of the above
properties.

Corollary 1.2.5. Let w € W, let s1---s; € R(w), and let ¢t € T. Then the following
are equivalent:

tw=81---$;- s, for some i € [k].
t=518_18;Si—1"-S1, for some i € [k].
Furthermore, for each reduced expression s; ---s, for w and each ¢ € T, the index

¢ in (iii) and (iv) is uniquely determined. Similarly, for ¢ € T, the following are
equivalent:

() fwt') < Lw)
(it") (wt’) < L(w).
(iii") wt’ =s1---§j- - sy, for some j € [k].
)

t' = s+ Sj415;Sj4+1 - Sk, for some j € [k].

Also, for each reduced expression s; - - - s for w and each ¢ € T', the index j in (iii’)
and (iv’) is uniquely determined.

Proof: The equivalence (i) < (ii) follows from the fact that ¢(¢) is odd, which by
Proposition 1.1.4 implies ¢(tw) and ¢(w) have different parities, and so cannot be
equal. The equivalences (ii) < (ili) < (iv) are proved in (Corollary 1.4.4, [BB05]).
As for the set of equivalences (i) & (ii') < (iil') < (iv’), it is an easy consequence of
the set of equivalences (i) < (ii) < (iii) < (iv) by using the fact that £(w) = f(w™?)
for all w € W. O

Corollary 1.2.6. Given any word w € W, the following hold:

(i) Any expression w; for w contains a subexpression that is a reduced expression
for w, obtainable by deleting an even number of letters.

(ii) For any wy,ws € R(w), the set of letters appearing in the expression w; equals
the set of letters appearing in the expression ws.
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(iii) S is a minimal generating set for W, i.e. no Coxeter generator can be expressed
in terms of the others.

(iv) Any two expressions for w must have expression lengths of the same parity.

Proof: Parts (i)-(iii) are proven in (Corollary 1.4.8, [BB05]). Part (iv) easily follows
from part (i), since part (i) implies any two expressions for w must have expression
lengths of the same parity as £(w). O

Definition. For any w € W, denote §(w) C S as the set of letters appearing in any
reduced expression for w. In particular, §(e) = ). Note that §(w) is well-defined by
Corollary 1.2.6(ii).

Corollary 1.2.7. If sq,...,s, are distinct elements in S for some n € Z™, then the
expression s18sg - - - S, is reduced.

Proof: Suppose s; --- sy, is not reduced, then by the Deletion Property, there exists
distinct ¢, j € [n] such that sq---s, =81---§;---§; - -+ s,. Multiply both sides of the
equation on the left by s;s;_1---s1 and on the right by s,s,-1---s;4+1, the identity
s2 = e for all s € S gives us s; = Si41°"*8j—18jSj—1 " Sit+1, which then contradicts

Corollary 1.2.6 part (iii). The assertion then follows. O

1.3 Inversion Tables and Descent Sets

One of the main themes of enumerative combinatorics is the study of permutations
of sets, which is well-understood and has found applications in diverse areas in math-
ematics. Permutations of finite sets can be treated as elements in the symmetric
group Sy, and recall from Proposition 1.1.2 that S, (n > 2) is the Coxeter group
of type A,_1. Hence, a natural question that arises is: What properties associated
to the symmetric group and the permutation of sets can be extended analogously to
the general Coxeter group? It is with this motivation that we study the descent sets
associated to a Coxeter group, which can be regarded as extensions of the descent
sets studied in S,, into the realm of Coxeter systems.

As discussed in (Chapter 1.3, [Sta02]), two of the fundamental statistics associated
with a permutation w € S, are its inversion table and its descent set.

Definition. Let 7 be a permutation in S,,. The pair (¢,5) € [n] x [n] is called an
inversion of w if ¢ < j and (i) > w(j). If i € [n— 1] such that (¢,74 1) is an inversion
of 7, then the index i is called a descent of w. The inversion set of w, denoted by
Inv(), is the set of inversions of 7, and the descent set of 7, denoted by D(7), is the
set of descents of w. More explicitly, we have

Inv(m) = {(i,7) i <j,m(@) > 7(j)} (1.6)
D(r) = {i:n(@)>w(i+1)} (1.7)

Define the inversion number inv(w) of 7 as inv(rw) = |Inv(n)|, and define the descent
number d(r) of m as d(w) = |D(w)|. Also, for each k € [n], denote by, = |{i € [n] :



CHAPTER 1. PRELIMINARIES 14

i < Y(k),m(i) > k}|. (Note that the inverse map 7! is well-defined, since 7 is a
bijection of [n] onto itself.) In other words, if we denote a; = (i) for each i € [n],
then k = ar-1(z), and by counts the number of terms in the sequence (a1, ...,an)
to the left of a-1(;) that are larger than k. The sequence (b1, ...,by,) is called the
inversion table of . In particular, note that b, is necessarily 0.

Definition. For any n € Z1 and any 7 € S,,, 7 acts as a permutation on [n]. Denote
7(i) as a; for each i € [n]. We have aq,aq,...,a, is a permutation of 1,2,...,n, and
7 is uniquely determined by the images a1, ..., a, under this group action. We then
say ajas - - - an is a permutation representation of 7.

Example 1.3.1. Consider m € Sg with permutation representation 362154. The
inversion set of 7 is Inv(w) = {(1,3), (1,4), (2,3), (2,4), (2,5), (2,6), (3,4),(5,6)}, and
the descent set of m is D(w) = {2,3,5}. The inversion number and descent number
of 7 are inv(n) = 8 and d(7) = 3. The inversion table of 7 is (3,2,0,2,1,0).

We remark that there is a natural bijection between permutations and inversion tables
(see Proposition 1.3.9 in [Sta02]). Also, if (by,...,by) is the inversion table of a
permutation @ € S,,, then by + ...+ b, counts the number of inversions of 7, and we
get

inv(m) =by + ...+ by. (1.8)
We are now ready to relate the properties of permutations discussed above to the
setting of Coxeter systems.

Lemma 1.3.2. Let (S,,S) (n > 2) be the standard Coxeter system of the symmetric
group Sy,. Then for any w € S,,, we have {(w) = inv(w).

Proof: See (Proposition 1.5.2, [BB05]) O

In fact, if we know the inversion table of w, we can say even more. First, we define
the notions of ascending expressions and descending expressions.

Definition. Let (W, S) be a Coxeter system of finite rank n, and label the elements
in S as $1,...,8,. Let t1,t5 € [n]. If t; < to, denote B(tl : t9) as the expression
St,St,41 - - - St, and denote B(tg : t1) as the expression $;,8¢,-1 - 8t,, and if ¢1 > to,
set each of B(tl : tg),ﬁ(tg : t1) as the empty expression. Note that if ¢; < 9, then
B(tl : t9) and B(tg : t1) each has expression length to — t; + 1, while if ¢; > ¢o, then
B(ty : to) and B(ty : t1) cach has expression length 0. We call 3(t; : t5) an ascending
ezxpression, and we call B(tl : t2) a descending expression.

Next, we record some obvious observations:

Proposition 1.3.3. Let (S,,S) (with n > 2) be the standard Coxeter system of
the symmetric group S,,. For any w € S,, let a;---a, be the permutation repre-
sentation of w. Then for any j € [n — 1], the permutation representation of ws; is
a1+ Qj—1Gj41a;Gj4+2 - - - A, Obtained from a; ---a, by swapping the terms a; and
Qj41-

Proof: This is obvious, since s; is just the transposition (j,j + 1). O

Proposition 1.3.4. Let (S,,S) (with n > 2) be the standard Coxeter system of the
symmetric group S,. For any w € S,,, let a; - - - a,, be the permutation representation
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of w. Then for any j € [n — 1], the permutation representation of wsiss---s; is
A2a3 - -~ Gj4+1010;42 - - Gy, Obtained from a; ---a, by shifting the term a; from the
left of as to in between terms a;11 and a;4o.

Proof: This is an application of Proposition 1.3.3 and is obvious. O

Now, given the inversion table of w € S,,, we shall find an explicit reduced expression
for w.

Theorem 1.3.5. Let (S,,5) (with n > 2) be the standard Coxeter system of the
symmetric group S,,. Let w € S,,, and let (by,...,b,) be the inversion table of w. For
each k € [n — 1], denote vy, as the expression ﬂ(k : k — 14 bg). Then the expression
Un_1 - Vov1 is a reduced expression for w.

Proof: We shall prove this by induction on n. The base case n = 2 is trivially true.
Suppose that for some integer N > 2, the assertion is true for all integers n satisfying
2 < n < N. Consider the case n = N, choose a word w € Sy, let ay---an be
its permutation representation, and let (by,...,by) be the inversion table of w. By
definition, aq,...,an is just a permutation of 1,..., N. Let j € [IN] be the unique
index such that a; = 1. Let v € Sy be the permutation given by the permutation
representation laj ---aj_1a;41---ay, and in particular, v fixes 1. From Proposition
1.3.4, we get w = vsy ---sj_1. Since 1 is the smallest integer in [N], all j — 1 terms
to the left of a; in a1 ---ay are larger that a; =1, so by = j — 1 by definition, hence
w = vsy - -+ $;_1 is equivalent to w = vv;.

For each i € [N — 1], denote a} as a; — 1 if i < j, and denote a; as a;41 — 1 if
i > j. In other words, the sequence af,...,a%y_; is obtained from ai,...,an by
subtracting 1 from each term, and then omitting the term 0. Note that af,...,ay_;
is a permutation of 1,..., N — 1, and denote v’ as the unique permutation in Sy_1
with permutation representation af - --a’y_;. Denote (b],...,b)_;) as the inversion
table of w’. By the construction of w’, we easily see that b; = b;11 for each i € [N —1].

Now, since v fixes 1 and permutes the integers 2,..., N, we can treat v as a permu-
tation on N —1 elements. Let G be the subgroup of Sy such that every permutation
in G fixes 1, and let " = {s2,...,sy}. Observe that G = Sy_; and that S’ is a set
of generators for G, so that (G,S’) and (Sy_1,S) are isomorphic as Coxeter systems.
Under this isomorphism, v corresponds to v’, so by applying the induction hypothesis
on v’ and using this isomorphism, we get

v = B(N—1:N—1+by ))B(N—2:N—2+by_3)---B(2:140)

’ ’

= B(N—=1:N—-1+4by_1)B(N—=2:N—=2+by_2)---3(2:1+by)

UN—1UN-2 """ V2.

Consequently, since w = vvy, we get w = vy_1UN_2 V1, which by definition has
expression length by +...+by_1. Finally, from (1.8) and Lemma 1.3.2, since by = 0,
we have {(w) = inv(w) = by + ... + by_1, therefore this expression vy_1vN—2 V1
for w is reduced, and by induction, the assertion follows. O

Example 1.3.6. Recall from Example 1.3.1 that the permutation m € Sg represented
by 362154 has inversion table (3,2,0,2,1,0). Theorem 1.3.5 then says

7 A , 7 ,

,8(5, 4+ 1)ﬂ(4, 3+ 2)ﬁ(3, 2+ O)ﬂ(Q, 1+ 2)5(1, 0+ 3) = 55545552535152S53
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is a reduced expression for 7 € Sg.

Remark. Consider the standard Coxeter system (S,,S) for S,. For any w € S,
it follows from Theorem 1.3.5 that if we know the inversion table of w, then we can
explicitly construct a reduced expression for w. A natural question that follows is
whether the notion of inversion table can be extended analogously to the general
Coxeter system. If such an extension is possible, then we should be able to explicitly
construct a reduced expression for any given word in any Coxeter system.

The discussion of the relation between inversion tables and Coxeter systems so far has
been fruitful. Next, we shift our attention to the other statistic of permutations of
sets - descent sets. Again, let (S,,,S) be the standard Coxeter system for S,,. For any
word w € S, let aj - - - a, be the permutation representation of w. From Proposition
1.3.3, we get the following:

inv(w) +1, fw() <w(+1)

inv(w) — 1, if w(i)>w(+1)" (19)

inv(ws;) = {
Applying Lemma 1.3.2; this is equivalent to
Ows;) = o(w) + 1, %f w(z) < w(z +1) . (1.10)
lw)—1, if w(@)>w(+1)
We now consider the following definitions:
Definition. For any w € W, denote
Dr(w)={s e S :l(sw) <{l(w)}, Dr(w)={se€S:lws)<Ll(w)},
Tr(w)={teT: (tw) < l(w)}, Tr(w)={t €T :l(wt) < l(w)}.

Dy (w) is called the left descent set of w, while Dg(w) is called the right descent set
of w. Tp(w) is called the set of left associated reflections to w, while Tr(w) is called
the set of right associated reflections to w. The subscripts ‘L’ and ‘R’ are mnemonic
for ‘left’ and ‘right’ respectively.

For any permutation w € S,, it follows from (1.10) that ¢ € D(w) if and only if
s; € Dr(w). As discussed in [BBO05], this is the reason why Dg(w) are known as
descent sets. The following results give the relation between descent sets and reduced
expressions of words.

Lemma 1.3.7. For all w € W and s € S, the following hold:

(i) s € Dr(w) if and only if some reduced expression for w begins with the letter
s.

(ii) s € Dr(w) if and only if some reduced expression for w ends with the letter s.

Proof: See (Corollary 1.4.6, [BB05]). O

Proposition 1.3.8. For all w € W, we have Tr(w) = Tr(w™?!) and Dp(w) =
DL(wfl).

Proof: This is an immediate consequence of Proposition 1.1.4 (iv). (|



Chapter 2

Poset Structure, Parabolic
Subgroups and Quotients

In this chapter, we shall discuss two partial order relations on Coxeter systems - the
Bruhat order, and the weak order. As an overview, the Bruhat order is defined by
reflections (i.e. elements in T'), while the weak order is defined by simple reflections
(i.e. elements in S C T), so weak order necessarily implies Bruhat order, but not
conversely. In this sense, the weak order is ‘weaker’ than the Bruhat order, hence its
name.

We shall first explore some basic properties of the Bruhat order and the weak or-
der. Next, we shall introduce the parabolic subgroups and quotient groups of Coxeter
groups, and discuss properties of unique factorization in the setting of Coxeter sys-
tems. Finally, from a combinatorial perspective, we explore the relations between the
largest elements of the Coxeter group and its corresponding parabolic and quotient
subgroups.

2.1 Bruhat Order

The Bruhat order of a Coxeter system (W, S) is determined by its set of reflections
T, where we recall from Chapter 1.1 that T = {wsw™! : s € S,w € W}. The notion
of ‘reflections’ suggests a geometric interpretation, and indeed, the Bruhat order was
first considered in the 1930s with the purpose of describing the containment ordering
of Schubert varieties in flag manifolds, Grassmannians, and other homogenous spaces.
Since then, the Bruhat order has found various applications in geometry and repre-
sentation theory. Although such applications are interesting, they are not used in
the discussion of later chapters, so we shall deviate from the conventional geometric
approach and deal only with the relevant combinatorial properties of the Bruhat or-
der. The interested reader is referred to [Hum92] for a detailed discussion of reflection
groups.

17
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Definition. Let u,w € W. Then

(i) For a given t € T, denote u L w to mean that ut = w and (u) < l(w).

(ii) Denote u — w to mean that u L w for some t € T.
(iii) Denote u < w to mean there exist k € Z>o and ug, ..., u, € W such that

U=1Uy — U — - — Up = W.

The Bruhat graph is the directed graph whose nodes are the elements of W, and whose
edges are given by (ii). The Bruhat order is the partial order relation defined on the
set W, given by part (iii).

First, we record some obvious observations that follow immediately from the defini-
tion:

Lemma 2.1.1. The following are obvious:

(i) For any u,w € W, u < w implies ¢(u) < {(w).
(ii) For all w € W and all t € T, we have u < ut if and only if £(u) < ¢(ut).

(iii) The identity element e satisfies e < w for all w € W. In particular, if sy --- s, €
R(w), then we get the induced chain e — s — 8180 — -+ — 81+ 8 = w.

Next, we shall list a few relevant results related to Bruhat order. Of great importance
is the Subword Property (Theorem 2.1.3) and the Chain Property (Theorem 2.1.6).
The proofs of all these results can be found in [BB05], and the reader is referred to
the corresponding relevant sections.

Lemma 2.1.2. For distinct u,w € W, let s1 - s, € R(w), and suppose that some
reduced expression for u is a sub-expression of sj---s;. Then there exists v € W
such that the following hold:

(i) v>u.
(ii) £(v) =4(u)+ 1.

(iii) Some reduced expression for v is a sub-expression of sj - - - si.

Proof: See (Lemma 2.2.1, [BB05]). O

Theorem 2.1.3. (Subword Property) Let u,w € W, and let w; = s1---s €
R(w). Then u < w if and only if there exists a sub-expression w} of w; such that
w; € R(u). In other words,

u<wE Uu=S;8;, -8, is reduced for some 1 <i; < iy < ... <4 <k

Proof: See (Theorem 2.2.2, [BB05]). O
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Corollary 2.1.4. For u,w € W, the following are equivalent:

(i) u<w.

(ii) Every reduced expression for w has a sub-expression that is a reduced expression
for u.

(iii) Some reduced expression for w has a sub-expression that is a reduced expression
for w.

Proof: See (Corollary 2.2.3, [BB05]). O

Corollary 2.1.5. The mapping w — w~! is an automorphism of Bruhat order. In

other words, for u,w € W, we have v < w if and only if u=' < w™?!.

Proof: See (Corollary 2.2.5, [BB05]). O
Theorem 2.1.6. (Chain Property) If u,w € W such that « < w, then there exists
a chain u = ug < u; < ... < ug = w such that ¢(u;) = £(u) + i for every i € [k].

Proof: This immediately follows from Lemma 2.1.2 and the Subword Property. d

Definition. We shall use the notation “u<iv” or “vi>u” to mean a covering in Bruhat
order. Thus, by the Chain Property, © < v means that v < v and £(u) + 1 = £(v).
Similarly, v &> u means that v > v and ¢(v) = ¢(u) + 1.

In particular, the Chain Property shows that Bruhat order is a graded poset whose
rank function is the length function ¢. This is also true for any Bruhat interval [u, v].

2.2 Weak Order

In this section, we shall explore the weak order of Coxeter groups.

Definition. Let u,w € W. Then

(i) v <gr w means that w = us; - -- sy for some k € Z>( and some s1,...,5; € 5,
such that £(usy - -s;) = £(u) + i for every i € [k].

(ii) w <r w means that w = sgsk_1 - - s1u for some k € Z>o and some sq, ..., Sk €
S, such that €(s; - - syu) = £(u) + i for every i € [k].

The partial order relations <p and <, are called the right weak order and the left
weak order respectively.

Although the right and left weak order are distinct partial orderings of W, they are
isomorphic via the map w +— w™!. For any u, w € W, one important relation between
the weak order and the Bruhat order is the following:

u<gpw or u<pw=u<w (2.1)
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Next, we give a list of properties of the weak order:

Proposition 2.2.1. Let u,w € W, then the following hold:

(i) There is a one-to-one correspondence between elements in R(w) and maximal
chains in the interval [e, w]g.

(i) v <pw < l(u) +L(utw) = l(w).

(iii) If W is finite, then w < wq for all w € W, where wqy denotes the unique
element in W of maximal length.

(iv) (Prefix Property) u <g w if and only if there exists k,m € Z>¢, and some
S1yevnsSkyShyeooy8h, € S such that s;---sp € R(u) and s1---spsy s}, €
R(w).

(v) (Chain Property) If v <p w, then there exists a chain u = up <g u1 <g
. <g ur = w such that £(u;) = €(u) + ¢ for every i € [k].
(vi) W under the weak order is a graded poset ranked by the length function ¢, and
so is every interval [u, w|R.

(vii) If s € Dp(u) N Dy (w), then v <p w if and only if su <g sw.

(viii) u <g w if and only if Ty, (u) C T (w).

Proof: Parts (i)-(vii) are proven in (Proposition 3.1.2, [BB05]), while part (viii) is
proven in (Proposition 3.1.3, [BB05]). O

Proposition 2.2.2. Let v,w € W. Then the following are equivalent:

(i) v <gow.

)

(i) £(vw) = £(v) + £(w).
)
)

(iii) v;w; is reduced for some v; € R(v), w; € R(w).

(iv) vjw; is reduced for all v; € R(v), w; € R(w).

Proof: The equivalence (i) < (ii) is an immediate consequence of Proposition 2.2.1(ii).
The equivalence (ii) < (iii) < (iv) is trivially true by the definition of reduced ex-
pressions. O

Proposition 2.2.3. Let v,w € W. If v <g vw, then Dg(v) N Dr(w) = 0.

Proof: We shall prove its contrapositive. If Dg(v) N Dp(w) # 0, then choosing some
s0 € Dg(v) N Dp(w), Lemma 1.3.7 tells us there is some expression v; € R(v) ending
in sg, and there is some expression w; € R(w) beginning with sg, hence v;w; is
obviously not reduced, so Proposition 2.2.2 implies v € vw. O

Note that the converse of Proposition 2.2.3 is not true. For example, if 5,5’ € S are
distinct generators satisfying m(s,s’) = 3, then Dg(ss’) = {s'} and D (ss") = {s},
and we have Dg(ss’) N D (ss’) = 0. Yet ss'ss’ = s's, and we obviously have ss’ £r
s's. However, there is still a partial converse as follows:
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Remark. Let v,w € W. If Dg(v) N§(w) = 0, then v <p vw.

At this point, we do not have the necessary tools to prove this partial converse.
However, we shall see in the next section that this partial converse easily follows from
unique factorization.

2.3 Unique Factorization

In this section, we shall introduce the notions of parabolic subgroups and quotients.
One very useful result of studying the parabolic subgroups and quotients of Coxeter
systems is that we obtain a unique factorization property of the words in W.

Definition. Let J C S. We denote W; to be the subgroup of W generated by the
set J, and we call W; the parabolic subgroup of W generated by J. Also, we denote

={weW:ws>wforall se J}. (2.2)
W ={weW:sw>wforall s € J}. (2.3)

We call W7 and YW quotients of W. Also, we denote £;(-) as the length function of
W with respect to the set of generators J.

Some basic properties of parabolic subgroups are listed below:

Proposition 2.3.1. Let I, J C S. The following hold:

(i) (Wy,J) is a Coxeter system.
(ii) £5(w) = ¢(w) for all w € W;.
(i) Wrn Wy =Winy.

(iv)
)

<W[UWJ> Wiro.
(V Wr=W;=1=J.

Proof: See (Proposition 2.4.1, [BB05]). O
Definition. For I C J C S, define the following:
D] ={we W :IC Dr(w) C J}. (2.4)
{D={weW:ICDy(w)CJ} (2.5)

Sets of the form Dy are called right descent classes, while sets of the form {D are
called left descent classes.

By the definition of descent classes, it easily follows that we have the following iden-
tities

T={weW:ws>wV¥seJy={weW:Dgw)CS\J}=D5". (2.6

JWz{wEW:sw>steJ}:{weW:DL(w)QS\J}zg\J . (2
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This just means that W~ is the set of all words in W whose right descent sets are
disjoint from .J, while W is the set of all words in W whose left descent sets are
disjoint from J. In fact, in view of Lemma 1.3.7, we easily get the following lemma:

Lemma 2.3.2. Let J C S. An element w is in W if and only if no reduced expression
for w ends with a letter from J. Similarly, an element w’ is in YW if and only if no
reduced expression for w’ begins with a letter from J.

Proof: This directly follows from Lemma 1.3.7. O

We can also refer to quotients of parabolic subgroups naturally. Letting I C J C S,
we have the following identities:

W) ={weW,:ws>wVsel}={weW,:Dr(w) CJ\I} =Dy". (28)

We know come to the main result of this section:
Theorem 2.3.3. Let J C S. Then every w € W has a unique factorization

w=w’wy (2.10)
such that w’/ € WY and w; € W, where for this factorization, we have

L(w) = L(w”) + L(wy). (2.11)

Similarly, every v € W has a unique factorization

v=uvy-Tv (2.12)
such that v; € W; and “v € /W, where for this factorization, we have

((v) = L(vy) + (7 v). (2.13)

Proof: The first assertion for the unique factorization of w is proven in (Proposition
2.4.4, [BBO05]). The second assertion for the unique factorization of v easily follows
from the first by observing that /W = (W7)~! by definition. O

Parabolic subgroups have complete systems of combinatorially distinguished coset
representatives, as shown by the following corollary:

Corollary 2.3.4. Let J C S. Then the following hold:

(i) Each left coset wW; has a unique representative of minimal length. The system
of such minimal coset representatives is W/ = Dg .

(ii) Each right coset W w has a unique representative of minimal length. The
system of such minimal coset representatives is /W = S\JD.

(iii) If Wy is finite, then each left coset wWW; has a unique representative of maximal
length. The system of such maximal coset representatives is D§.
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(iv) If Wy is finite, then each right coset W w has a unique representative of maximal
length. The system of such maximal coset representatives is §D.

Proof: See (Corollary 2.4.5, [BB05]) for the proof of (i) and (iii). O

Now, consider the case when (W,S) is a Coxeter system of finite rank (i.e. S is
finite). Label the elements in S as {si,..., s}, and for each i € [n], denote Q; =
(W{Sl)msi}){sl """ si-1} if § > 1, and for the case i = 1, denote Q; = Wy, = {e,s1}. By
repeatedly applying Theorem 2.3.3, we get the following:

Corollary 2.3.5. The product map Q1 X --- X @, — W, defined by
(91,42, -, qn) = @nGn-1-"" @1
is a bijection satisfying €(¢ngn—1---q1) = €(q1) + £(g2) + - .. + €(qn).
Proof: This is just the application of Theorem 2.3.3 inductively on @Q1,Qs2,...,Q,. O

Recall from Proposition 2.2.3 that given any v,w € W, we have v <p vw implies
Dr(v)NDr(w) = 0. We also showed that its converse is not true by giving a counter-
example, and we proposed a partial converse. In particular, note that for any word
w € W, we have §(w) = A for some subset A C S implies w € W4. We are now ready
to prove that partial converse:

Proposition 2.3.6. Let AC S, let v € W, and let w € Wy. If Dg(v)N A =0, then
v <R VW.

Proof: By definition, we have v € W4 and w € Wy, hence (2.11) gives {(vw) =
£(v) + £(w), so by Proposition 2.2.2(ii), we get v <p vw. O

2.4 Largest Elements

For a general Coxeter system (W, S), there may not necessarily be any element having
maximal length. For example, if S is infinite, then Corollary 1.2.7 clearly shows that
there are elements in W of arbitrarily large length. However, if (W,S) is a finite
Coxeter system, then there must exist an element of maximal length. It is not hard
to show that this element is unique. (See Proposition 2.2.9, [BB05] for a proof.) We
can then make the following definition:

Definition. If (W,S) is a finite Coxeter system, then we denote wg as the unique
element of maximal length. This notation ‘wy’ is standard in the literature of Coxeter
systems. We say wy is the largest element in W.

Proposition 2.4.1. Let (Sy,S) (with n > 2) be the standard Coxeter system of the
symmetric group S,,. Then largest element wq in S, corresponds to the permutation
representation n - -- 21, and wp has a reduced expression

Sn(Sn—15n)(Sn—28n—18n) - (S1-+ - $pn). (2.14)
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Proof: Consider an arbitrary word w € S,, with permutation representation a; - - - a,
and inversion table (by,...,b,). For each k € [n], b, counts the number of terms to the
left of a,,-1(;) that are larger than k. Since there are n — k integers in [n] larger than
k, we must have by < n — k. Let w’ € S, correspond to permutation representation
n(n —1)---21, and note that w’ has the inversion table (n — 1,n — 2,...,1,0), so
equality holds in by < n — k for every k € [n]. By Lemma 1.3.2, w’ has precisely the
largest possible length. So by the uniqueness of wg, and by applying Theorem 1.3.5,
the result follows. g

Next, we give a list of useful results related to wy:

Proposition 2.4.2. Let (W, S) be a finite Coxeter system. Then wy exists, and for
all w € W, the following hold:

@

) w
i) w
(iii) ((wwo) = l(wow) = l(wp) — L(w).
iv) (wowwy) = L(w).
(v) lwo) = |T.
Proof: Parts (i) and (iii)-(v) are proven in (Proposition 2.3.2 and Corollary 2.3.3,
[BBO5]). As for part (ii), substitute w = wy ' into part (iii) to get £(wy ') = £(wo),
so by the uniqueness of wy, (ii) follows. O

Proposition 2.4.3. Let (W, S) be any Coxeter system, and let w € W. Then the
following are equivalent:

(i) Dy(w)=S.
(i) Dr(w) = S.

(iii) W is finite, and w = wy.

Proof: The equivalence (i) < (iii) is proven in (Proposition 2.3.1, [BB05]). As for
the equivalence (ii) < (iii), Proposition 1.3.8 gives us Dr(w) = S if and only if
Dp(w™1) = S, and the equivalence (i) < (iii) gives us Dz (w™1) = S if and only if W
is finite and w™! = wo, so by wy ' = wp (Proposition 2.4.2 part (ii)), the equivalence
(ii) < (iii) follows. O

Proposition 2.4.4. For both the Bruhat order and the weak order on a finite Coxeter
system, the following hold:
(i) w— wwy and w — wow are anti-automorphisms.

(ii) w +— wowwp is an automorphism.
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Proof: See (Proposition 2.3.4, [BB05]) and (Proposition 3.1.5, [BB05]). O

Proposition 2.4.5. Let (W,S) be a finite Coxeter system. Then for any w € W,
the following hold:

(1) Tr(wwy) =T\ Tr(w) and Tr(wow) =T \ Tr(w).
(ii) Tr(wow) = wo(T \ T (w))we =T \ (woT(w)wp) and
TR(wwO) = ’LU()(T \ TR(w))wo = T\ (U)()TR(U))U)()).
(

(111) TL wowwo) = ’LU()TL(U})’LU() and TR('U}()’LU’[U()) = ngR(w)wo.
(iv)

D (wwy) = S\ Dr(w) and Dr(wow) = S\ Dr(w).

(v) Drp(wow) = wo(S \ Dr(w))wy = S\ (woDr(w)wy) and Dr(wwy) = we(S \
D
D

(

(wo
r(w))wo = S\ (woDp(w)wo).
L(

wowwy) = wo D (w)wy and Dy (wowwy) = weDg(w)wp.

(vi)

Proof: In view of Proposition 1.3.8 and the fact that wal = wp (Proposition 2.4.2),
replacing w with w™! in the the first statement of each part gives the corresponding
second part, thus it suffices to prove only the first statement of every part. From the
anti-automorphism w — wwy (Proposition 2.4.4), we have twwy < wwy < tw > w
for all t € T, and in particular, swwy < wwy < sw > w for all s € S. Similar, the
anti-automorphism w — wow gives twow < wow < wotwow > w fo