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A typical quadrature rule is the approximation of a definite integral by a
finite sum of the form ∫ 1

−1
f(x) dx ≈

n∑
j=1

wjf(xj), (1)

where x1, . . . , xn and w1, . . . , wn are referred to as the quadrature nodes and
weights, respectively. In 1814 Gauss [3] described a particularly ingenious choice
for the nodes and weights that is optimal in the sense that for each n it exactly
integrates polynomials of degree 2n − 1 or less. It can be shown that no other
quadrature rule with n nodes can do this or better. Today we call this Gauss–
Legendre quadrature due to the pioneering work of Jacobi that showed the
nodes are the zeros of the degree n Legendre polynomial Pn(x) and wk = 2(1−
x2k)−1

[
P ′n(xk)

]−2
.

There is a catch. For large n there is no explicit closed-form expression for
the Gauss–Legendre nodes or weights. And Gauss knew this. To demonstrate
it practically he calculated (by hand!) the nodes and weights to 16 digits for
n = 7. Ever since then, and especially since the advent of the modern computer,
there has been in hindsight a race for computing the nodes and weights for larger
and larger n to more and more digits. A race that the famous Golub–Welsch
algorithm never led. Instead, it is Ignace Bogaert from Ghent University that
has a new and winning algorithm. Here is the race report (see Figure 1).

Hand calculations led the way for over a century. Tallquist (1905), Moors
(1905), Nyström (1930), and Bayly (1938) used fountain pens and dogged de-
termination to calculate the quadrature nodes for n ≤ 12. Eventually, with
presumably a small army of human calculators Lowan, Davids, and Levenson
(1942) tabulated the nodes and weights for 1 ≤ n ≤ 16 for the Mathematical
Tables Project.

A decade later computers were beginning to dominate over tedious hand
calculations and large tabulations of nodes and weights made profit. The most
popular algorithm for computing Gauss nodes was the Newton–Raphson method
for finding the roots of Pn(x) with evaluation of Pn and P ′n using a three-
term recurrence. Huge strides were made. Gawlik (1958) briefly led with n =
64 before Davis and Rabinowitz (1958) got n = 96, and finally Stroud and
Secrest (1966) achieved n = 512. This was the golden age for Gauss–Legendre
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Figure 1: The 100 year race for high order Gauss–Legendre quadrature. A
dot represents published work, located at the publication year and the largest
Gauss–Legendre rule reported therein. A red dot is a paper based on vari-
ants of the Golub–Welsch algorithm. The dot for Golub and Welsch (1969)
is circled. For a list of the papers used see http://math.mit.edu/~ajt/

GaussQuadrature/.

quadrature.
By the 1960s orthogonal algorithms for eigenproblems was hot-off-the-press

and Gene Golub was becoming famous. The Golub–Welsch algorithm [5] —
featuring both the QR algorithm and Golub — was for the times. It quickly
overshadowed the work by Rutishauser in 1963 that preceded it. However, con-
trary to popular belief the Golub–Welsch algorithm is not, and was not, the
state-of-the-art algorithm for computing Gauss–Legendre quadrature rules in
terms of accuracy and speed. Yet, by elegantly bringing together eigenproblems
and Gauss quadrature, it radically changed how the world computed integrals.
Before 1969, a few would compute quadratures by carefully extracting the tab-
ulated values from Stroud and Secrest (1966) and calculating (1). After 1969,
every practitioner was computing Gauss nodes and weights for themselves. Tab-
ulations were already falling out of favor across the computational sciences, but
the Golub–Welsch algorithm made it a reality for Gauss nodes and weights.
This makes 1969 a year to remember for more than just the moon landing.

In the years that followed only a handful of experts noticed the work by
Lether (1978), Yakimiw (1996), Petras (1999), and Swarztrauber (2003) on
improving the details of the Newton–Raphson approach. While the Golub–
Welsch algorithm was computing a few hundred nodes and weights, the Newton–
Raphson approach was computing thousands of them. Many are still unaware of
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Figure 2: Quadrature error (left) and computational time (right) for Gauss–
Legendre nodes and weights computed by the Golub–Welsch algorithm [5]
(GW), Newton–Raphson with three-term recurrence (REC), Newton–Raphson
with asymptotic formulas [6] (HT), the Glaser–Lui–Rokhlin algorithm [4]
(GLR), and Bogaert’s formulas [1] (Bogaert). The timings here are for imple-
mentations in different programming languages and cannot be used for direct
comparisons.

the developments after 1969 and have concluded that Gauss–Legendre quadra-
ture is not computationally feasible for large n. Attention has shifted to adaptive
and piecewise quadrature schemes.

In 2007 Glaser, Lui, and Rokhlin described a ground-breaking algorithm
that can compute one million quadrature nodes in a handful of seconds [4]. Ac-
colades should have followed, but it awakened too little interest. A few years
later Bogaert, Michiels, and Fostier [2] and Hale and Townsend [6] showed that
the Newton–Raphson method for finding the roots of Pn(x) with careful eval-
uation of Pn and P ′n by asymptotic formulas could be just as fast and with a
better accuracy than the world had seen before.1 The golden age had returned.
Figure 2 shows the quadrature error (see εquad in [6] for the exact definition)
and the timings for five historically important algorithms. It was after careful
numerical comparisons like these that the race was fully realized.

The epilogue was written by Bogaert a few months ago [1]. He derived
explicit asymptotic formulas for the Gauss–Legendre nodes and weights that
are accurate to 16 digits for any n ≥ 20. Using his formulas I just computed
one billion and two Gauss–Legendre nodes and weights on my laptop. This is a
world record! So large is this rule that neighboring nodes near ±1 are identical
to 15 decimal places. One thousand nodes now takes less than a millisecond
and one million less than a tenth of a second. Ignace Bogaert is the winner of
this 100 year race. Bravo.

It was a fun race with a deserved winner. We are now searching for applica-
tions for which thousands of nodes and weights are needed. Our algorithms are
poised. If you have an application in mind then please email ajt@mit.edu.

1
See [6] for computing Gauss–Jacobi, Gauss–Lobotto, and Gauss–Radau quadratures.

3



One million Gauss–Legendre nodes and weights. No problem. But why?
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