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Abstract. A fast, simple, and numerically stable transform for converting between Legendre and
Chebyshev coefficients of a degree N polynomial in O(N(logN)2/ log logN) operations is derived.
The basis of the algorithm is to rewrite a well-known asymptotic formula for Legendre polynomials of
large degree as a weighted linear combination of Chebyshev polynomials, which can then be evaluated
by using the discrete cosine transform. Numerical results are provided to demonstrate the efficiency
and numerical stability. Since the algorithm evaluates a Legendre expansion at an N +1 Chebyshev
grid as an intermediate step, it also provides a fast transform between Legendre coefficients and
values on a Chebyshev grid.
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1. Introduction. Expansions of functions as finite series of orthogonal poly-
nomials have applications throughout scientific computing, engineering, and physics
[4, 8, 27]. Expansions in Chebyshev polynomials,

pN (x) =
N∑

n=0

cchebn Tn(x), x ∈ [−1, 1], (1.1)

where Tn(x) = cos(n cos−1(x)), are often used because of their near-optimal approxi-
mation properties and associated fast algorithms [17,33]. However, in some situations
Legendre expansions,

pN (x) =
N∑

n=0

clegn Pn(x), x ∈ [−1, 1], (1.2)

where Pn(x) is the degree n Legendre polynomial, are preferred due to their orthogo-
nality in the standard L2 inner product, more rapidly decaying Cauchy transform [20],
or connection to spherical harmonics [26].

Unfortunately, fast algorithms are not as readily available for computing with
Legendre expansions, and hence a fast transform to convert between Legendre and
Chebyshev coefficients is desirable. In this paper we describe a fast, simple, and
stable transform that converts between the coefficients cleg0 , . . . , clegN in (1.2) and the
coefficients ccheb0 , . . . , cchebN in (1.1) in O(N(logN)2/ log logN) operations:

forward transform−−−−−−−−−−−−−−−⇀
cleg0 , . . . , clegN O(N(logN)2/ log logN) ccheb0 , . . . , cchebN .

↽−−−−−−−−−−−−−−
inverse transform

Whilst there are a number of existing fast algorithms for computing such transforms,
many of these require hierarchical data structures and expensive initialization proce-
dures [2, 25], needs an underlying function to evaluate [7, 16], or suffer from stability
problems [19].
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Fig. 2.1: Existing fast algorithms related to Chebyshev–Legendre transforms.

The algorithm we describe is based on Stieltjes’ long-established asymptotic for-
mula for Legendre polynomials [30], and can be seen as a numerically stable modifi-
cation of the approach by Mori et al. [19]. As we shall explain, it can be interpreted
as approximating the Legendre–Vandermonde-like matrix by a weighted linear com-
bination of Chebyshev–Vandermonde-like matrices, whose action on vectors can be
efficiently computed using the discrete cosine transform (DCT).

The outline of this paper is as follows: In the next section we discuss existing
fast algorithms for the Chebyshev–Legendre transform and justify the need for a new
approach. In Section 3 we discuss the forward transform. We begin by introducing the
asymptotic formula of Stieltjes [30] and describing the numerically unstable algorithm
of Mori et al. [19], before advocating a novel modification that leads to a fast and
stable algorithm. In Section 4 we describe a similar new fast algorithm for the inverse
transform, and in Section 5 we present numerical results for both algorithms. Finally,
in Section 6 we discuss applications and future work for related fast transforms.

The code used for all the numerical results in this paper is publicly available from
here [14]. It is also available in the Chebfun software system [34].

2. Existing methods. The problem of computing coefficients in a Legendre
expansion has received considerable research attention since the 1970s [10,24]. These
initial approaches required O(N2) operations to compute the transform, and to the
authors’ knowledge the first algorithm for computing the coefficients of a Legendre
expansion in less than O(N2) operations is due to Orszag [23] in 1986. Later, in
1991, Alpert and Rokhlin [2] described an algorithm based on multipole-like ideas,
requiring just O(N) operations. Since then many other fast algorithms have been
proposed [7,19,25,35]. Figure 2.1 summarises the main algorithms, which are briefly
described below.

2.1. Approaches using asymptotic expansions. Orzsag [23], in 1986, de-
scribed a fast algorithm for eigenfunction transforms that can be used for the compu-
tation of Legendre coefficients. The algorithm is based on a first-order WKB expansion
of Legendre polynomials, but it is not considered useful in practice as the expansion
converges too slowly. The algorithm we present for computing the forward transform
is similar to Orszag’s approach, but improved in two crucial ways: (1) We use a differ-
ent asymptotic formula for Pn(x) due to Stieltjes that converges more rapidly [30,32];
and (2) We use an accompanying explicit error formula to derive the complexity and
determine certain algorithmic constants of the transform.
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We are not the first to use Stieltjes’ asymptotic formula for computing the fast
transform as it was employed by Mori, Suda, and Sugihara [19] in 1999 to derive an al-
gorithm requiring O(N logN) operations. The algorithm described in [19] is fast and
accurate for small N , but as N increases it becomes numerically unstable in floating
point arithmetic. Suda, Mori, and Sugihara were aware of the numerical instability
in their algorithm and in 2002 began preparing a manuscript to fix the numerical
issues. However, that work was not finished and they no longer intend to publish1.
Furthermore, even with the unpublished modification (as noted in the manuscript),
their algorithm is still unstable for large N . In this paper we present a further modi-
fication that is numerically stable for all N . In particular, in Section 3, we adapt the
algorithm in [19] to derive a stable transform requiring O(N(logN)2/ log logN) oper-
ations that can transform between one million Legendre and Chebyshev coefficients,
or more.

2.2. The fast multipole method. The fast multipole-like approach described
by Alpert and Rohklin [2] transforms between Legendre and Chebyshev coefficients
in O(N) operations. The cost of the algorithm depends on the working precision,
and for double precision arithmetic they observe that after the initialization phase
it is about 5.5 times the cost of a single fast Fourier transform (FFT) of the same
length [2]. Although this approach is often considered state-of-the-art, the algorithm
is not widely used in practice as the initialization phase can be expensive and the
hierarchical data structures required make it difficult to implement efficiently. The
algorithms for the forward and inverse transforms presented in this paper do not
require an initialization phase, and are sufficiently simple that they can be efficiently
implemented in about 100 lines of Matlab code (see Section 6).

2.3. Divide-and-conquer approaches. Potts, Steidl, and Tasche described in
1998 a fast algorithm that transforms between function values at Chebyshev points
and Legendre coefficients [25]. The algorithm uses a divide-and-conquer approach
and hierarchical data structures to apply the matrix-vector product involving the
Legendre–Vandermonde-like matrix

PN(xcheb
N ) =

[
P0(x

cheb
N ) | · · · |PN−1(x

cheb
N )

]
in O(N(logN)2) operations, where P0, . . . , PN−1 are the firstN Legendre polynomials
and xcheb

N denotes the vector of N Chebyshev points in decreasing order.
Tygert [35], in 2010, describes a similar algorithm, noting that the Legendre–

Vandermonde-like matrix can be decomposed as PN(xleg
N ) = DwUDs, where xleg

N

is the vector of N Gauss–Legendre points, Dw is the diagonal matrix of Gauss–
Legendre quadrature weights, Ds is the diagonal matrix of orthonormalization factors
for Legendre polynomials, and U is an orthogonal matrix. Tygert then uses the fact
that the orthogonal matrix U can be applied in O (N logN) operations since the
columns are the eigenvectors of a symmetric tridiagonal matrix [12]. The approach
proposed by Tygert is more general than just a fast Legendre transform and he notes
that specialized algorithms are likely to be more efficient.

2.4. Function dependent approaches. In 2011, Iserles [16] described an al-
gorithm to compute the fast Legendre coefficients from sampling a function at points
lying on a certain Bernstein ellipse in the complex plane. The algorithm requires

1We are very grateful for private communication with Professor Reiji Suda from the University
of Tokyo in June 2013.
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O(N logN) operations and is much simpler to implement than other approaches men-
tioned thus far. However, the size of the Bernstein ellipse required depends on the
region of analyticity of f , making the algorithm difficult to use in a black box manner.
Furthermore, it seems that in practice this algorithm suffers from numerical instabil-
ity for large N (N ≥ 512), and quadratic precision is required in the computations to
get even double or single precision accuracy in the results.

More recently, De Micheli and Viano in [7] describe a fast algorithm based on
integral transforms, which also depends on the smoothness of the prescribed function.
The algorithm we derive does not depend on the smoothness of the function and is
applicable to any vector of real or complex coefficients.

3. The forward transform: Legendre to Chebyshev. For notational con-
venience we express equations (1.1) and (1.2) in the form

pN (x) = TN(x)cchebN = PN(x)clegN ,

where x is an independent variable and

TN(x) = [T0(x) | . . . |TN (x)], PN(x) = [P0(x) | . . . |PN (x)], (3.1)

are Chebyshev and Legendre quasimatrices2, i.e., the∞×(N+1) matrices that have in
their nth column the degree n− 1 Chebyshev and Legendre polynomial, respectively.
If −1 ≤ xN < · · · < x0 ≤ 1 are N + 1 distinct points in [−1, 1], indexed in reverse
order to simplify later notation, and xN = {xj}0≤j≤N , then

pN (xN ) = TN(xN )cchebN = PN(xN )clegN .

For brevity, we refer to the Vandermonde-like matrices TN(xN ) and PN(xN ) as the
Chebyshev–Vandermonde and Legendre–Vandermonde matrices, respectively. Now,
since polynomial interpolants at distinct points are unique, TN(xN ) and PN(xN ) are
invertible, and we may write

cchebN = TN(xN )−1PN(xN )clegN .

For a general vector of distinct points xN , a naive algorithm requires O(N2)
operations for a matrix-vector product with PN(xN ), and O(N3) operations to apply
TN(xN )−1 to a vector. However, if xN = xcheb

N , i.e., the vector of N + 1 Chebyshev
points (of the second kind),

xcheb
k = cos(kπ/N), k = 0, . . . , N, (3.2)

then TN(xcheb
N ) is the matrix representing a DCT3, and can be applied and inverted

in O(N logN) operations [1,11]. Applying PN(xcheb
N ) to a vector in fewer than O(N2)

operations is less straight-forward, but in the following section we describe how this
can be achieved by employing a well-known asymptotic formula.

As an aside, we note that if TN(xcheb
N )−1 is not applied, then PN(xcheb

N )clegN =
pN (xcheb

N ) is simply pN (x) evaluated on the Chebyshev grid xcheb
N , which is useful for

the fast evaluation of a Legendre expansion and spectral collocation methods [6].

2The term quasimatrix was coined by Stewart in [29] to describe ‘matrices’ with columns con-
sisting of functions.

3In this paper we use the acronym DCT to refer to the discrete cosine transform of type I (DCT-
I, [37]) with the first and last columns of the DCT-I matrix scaled, so that it equals the matrix
TN(xcheb

N ). Moreover, the matrix TN(xcheb
N ) is symmetric, i.e., TN(xcheb

N )T = TN(xcheb
N ).
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3.1. An asymptotic formula for Legendre polynomials. In 1890, Stieltjes
[30] derived the following asymptotic formula for Legendre polynomials as n → ∞:

Pn(cos θ) = Cn

M−1∑
m=0

hm,n

cos
(
(m+ n+ 1

2 )θ − (m+ 1
2 )

π
2

)
(2 sin θ)

m+1/2
+RM,n(θ), (3.3)

where θ = cosx for θ ∈ (0, π), and

Cn =
4

π

n∏
j=1

j

j + 1/2
=

√
4

π

Γ(n+ 1)

Γ(n+ 3/2)
, (3.4)

hm,n =

{
1, m = 0,∏m

j=1
(j−1/2)2

j(n+j+1/2) , m > 0.
(3.5)

Szegő, in his classic book on orthogonal polynomials [32], showed that the error term
can be bounded by

|RM,n (θ)| ≤ CnhM,n
2

(2 sin θ)M+ 1
2

. (3.6)

This upper bound is sharp and a good approximate lower bound is half the up-
per bound, since |RM,n (θ)| is less than twice the first neglected term in (3.3) [32].
The bound on RM,n(θ) shows that (3.3) converges to Pn(cos θ) as M → ∞ for
θ ∈ (π/6, 5π/6), i.e., for θ such that |2 sin θ| < 1. However, as suggested by Szegő
in [32] and demonstrated in [5,15], for finite values of M this asymptotic formula can
still be an excellent approximation for θ 6∈ (π/6, 5π/6). In practice, if n is sufficiently
large, (3.3) can be used to approximate Pn(cos θ) to double precision for almost all
θ ∈ (0, π). The exact region in the (n, θ)-plane in which M terms of (3.3) approxi-
mates Pn(cos θ) to a prescribed tolerance can be determined from (3.6), as we derive
later in (3.14).

To make (3.3) amenable to evaluation using the DCT, we first note that (m+n+
1
2 )θ − (m+ 1

2 ) = nθ − (m+ 1
2 )(

π
2 − θ) and rewrite the trigonometric term in (3.3) as

cos
(
(m+ n+ 1

2 )θ − (m+ 1
2 )

π
2

)
= cos

(
nθ − (m+ 1

2 )(
π
2 − θ)

)
.

Applying a standard trigonometric identity to cos(A−B) we find

cos
(
nθ − (m+ 1

2 )(
π
2 − θ)

)
= sin(nθ) sin

(
(m+ 1

2 )(
π
2 − θ)

)
+ cos(nθ) cos

(
(m+ 1

2 )(
π
2 − θ)

)
.

Noting that Tn(cos θ) = cos(nθ) and Un−1(cos θ) = sin(nθ)/ sin θ are Chebyshev
polynomials of the first and second kind, respectively, we have

cos
(
nθ − (m+ 1

2 )(
π
2 − θ)

)
= Un−1(cos θ) sin

(
(m+ 1

2 )(
π
2 − θ)

)
sin θ

+ Tn(cos θ) cos
(
(m+ 1

2 )(
π
2 − θ)

)
.

(3.7)

Finally, substituting (3.7) back into (3.3), we find the asymptotic formula (3.3) can
be expressed as a weighted linear combination of Chebyshev polynomials

Pn(cos θ) = Cn

M−1∑
m=0

hm,n (um(θ)Un−1(cos θ) + vm(θ)Tn(cos θ)) +RM,n(θ), (3.8)
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where

um(θ) =
sin
(
(m+ 1

2 )(
π
2 − θ)

)
sin θ

(2 sin θ)
m+1/2

, vm(θ) =
cos
(
(m+ 1

2 )(
π
2 − θ)

)
(2 sin θ)

m+1/2
. (3.9)

Now, since Tn(cos θ) and Un−1(cos θ) are the only terms in (3.8) that depend on both
n and θ, the quasimatrix PN(x) from (3.1) can be expressed in the following compact
form:

PN(cos θ) =

M−1∑
m=0

(
Dum(θ)[0 |UN−1(cos θ)] +Dvm(θ)TN(cos θ)

)
DChm

+RM (θ),

(3.10)
where x = cos θ, Dum(θ) and Dvm(θ) are the diagonal operators with um(θ) and vm(θ)
from (3.9) on the diagonal, DChm

is the diagonal matrix of the pointwise product of
(3.4) and (3.5) for n = 0, . . . , N , and RM (θ) = [RM,0(θ) | . . . |RM,N (θ)].

Substituting x = xcheb
N = cos(θchebN ) means that UN−1(x

cheb
N ) and TN(xcheb

N )
are essentially discrete cosine/sine transformation matrices, which can be applied
to a vector in O(N logN) operations using the DCT. Since PN(xcheb

N ) is simply a
diagonally-weighted linear combination of these matrices, the matrix-vector product
PN(xcheb

N )cchebN in (3.10) can be evaluated in O(MN logN) operations using (3.10)

with an error of RM (θchebN )cchebN .

3.2. Partitioning the Legendre–Vandermonde matrix for the forward
transform. First, we take the unusual step of describing an unstable algorithm by
Mori et al. [19] for the forward transform that we do not advocate. However, by
describing this algorithm now we motivate and set the scene for its stable variant (see
Section 3.3).

This unstable algorithm computes PN(xcheb
N )clegN by partitioning PN(xcheb

N ) into
two matrices, denoted by PREC

N (xcheb
N ) and PDCT

N (xcheb
N ). Making use of discrete

cosine transforms, the matrix PDCT
N (xcheb

N ) is applied to a vector via the asymptotic
formula (3.10), and in this process an unacceptably large error for certain (n, θ) can
be committed which must be corrected by a matrix PCOR

N (xcheb
N ). Effectively, this

algorithm expresses PN(xcheb
N ) as a sum of three matrices,

PN(xcheb
N ) = PREC

N (xcheb
N ) +PDCT

N (xcheb
N ) +PCOR

N (xcheb
N ), (3.11)

where the matrices are shown in Figure 3.1 (left). The matrixPREC
N (xcheb

N ) contains all
the columns and rows of PN(xcheb

N ) that do not intersect the error curve |RM,n(θ)| = ε,
that is,

PREC
N (xcheb

N )ij =


PN(xcheb

N )ij , 1 ≤ min(i,N − i+ 1) ≤ jM ,

PN(xcheb
N )ij , 1 ≤ j ≤ nM ,

0, otherwise.

Here, nM is the number of Legendre polynomials, P0, . . . , PnM
, that cannot be ap-

proximated using the asymptotic formula (3.3) to a precision ε at θ = π/2 (x = 0).
In other words, |RM,n(π/2)| < ε for all n > nM . It can be shown, using (3.6) and its
approximate sharpness, that for n � M ,

|RM,n(π/2)| & Cnhn,M
1

2M+1/2
= O

(
4Γ(M + 1/2)2

π3/2Γ(M + 1)

n−M−1/2

2M+ 1
2

)
, (3.12)
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M 3 4 5 6 7 8 9 10 11 12 13 14 15

nM 16,072 2,053 583 252 139 90 65 50 41 35 30 27 25

jM 5,000 658 185 80 44 28 20 15 13 11 9 8 7

Table 3.1: Algorithmic constants for 3 ≤ M ≤ 15 and ε = 2.2× 10−16 in the regime of N � nM and
n � M . PnM+1(x) is the lowest degree Legendre polynomial that is evaluated at x = 0 to machine
precision using M terms in the asymptotic formula, and jM is such that PN (xi) is evaluated to
machine precision for any jM ≤ i ≤ N − jM .

where the last equality is the leading term in a series expansion of RM,n(π/2) for
n � M . Solving (3.12) we obtain,

nM =

⌊
1

2

(
ε
π3/2Γ(M + 1)

4Γ(M + 1/2)2

) −1

M+1
2

⌋
, (3.13)

and Table 3.1 gives some values of nM for 3 ≤ M ≤ 15. More generally, we can use
(3.12) to derive the following error curve:

|RM,n(θ)| = ε =⇒ n ≈ nM/ sin θ. (3.14)

The curves clearly depend on M , and Figure 3.1 (right) depicts those for M =
5, 7, 10, 15 and N = 1,000. Similar figures appear in [19].

jM gives the number of values PN (x0), . . . , PN (xjM−1) that cannot be approx-
imated by the asymptotic formula (3.3) to a tolerance of ε using M terms in the
asymptotic formula. Thus, using (3.14), jM is the number of points in the interval

0 ≤ θ ≤ sin−1
(nM

N

)
.

Since cos−1(x0), . . . , cos
−1(xjM ) are equally-spaced with spacing π/(N + 1) in the

θ-variable we have,

jM =

⌊
N + 1

π
sin−1

(nM

N

)⌋
. (3.15)

Moreover, sin−1(x) ≈ x for |x| � 1 and hence, for N � nM the parameter jM is
essentially independent of N . Table 3.1 gives the values of jM for 3 ≤ M ≤ 15.

Note that equations (3.13) and (3.15) for the algorithmic constants nM and jM
assume that n � M and N � nM , respectively. In fact, the analysis here is not
intended to be overly rigorous or technical, but just give an estimates of the error
curve, nM , and jM . A more technical analysis can be performed taking more care
when certain series expansions are employed, but this does not significantly change
the practical properties of the algorithm.

We compute the resulting vector PN(xcheb
N )clegN by applying the three matrices

in (3.11) separately. The matrix-vector product PREC
N (xcheb

N )clegN can be computed in
O(N) operations because the matrix PREC

N (xcheb
N ) has fewer than (2jM + nM )N =

O(N) nonzero entries. These entries cannot be computed via the asymptotic formula
(3.3) because for these (n, θ) we have |RM,n(θ)| > ε. Instead, we use the well-known
three-term recurrence relation satisfied by Legendre polynomials [21]:

Pn+1(x) =

(
2− 1

n+ 1

)
xPn(x)−

(
1− 1

n+ 1

)
Pn−1(x), n ≥ 1. (3.16)
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Fig. 3.1: Left: The partition of the matrix PN(xcheb
N ) employed in the unstable algorithm. The

dashed line indicates the boundary of the region in which the asymptotic formula can be employed
without correction, and the gray region indicates the nonzero entries of the matrix PREC

N (xcheb
N ).

Right: The error curves |RM,n(θ)| = ε for M = 5, 6, 7, 15 and N = 1,000.

In this way, PREC
N (xcheb

N )clegN is computed without explicitly forming PREC
N (xcheb

N ).

For the matrix-vector product PDCT
N (xcheb

N )clegN we write PDCT
N (xcheb

N ) as the
weighted sum of Chebyshev–Vandermonde matrices given in (3.10). However, since
the first nM columns and first and last jM rows of PDCT

N (xcheb
N ) are zero we must

restrict the DCTs when applying the matrices UN−1(x
cheb
N ) and TN(xcheb

N ). One
can think of this as pre- and post-multiplying the Chebyshev–Vandermonde matrices
by identity matrices with the first and last jM and first nM entries on the diagonal
zeroed, respectively. As before, each multiplication by the Chebyshev–Vandermonde
matrices can be computed in O(N logN) operations using the DCT.

Unfortunately, in computing PDCT
N (xcheb

N )clegN we have employed the asymptotic
formula in a region where |RM,n(θ)| > ε, and we must correct for this. To do so, we
construct a correction matrix PCOR

N (xcheb
N ), see Figure 3.1 (left), with each nonzero

entry equal to the true value of a Legendre polynomial minus the erroneous evaluation
via the asymptotic formula (3.3). Thus, to compute each entry of PCOR

N (xcheb
N ) we

evaluate the Legendre polynomial using the three-term recurrence (3.16) and subtract
the value obtained from the asymptotic formula in the form (3.3). Fortunately, as
can be derived by the analysis in [19], the matrix PCOR

N (xcheb
N ) contains O(N logN)

nonzero entries and thus, the correction vector PCOR
N (xcheb

N )clegN can be computed in
O(N logN) operations. Since each of the matrices on the right-hand side of (3.2) can
be applied in O(N logN) operations, so can PN (xcheb

N ), and hence the entire forward
transformation.

The major problem with this algorithm, as described, is that for any M the
transform becomes numerically unstable for sufficiently large N . The reason for this is
cancellation error in floating point arithmetic. For largeN the asymptotic formula can
erroneously evaluate to arbitrarily large values outside the dashed line in Figure 3.1
(left), which means the entries in PCOR

N (xcheb
N ) lose all precision. This effect appears

in practice, and in Figure 3.2 (left) we show the absolute error in the computed
Chebyshev coefficients for various values of M between 5 and 20 with 1,000 ≤ N ≤
10,000. It is the cancellation error in computing the entries of PCOR

N (xcheb
N ) that makes

the algorithm numerically unstable and therefore, for large N , it is not as useful as
one might hope for computing the forward transform.
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Fig. 3.2: Left: The maximum error in the computed coefficients cchebN for various M . For every
M ≥ 1 there is an integer Nmax such that the algorithm is numerically unstable for n > Nmax. This
situation can be remedied using the algorithm described in Section 3.3. Right: The execution times
for the same values of M and 103 ≤ N ≤ 105. By selecting a small value of M one can ensure that
the instability occurs only at a large N , but then the algorithm is much less efficient.

3.3. Block partitioning for numerical stability. Now we describe the algo-
rithm that we do advocate for the forward transform based on a different partitioning
of the Legendre–Vandermonde matrix PN(xcheb

N ). The algorithm is numerically sta-

ble and computes the vector TN(xcheb
N )−1PN(xcheb

N )clegN in O(N(logN)2/ log logN)
operations.

We partition the matrix PN(xcheb
N ) into K + 1 submatrices, where K grows like

O(logN/ log logN), in such a way that each submatrix can be applied to the vector

clegN in at most O(N logN) operations. In particular, we partition PN(xcheb
N ) as

PN(xcheb
N ) = PREC

N (xcheb
N ) +

K∑
k=1

P
(k)
N (xcheb

N ), (3.17)

where, for k = 1, . . . ,K, we have

P
(k)
N (xcheb

N ) =

{
PN(xcheb

N )ij , ik ≤ i ≤ N − ik, αkN ≤ j ≤ αk−1N,

0, otherwise,

α = O(1/ logN), and

ik =

⌊
N + 1

π
sin−1

( nM

αkN

)⌋
. (3.18)

The value of ik is the row index such that the submatrix PN
(k)(xcheb

N ) nearly touches
the error curve (3.14), and hence has a similar form as jM in (3.15) with N replaced
by αkN . Note that there is no need for a correction matrix PCOR

N (xcheb
N ) in this

algorithm, and that the matrix PREC
N (xcheb

N ) is defined slightly differently than in
Section 3.2. The partitioning is shown in Figure 3.3 for K = 3, and we remark that
since K grows relatively slowly with N , we require N ≥ 100,000 for our algorithm to
use K ≥ 3 and N ≥ 106 for K ≥ 4.

This partitioning separates the matrix PN(xcheb
N ) into submatrices P

(k)
N (xcheb

N )
whose nonzero entries can be computed by using the asymptotic formula without

9
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Fig. 3.3: Partitioning of the matrix PN(xcheb
N ) employed to compute the forward transform. The

dashed line indicates the boundary of the region in which the asymptotic formula can be used without
correction, and the gray region indicates the nonzero entries of the matrixPREC

N (xcheb
N ). The diagram

is not drawn to scale, and in practice the submatrix PREC
N (xcheb

N ) occupies just a tiny proportion of

PN (xcheb
N ).

correction, and in such a way that the cost of computing PN(xcheb
N )clegN is minimal.

The minimal cost is achieved, up to a constant, by balancing the cost of computing

PREC
N (xcheb

N )clegN with the cost of the K matrix-vector products P
(k)
N (xcheb

N )clegN for
k = 1, . . . ,K.

As we show later, the matrix PREC
N (xcheb

N ) contains O(KN/α) nonzero entries and
hence, can be applied to a vector in O(KN/α) operations. In a similar fashion to the
algorithm described in Section 3.2, we compute the nonzero entries of PREC

N (xcheb
N )

by using the three-term recurrence relation for Legendre polynomials (3.16).

The other matrices P
(k)
N (xcheb

N ) for k = 1, . . . ,K are applied to a vector in
O(N logN) operations by employing the asymptotic formula (3.10) evaluated via

the DCT. Notice that the nonzero entries of P
(k)
N (xcheb

N ) form a rectangular subma-

trix of PN(xcheb
N ) and therefore, the matrix-vector product P

(k)
N (xcheb

N )clegN can be
computed by restricting the DCTs when applying the matrices UN−1(x

cheb
N ) and

TN(xcheb
N ). Again, one can think of this as pre- and post-multiplying the Chebyshev–

Vandermonde matrices by identity matrices with certain entries on the diagonal zeroed
out.

We now tidy up some unfinished business and detail how to partition the matrix
PN(xcheb

N ) in (3.17) and analyze the complexity of the resulting algorithm. First, the
number of nonzero entries in PREC

N (xcheb
N ) can be calculated by artificially cutting it

up into rectangular regions, and to leading order has

2

(
K−1∑
k=1

αkN (ik+1 − ik)

)
≈ 2

(
K−1∑
k=1

αkN
N

π

(
sin−1

( nM

αk+1N

)
− sin−1

( nM

αkN

)))

≈ 2

π
KN

(
1

α
− 1

)
nonzero entries, where the last approximation uses sin−1(x) ≈ x, for |x| � 1. There-

fore, the leading order cost of computing P
(k)
N (xcheb

N )clegN is O(KN/α) operations, and

we want to balance this with the O(KN logN) cost of computing PREC
N (xcheb

N )clegN

for k = 1, . . . ,K. To balance we should select α such that KN/α = KN logN , i.e.,
α = O (1/ logN). In practice, we have found that α = (1/ log(N/nM )) is a good
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choice for large N , and to avoid this becoming too close to 1 when N is small we take

α = min(1/ log(N/nM ), 1/2).

Moreover, this discussion also determines K since we need to partition the matrix
PN(xcheb

N ) into K + 1 parts so that αK+1N < nM and therefore, we have

K = O (logN/ log logN) .

Putting this together, we have described an algorithm for the forward trans-
form that requires O (KN logN) operations, i.e., O

(
N(logN)2/ log logN

)
opera-

tions. Furthermore, since the algorithm only employs the asymptotic formula for
(n, θ) where |RM,n(θ)| < ε, the transform is numerically stable. Additionally, the
block partitioning means almost all computations can be vectorized, and since each
of the K + 1 matrix-vector multiplications as well as the DCTs in the asymptotic
formula are independent, the algorithm is trivially parallelizable.

4. The inverse transform: Chebyshev to Legendre. The inverse transform
converts a vector of Chebyshev coefficients, cchebN , to a vector of Legendre coefficients,

clegN . Similarly to the forward transform, it can represented by a matrix-vector product
involving Chebyshev– and Legendre–Vandermonde matrices:

clegN = PN(xcheb
N )−1TN(xcheb

N )cchebN . (4.1)

We begin with the integral definition for the Legendre coefficients, i.e.,

clegn =
1

‖Pn‖22

∫ 1

−1

pN (x)Pn(x)dx, 0 ≤ k ≤ N, (4.2)

where Pn(x) is the degree n Legendre polynomial, and pN (x) = TN(x)cchebN is the
polynomial with Chebyshev coefficients cchebN as in (1.1). Since pN (x) is a polynomial
of degree at most N , for any 0 ≤ n ≤ N the integrand, p(x)Pn(x), is a polynomial of
degree at most 2N , and the (2N +1)-point Clenshaw–Curtis quadrature rule is exact
for all the integrals in (4.2). Therefore, the Legendre coefficients satisfy the following
discrete sums:

clegn =
1

‖Pn‖22

2N∑
j=0

wjpN (xj)Pn(xj), 0 ≤ n ≤ N, (4.3)

where −1 ≤ x2N < · · · < x0 ≤ 1 and w2N , . . . , w0 are the Clenshaw–Curtis quadrature
nodes and weights, respectively. Again, we have indexed the nodes in reverse order for
easier notation later. Note that these Clenshaw–Curtis nodes are just the Chebyshev
points from (3.2) (with N replaced by 2N) and hence, xcheb

2N = (x0, . . . , x2N )
T
. More-

over, denote by w2N the vector of Clenshaw–Curtis weights, w2N = (w0, . . . , w2N )
T
,

which can be computed in O(N logN) operations using the algorithm of Waldvo-
gel [36], and s2N , the orthonormalization vector for Legendre polynomials, s2N =(
‖P0‖−2

2 , . . . , ‖P2N‖−2
2

)T
. With this notation, (4.2) takes the following compact form:

clegN =
[
IN+1 |0N

]
Ds2N

P2N(xcheb
2N )TDw2N

pN (xcheb
2N )

=
[
IN+1 |0N

]
Ds2N

P2N(xcheb
2N )TDw2N

T2N(xcheb
2N )

[
IN+1

0N

]
cchebN ,

(4.4)

11



where Dw2N
and Ds2N

are diagonal matrices with diagonal entries w2N and s2N ,
respectively.

The vector of Legendre coefficients clegN in (4.4) has been expressed in terms of
a matrix-vector product involving P2N(xcheb

2N )T , whereas the original relation (4.1)
involves the inverse PN(xcheb

N )−1. Therefore, at the cost of doubling the size of the
Legendre–Vandermonde matrices, we are able to employ the same asymptotic formula
(3.3), as before. Note that the pre-multiplication by

[
IN+1 |0N

]
in (4.4) means that

only the first N + 1 rows of P2N(xcheb
2N )T are required in practice.

4.1. The transpose of the asymptotic formula. To apply the transposed
Legendre–Vandermonde matrix, P2N(xcheb

2N )T , we transpose the asymptotic formula
for quasimatrices (3.10):

P2N(cos θ)T =
M−1∑
m=0

DChm

(
[0 |U2N−1(cos θ)]

TDum(θ) +T2N(cos θ)TDvm(θ)

)
+RM (θ)T ,

(4.5)

where x = cos θ. Thus, when x = xcheb
2N = cos(θcheb2N ), the relation (4.5) expresses

P2N(xcheb
2N )T as a weighted sum of transposed Chebyshev–Vandermonde matrices

U2N−1(x
cheb
2N )T and T2N(xcheb

2N )T . Since we have indexed the Chebyshev points in
decreasing order, the Chebyshev–Vandermonde matrix T2N(xcheb

2N ) is symmetric, i.e.,

T2N(xcheb
2N )T = T2N(xcheb

2N ),

and can be applied to a vector in the same way as before.

For [0 |U2N−1(x
cheb
2N )]T we use the conversion matrix [22],

S2N−1 =



1 0 −1
2

1
2 0 − 1

2
. . .

. . .
. . .

1
2 0 − 1

2
1
2 0

1
2


∈ R2N×2N ,

which converts Chebyshev coefficients in a series of T0, . . . , T2N−1 to coefficients in a
series with U0, . . . , U2N−1 so that

U2N−1(x
cheb
2N )S2N−1 = T2N−1(x

cheb
2N ). (4.6)

Using (4.6), we then have

[0 |U2N−1(x
cheb
2N )]T =

[
0

U2N−1(x
cheb
2N )T

]
=

[
0

S−T
2N−1T2N−1(x

cheb
2N )

]
. (4.7)

Hence, we can apply [0 |U2N−1(x
cheb
2N )]T to a vector inO(N logN) operations by using

the DCT and solving a lower triangular linear system with two nonzero diagonals in
O(N) operations. Therefore, each of the terms in the asymptotic formula can be
applied in O(N logN) operations, and the doubling of the Chebyshev grid means the
implied constant is around a factor of two larger than the forward transform.
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Fig. 4.1: Partitioning of the matrix P2N(xcheb
2N )T in the algorithm for the inverse transform. The

dashed line indicates the boundary of the region in which the asymptotic formula can be employed
without correction, and the gray region indicates the nonzero entries of the matrix PREC

2N (xcheb
2N )T .

Again, this diagram is not drawn to scale and in practice the gray region represents a tiny proportion
of the matrix P2N(xcheb

2N )T .

4.2. Block partitioning for computing the inverse transform. As with
the forward transform, we partition the transposed Legendre–Vandermonde matrix
so that we only employ the asymptotic formula (4.5) only for entries for which it gives
an accurate approximation. In fact, the block partitioning is almost identical, since
the error curve (3.14) is essentially the same. In particular, we partition P2N(xcheb

2N )T

so that

P2N(xcheb
2N )T = PREC

2N (xcheb
2N )T +

K∑
k=1

P
(k)
2N(xcheb

2N )T ,

which can be seen in Figure 4.1 where i′k is simply (3.18) with one N replaced by 2N .
As in Section 3.3, to balance the computation costs we require α = O(1/ logN),

and hence K = O(logN/ log logN). To apply the matrix PREC
2N (xcheb

2N )T to a vector
we use the three-term recurrence relation (3.16) to compute its O(KN/α) nonzero

entries. For the matrix-vector products the matrices P
(k)
2N(xcheb

2N )T for k = 1, . . . ,K,
we use the transposed asymptotic formula (4.5) evaluated by using the DCT and
the relationship (4.7). Hence, in total, the numerically stable algorithm described
for the inverse transform requires O(N(logN)2/ log logN) operations to convert N
Chebyshev coefficients to Legendre coefficients.

5. Numerical results. Here, we no longer consider the unstable algorithm for
the forward transform, described in Section 3.2, and instead concentrate on the al-
gorithms that we advocate for the forward and inverse transform. All numerical
experiments were performed on a single core of a 2011 1.8GHz Intel Core i7 MacBook
Air with Matlab 2013a. Execution times should be considered as approximate. The
accuracy results are determined by comparing to an extended precision multiplica-
tion of the vector of coefficients by the transformation matrices Ln and Mn from [2].
For timing comparisons, we compare against the direct multiplication of a vector by
PN (xcheb

N ) computed in Matlab via the three-term recurrence relation.

5.1. Numerical results for the forward transform. In our implementation
we use M = 10 for all N , though the efficiency of the algorithm for the forward
transform is not particularly sensitive to the choice of M (see Figure 5.1 (left)). For
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Fig. 5.1: Left: Execution times for the forward transform for 103 ≤ N ≤ 105 and M = 5, 7, 10, 15 in
Matlab. Right: The absolute error in the Chebyshev coefficients after converting N + 1 Legendre
coefficients to Chebyshev with different decay rates: no decay (blue), N−1/2 (green), N−1 (red),
and N−3/2 (cyan).

M = 10 we find our algorithm is faster than the direct O(N2) computation when
N ≥ 512, and that N = 106 takes 31.2 seconds.

The dominating computational cost of our algorithm is in computing the DCT.
Unfortunately, Matlab does not natively support a DCT command4, but we can
achieve the same transform via a FFT as follows [11,34]:
function v = dct1(c)

%DCT1 Compute a (scaled) DCT of type 1 using the FFT.

% DCT1(C) = T_N(X_N)*C, where X_N = cos(pi*(0:N))/N and T_N(X) = [T_0,

% T_1, ..., T_N](X). T_k is the kth 1st-kind Chebyshev polynomial.

N = size(c, 1); % Number of terms.

ii = N-1:-1:2; % Indicies of interior coefficients.

c(ii) = 0.5*c(ii); % Scale interior coefficients.

v = ifft([c ; c(ii)]); % Mirror coefficients and call FFT.

v = (N-1)*[ 2*v(N) ; v(ii) + v(2*N-ii) ; 2*v(1) ]; % Re-order.

v = flipud(v); % Flip the order.

end

However, the vector is doubled in length before applying the FFT and this means
that this is twice as expensive as a DCT. We expect that the execution times of our
algorithm would improve by nearly a factor of two if Matlab allowed direct access
to the FFTW DCT routines [9]. In Figure 5.1 (left) we show the execution times of
the forward transform for M = 5, 7, 10, 15 and 103 ≤ N ≤ N5.

To get an idea of the accuracy we can expect in the forward transform, suppose
the entries of the vector clegN decay like n−r, i.e., (clegN )n = O(n−r), and define Dr =
diag(1−r, . . . , N−r). Then we have

clegN = Dr ĉ
leg
N ,

where the vector ĉlegN has no decay and hence,∥∥∥PN(xcheb
N )clegN

∥∥∥
∞

≤
∥∥PN(xcheb

N )Dr

∥∥
∞

∥∥∥ĉlegN

∥∥∥
∞

.

4Note that the Signal Process Toolbox in Matlab does supply a DCT command, but this utilizes
the FFT in a similar way to the dct1 code given above.
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Fig. 5.2: Left: Execution times for the inverse transform for 103 ≤ N ≤ 105 and M = 5, 7, 10, 15
in Matlab. Right: The absolute error in the N computed Legendre coefficients after converting
Chebyshev coefficients with different decay rates: no decay (blue), n−1/2 (green), n−1 (red), and
n−3/2 (cyan).

Since maxx∈[−1,1] Pn(x) = Pn(1) = 1, the infinity norm of the matrix PN(xcheb
N )Dr is

the absolute sum of the first row, and hence,

∥∥PN(xcheb
N )Dr

∥∥
∞ =

N∑
n=1

n−r = HN,r =


N, r = 0,

O(
√
N ), r = 1/2,

O(logN), r = 1,

O(1), r > 1,

where HN,r is the generalized harmonic number [3, Theorem 3.2]. Therefore, we
expect the absolute error of the forward transform to grow something like HN,r.

To investigate the actual error we observe in computing the forward transform
we take random vectors5 of Legendre coefficients that have entries decaying like n−r

with r = 0, 1/2, 1, 3/2. Figure 5.1 (right) shows the maximum absolute error in the
computed Chebyshev coefficients. We observe an error growth of O(N3/2−r/ logN)
for r = 0, 1/2, 1 in the computed vector cchebN and no error growth for r = 3/2. For

r = 0, 1/2, 1, this observed error growth seems to be
√
N/ logN times worse than

HN,r, and we cannot explain this mysterious factor. However, for suitably decaying

vectors clegN , i.e., entries that decay like N−3/2 or faster, the error in PN(xcheb
N )clegN

remains bounded with N . Often, in practice, a Legendre expansion approximates a
smooth function and hence the coefficients decay sufficiently.

5.2. Numerical results for the inverse transform. Our implementation of
the inverse transform also uses 10 terms in the asymptotic formula (4.5), but as
before the the efficiency of the algorithm is not particularly sensitive to the value of
M (Figure 5.2 (left)). The cost of the inverse transform is approximately twice that
of the forward transform because the algorithm for the inverse evaluates DCTs on
vectors of twice the length.

In Figure 5.2 (right) we repeat the same accuracy experiment for the inverse trans-
form. This time we observe an error growth of O(N3/2) for r = 0 and O(N logN)
for r = 1/2, 1, 3/2. An error growth of O(N) for any r ≥ 1/2 is due to the or-
thogonalization scaling factor, ‖Pn‖−2

2 , that appears in the integral definition (4.2)

5Vectors are generated with the Matlab command randn with the random number generator
mt19937ar and rng(1), and then introduce decay by scaling the nth entry by n−r.
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of the Legendre coefficients. Conventionally, Legendre polynomials are scaled so that
Pn(1) = 1 for all n, and for this choice ‖Pn‖−2

2 = n + 1/2. Our algorithm computes
the coefficients in the orthonormal Legendre basis to essentially machine precision,
but to convert them to the standard Legendre basis the nth coefficient is multiplied
by n + 1/2. In addition, we again observe a mysterious log factor that we cannot
explain.

6. Extensions and conclusion. We have presented a fast Chebyshev–Legendre
transform based on the asymptotic formula (3.3), and here we give possible extensions
to other related fast transforms.

Fast evaluation of Legendre expansions. The forward transform converts
Legendre coefficients to Chebyshev coefficients, and as an intermediary step of the
transform the Legendre expansion of degree N (1.2) is evaluated at the vector of
Chebyshev points xcheb

N . More precisely, xcheb
N is the vector of Chebyshev points of

the second kind. This immediately gives a fast algorithm for evaluating a Legendre
expansion of degree N at xcheb

N in O(N(logN)2/ log logN) operations. A similar fast
transform can be derived that evaluates a Legendre expansion at any other set of
Chebyshev points:

First kind: xk = cos
(

(k+ 1
2 )π

N+1

)
, 0 ≤ k ≤ N , the roots of TN+1;

Second kind: xk = cos
(
kπ
N

)
, 0 ≤ k ≤ N , the roots of UN−1 and ±1;

Third kind: xk = cos
(

kπ
N+ 1

2

)
, 0 ≤ k ≤ N , the roots of VN and 1 (see [21]);

Fourth kind: xk = cos
(

(k+ 1
2 )π

N+ 1
2

)
, 0 ≤ k ≤ N , the roots of WN and −1 (see [21]).

These algorithms would still employ a DCT, but it would be of a different type: DCT-
I for second kind, DCT-III for first kind, DCT-V for third kind, and DCT-VII for
fourth kind (see [37] for more details).

Fast Chebyshev–Jacobi transform. Legendre polynomials are a special case
of Jacobi polynomials, and Hahn [13,21] gives a more general asymptotic formula that
remains remarkably similar to (3.3). We expect that this asymptotic formula also leads
to a fast Chebyshev–Jacobi transform with approximately the same methodology.
However, we have not yet been able to find an accompanying explicit error formula,
which is useful for deriving the details of the algorithm.

Furthermore, although the Clenshaw–Curtis–Jacobi weights required for the quad-
rature rule in (4.3) can be computed in O(N logN) operations when the Jacobi pa-
rameters α and β are equal [28] (i.e., for so-called Gegenbauer or ultrapsherical poly-
nomials), it is still an open problem for α 6= β. Since the asymptotic formula for the
ultraspherical case is simpler than for general Jacobi polynomials [32, (8.21.14)], this
would be a sensible next step.

Fast spherical harmonic transform. The spherical harmonic expansion of a
function takes the form

f(θ, φ) =

∞∑
n=0

n∑
m=−n

αm
n P |m|

n (cos θ)eimφ,

where (θ, φ) are spherical coordinates parameterizing the surface of the sphere em-

bedded in R3 and P
|m|
n is the associated Legendre polynomial of degree n and or-

der |m| [26]. There are many algorithms for the fast spherical harmonic trans-
form [18,26,31], but it may also be possible to derive an algorithm that has a similar

16



flavor to this paper. It would be interesting to consider the advantages, if any, of a

fast algorithm for this transform based on an asymptotic formula for P
|m|
n , and we

leave this for future work.

Conclusion. We have presented an O(N(logN)2/ log logN) algorithm for the
Chebyshev–Legendre transform, which is faster than the direct approach for N ≥
512. We block partitioned the Legendre–Vandermonde-like matrix to ensure that the
asymptotic formula was evaluated only when it is valid, thus ensuring stability of
the algorithm, and the use of DCTs allowed fast evaluation. If the coefficients in a
truncated series expansion decay faster than n−3/2, then the forward transform has
no error growth with N and the inverse transform has an error growth of O(N logN).
Our publicly available Matlab implementation can convert between as many as one
million Legendre coefficients and Chebyshev coefficients with high accuracy.
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Appendix. Below is the Matlab code that implements the algorithm for the
forward transform. The codes for the forward and inverse transforms are also avail-
able online, and are subject to a three-clause BSD license [14]. The routine dct1

implementing a DCT of type-I (DCT-I) can be found in Section 5.

function c_cheb = leg2cheb(c_leg, M)

%LEG2CHEB Convert Legendre coefficients to Chebyshev coefficients.

% C_CHEB = LEG2CHEB(C_LEG) converts the vector C_LEG of Legendre coefficients

% to a vector C_CHEB of Chebyshev coefficients such that

% C_CHEB(1)*T0 + ... + C_CHEB(N)*T{N-1} = C_LEG(1)*P0 + ... + C_LEG(N)*P{N-1}.

% Copyright 2013 Nick Hale and Alex Townsend, University of Oxford.

% See http://github.com/nickhale/leg2cheb/ for updates.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Initialise %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

c_leg = c_leg(:); % Make column vector.

if ( nargin == 1 ), M = 10; end % No. of terms in expansion.

N = length(c_leg) - 1; NN = (0:N)’; % Degree of polynomial.

nM0 = min(floor(.5*(.25*eps*pi^1.5*gamma(M+1)/gamma(M+.5)^2)^(-1/(M+.5))),N);

aM = min(1/log(N/nM0), .5); % Block reduction factor (alpha)
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K = ceil(log(N/nM0)/log(1/aM)); % Number of block partitionss.

% Use direct approach if N is small:

if ( M == 0 || N < 513 || K == 0 ), c_cheb = leg2cheb_direct(c_leg); return, end

t = pi*(0:N)’/N; % Theta variable.

nM = ceil(aM.^(K-1:-1:0)*N); % n_M for each block.

jK = zeros(K, 2); % Block locations in theta.

for k = 1:K

tmp = find(t >= asin(nM0./nM(k)), 1) - 4; % Where curve intersects aM^k*N.

jK(k,:) = [tmp+1, N+1-tmp]; % Collect indicies.

end

%%%%%%%%%%%%%%%%%%%%% Recurrence / boundary region %%%%%%%%%%%%%%%%%%%%%%%%%%%%

v_rec = zeros(N+1, 1);

jK2 = [jK(1,2)+1, N+1 ; jK(1:K-1,:) ; 1, N+1];

for k = 1:K % Loop over the partitions:

j_bdy = [jK2(k+1,1):jK2(k,1)-1, jK2(k,2)+1:jK2(k+1,2)];

x_bdy = cos(t(j_bdy)); % Boundary indicies.

tmp = c_leg(1) + c_leg(2)*x_bdy; % Entries of mat-vec result.

Pm2 = 1; Pm1 = x_bdy; % Initialise recurrence.

for n = 1:nM(k)-1 % Recurrence:

P = (2-1/(n+1))*Pm1.*x_bdy-n/(n+1)*Pm2;

Pm2 = Pm1; Pm1 = P;

tmp = tmp + c_leg(n+2)*P; % Update local LHS.

end

v_rec(j_bdy) = v_rec(j_bdy) + tmp; % Global correction LHS.

end

%%%%%%%%%%%%%%%%%%% Asymptotics / interior region %%%%%%%%%%%%%%%%%%%%%%%%%%%%%

c_leg = constantOutTheFront(N).*c_leg; % Scaling factor, eqn (3.3).

v_cheb = zeros(N+1, 1); % Initialise output vector.

for k = 1:K-1 % Loop over the block partitions:

v_k = zeros(N+1, 1); % Initialise local LHS.

hm = ones(N+1,1); hm([1:nM(k)+1,nM(k+1)+2:end]) = 0; % Initialise h_m.

j_k = jK(k,1):jK(k,2); % t indicies of kth block.

t_k = pi/2*ones(N+1,1); t_k(j_k) = t(j_k); % Theta in kth block.

denom = 1./sqrt(2*sin(t_k)); % Initialise denomenator.

for m = 0:M-1 % Terms in asymptotic formula:

denom = (2*sin(t_k)).*denom; % Update denominator.

u = sin((m+.5)*(.5*pi-t_k))./denom; % Trig terms:

v = cos((m+.5)*(.5*pi-t_k))./denom;

hmc = hm.*c_leg; % h_M*c_leg.

v_k = v_k + u.*dst1(hmc) + v.*dct1(hmc); % Update using DCT1 and DST1.

hm = ((m+0.5)^2./((m+1)*(NN+m+1.5))).*hm; % Update h_m.

end

v_cheb(j_k) = v_cheb(j_k) + v_k(j_k); % Add terms to output vector.

end

dst1([], 1); % Clear persistent storage.

%%%%%%%%%%%%%%%%%%%%%%%%%%% Combine for result %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

v_cheb = v_cheb + v_rec; % Values on Chebyshev grid.

c_cheb = idct1(v_cheb); % Chebyshev coeffs.

end

function C = constantOutTheFront(N) % (See, Hale and Townsend [13])

%CONSTANTOUTTHEFRONT(N) returns sqrt(4/pi)*gamma((0:N)+1)/gamma((0:N)+3/2))

% Initialise:

NN = (0:N)’;

NN(1) = 1; % Set the first value different from 0 to avoid complications.

ds = -1/8./NN; s = ds; j = 1; ds(1) = 1;

while ( norm(ds(10:end)./s(10:end),inf) > eps/100 )
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j = j + 1;

ds = -.5*(j-1)/(j+1)./NN.*ds;

s = s + ds;

end

NN(1) = 0; % Reset the first value.

p2 = exp(s).*sqrt(4./(NN+.5)/pi);

% Stirling’s series:

g = [1 1/12 1/288 -139/51840 -571/2488320 163879/209018880 ...

5246819/75246796800 -534703531/902961561600 ...

-4483131259/86684309913600 432261921612371/514904800886784000];

eN = ones(N+1, 1); e9 = ones(1, 9);

ff1 = sum(bsxfun(@times, g, [eN, cumprod(bsxfun(@rdivide, e9, NN),2)]), 2);

ff2 = sum(bsxfun(@times, g, [eN, cumprod(bsxfun(@rdivide, e9, NN+.5),2)]), 2);

C = p2.*ff1./ff2;

% Use direct evaluation for the small values:

C(1:10) = sqrt(4/pi)*gamma((0:9)+1)./gamma((0:9)+3/2);

end

function v = dst1(c, flag) %#ok<INUSD>

%DST1 Discrete sine transform of type 1.

% DST1(C) returns diag(sin(T_N))*U_N(X)*C where T_N(k,1) = pi*(k-1)/N, k =

% 1:N+1, X_N = cos(T_N) and U_N(X) = [U_0, U_1, ..., U_N](X) where U_k is the

% kth 2nd-kind Chebyshev polynomial.

persistent Smat sint % The same for each partition.

if ( nargin == 2 ), Smat = []; return, end % Clear persistent variables.

if ( isempty(Smat) ) % Construct conversion matrix:

N = length(c) - 1; % Degree of polynomial.

dg = .5*ones(N-2, 1); % Conversion matrix:

Smat = spdiags([1 ; .5 ; dg], 0, N, N) + spdiags([0 ; 0 ; -dg], 2, N, N);

sint = sin(pi*(0:N).’/N); % Sin(theta).

end

v = sint.*dct1([Smat\c(2:end) ; 0]);% Scaled DCT.

end

function c = idct1(v)

%IDCT1 Convert values on a Cheb grid to Cheb coefficients (inverse DCT1).

% IDCT1(V) returns T_N(X_N)\V, where X_N = cos(pi*(0:N))/N and T_N(X) = [T_0,

% T_1, ..., T_N](X) where T_k is the kth 1st-kind Chebyshev polynomial.

N = size(v, 1); % Number of terms.

c = fft([v ; v(N-1:-1:2)])/(2*N-2); % Laurent fold in columns and call FFT.

c = c(1:N); % Extract the first N terms.

if (N > 2), c(2:N-1) = 2*c(2:N-1); end % Scale interior coefficients.

if isreal(v), c = real(c); end % Ensure a real output.

end

function c_cheb = leg2cheb_direct(c_leg)

%LEG2CHEB_DIRECT Convert Leg to Cheb coeffs using the 3-term recurrence.

N = length(c_leg) - 1; % Degree of polynomial.

if ( N <= 0 ), c_cheb = c_leg; return, end % Trivial case.

x = cos(pi*(0:N)’/N); % Chebyshev grid (reversed order).

% Make the Legendre-Chebyshev Vandemonde matrix:

Pm2 = 1; Pm1 = x; % Initialise.

L = zeros(N+1, N+1); % Vandermonde matrix.

L(:,1:2) = [1+0*x, x]; % P_0 and P_1.

for n = 1:N-1 % Recurrence relation:

P = (2-1/(n+1))*Pm1.*x-n/(n+1)*Pm2;

Pm2 = Pm1; Pm1 = P;

L(:,2+n) = P;

end

v_cheb = L*c_leg; % Values on Chebyshev grid.

c_cheb = idct1(v_cheb); % Chebyshev coefficients.

end
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