
Computing the common zeros
of two bivariate functions via
Bézout resultants
Colorado State University, 26th September 2013

Alex Townsend
PhD student

Mathematical Institute
University of Oxford

(with Yuji Nakatsukasa & Vanni Noferini)

Work supported by supported by EPSRC grant EP/P505666/1.

Introduction
Motivation

Global 1D rootfinding is crucial (25% of Chebfun code needs roots)
Chebfun2 is an extension of Chebfun for bivariate functions
Very high degree polynomial interpolants are common

Find the global minimum of

f(x , y) =

(
x2

4
+ esin(50x) + sin(70 sin(x))

)
+

(
y2

4
+ sin(60ey) + sin(sin(80y))

)
− cos(10x) sin(10y) − sin(10x) cos(10y).

g = chebfun2(f);

r = roots(gradient(g));
−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

There are 2720 local extrema.

Alex Townsend @ Oxford

Introduction
Algorithmic overview

Let f and g be real-valued Lipschitz functions on [−1,1]2. Solve:(
f(x , y)
g(x , y)

)
= 0, (x , y) ∈ [−1,1]2.

“Polynomialization”: Replace f and g with bivariate polynomials p and q
“Act locally”: Subdivide [−1,1]2 with piecewise approximants until total
degree ≤ 16, solve low degree rootfinding problems
“Think globally”: Do refinement and regularization to improve global
stability

“Think globally, act locally”, Stan Wagon

Alex Townsend @ Oxford

Introduction
NOT curve finding

Not to be confused with bivariate����
���XXXXXXXrootfinding curve finding:

f(x , y) = 0, (x , y) ∈ [−1,1]2.

Solutions lie along curves. Chebfun2 computes these by Marching Squares.

0 100 200 300 400

0

100

200

300

400

500

nz = 36049

spy plot of LNT

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Zero curves of LNT

∗ Photo courtesy of Nick Hale.

Alex Townsend @ Oxford

Introduction
Talk overview

The talk follows Stan Wagon:

“Polynomialization”

“Act locally”

“Think globally”

Numerical examples

WARNING: Simple common zeros only!

Alex Townsend @ Oxford

Polynomialization
1D Chebyshev interpolants

For n ≥ 1, the Chebyshev points (of the 2nd kind) are given by

xn
j = cos

(jπ
n

)
, 0 ≤ j ≤ n.

The Chebyshev interpolant of f is the polynomial p of degree at most n s.t.

p(x) =

n∑
j=0

cjTj(x), p(xn
j) = f(xn

j), 0 ≤ j ≤ n,

where Tj(x) = cos(j cos−1(x)) is the Chebyshev polynomial of degree j.

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1
Runge function

Function
Chebyshev
Equally−spaced

−1 −0.5 0 0.5 1
−0.5

0

0.5

1

1.5

2

2.5
100,000 degree polynomial

Alex Townsend @ Oxford

Polynomialization
Tensor-product approximation

Replace f and g by their polynomial interpolants

p(x , y) =

np∑
i=0

mp∑
j=0

αijTi(x)Tj(y), q(x , y) =

nq∑
i=0

mq∑
j=0

βijTi(x)Tj(y)

such that p(xnp
s , x

mp

t) = f(xnp
s , x

mp

t) and q(xnq
s , x

mq

t) = g(xnq
s , x

mq

t). Select np, mp
and nq, mq large enough.

Take np = 9,17,33,65, and so on, until
tail of coefficients falls below relative
machine precision.

Chebyshev coefficients computed by
fast DCT-I transform [Gentleman 72].

Alex Townsend @ Oxford

Act locally
Subdivision

Key fact: Subdivide to deal with high degree

Subdivide into subrectangles until
polynomial degrees are small.

14

11

11

13

11

11 11

10

sin((x−1/10)y)cos(1/(x + (y−9/10) + 5))

 = (y−1/10)cos((x+(y+9/10)
2
/4)) = 0

Real solutions only.

Do not bisect! Instead subdivide
off-center (to avoid awkward coin-
cidences).

Subdivide until degree 16.

Like 1D subdivision:

Alex Townsend @ Oxford

Act locally
Bézout resultant theorem

Theorem (Bézout resultant theorem)
Let py and qy be two univariate polynomials of degree at most np and nq. The
Chebyshev Bézout resultant matrix

B(py ,qy) =
(
bij

)
1≤i,j≤max(np ,nq)

,
py(s)qy(t) − py(t)qy(s)

s − t
=

max(np ,nq)∑
i,j=1

bijTi−1(s)Tj−1(t).

is nonsingular if and only if py and qy have no common roots.

Usually, this theorem is stated using the Sylvester resultant
Usually, stated in terms of the monomial basis
There are stable ways to form B(py ,qy). We use
[T., Noferini, Nakatsukasa, 13a]

Alex Townsend @ Oxford

Act locally
Hidden-variable resultant method

The hidden-variable resultant method “hides” one of the variables:

py(x) = p(x , y) =

np∑
i=0

αi(y)Ti(x), qy(x) = q(x , y) =

nq∑
i=0

βi(y)Ti(x).

B(py ,qy) is a symmetric matrix of size max(np ,nq)

Each entry of B(py ,qy) is a polynomial in y, of degree mp + mq

For the y-values of p(x , y) = q(x , y) = 0 we want to solve

det
(
B(py ,qy)

)
= 0, y ∈ [−1,1].

Problem! Determinant is numerically zero:

−1 −0.5 0 0.5 1
−1

0

1x 10
−164 det(B(p

y
,q

y
))

y

Alex Townsend @ Oxford

Act locally
Matrix polynomial linearization

Key fact: Inherit robustness from eigenvalue solver

B(py ,qy) is a matrix-valued polynomial in y: B(py ,qy) =
∑M

i=0 AiTi(y) ∈ RN×N.

The colleague matrix [Specht 1960,Good 1961]:

yX + Y = y


AM

IN
. . .

IN

 −
1
2



−AM−1 IN − AM−2 −AM−3 · · · −A0

IN 0 IN
. . .

. . .
. . .

IN 0 IN
2IN 0


.

Similar to companion, but for Chebyshev.
Inherited robustness from eigenvalue solver.
Strong linearization.

Alex Townsend @ Oxford

Act locally
Univariate rootfinding

Key point: Use univariate rootfinder for x-values

We use Chebfun’s 1D rootfinder for the x-values, once we have the y-values.

We independently solve for each y∗

p(x , y∗) = 0, x ∈ [−1,1] and q(x , y∗) = 0, x ∈ [−1,1].

Based on the colleague matrix (≈ companion matrix)
Gets its robustness from eigenvalue solver
Originally Boyd’s algorithm from [Boyd 02]
1D subdivision is not needed for us

Alex Townsend @ Oxford

Act locally
Reviewing the algorithm

Flowchart of the algorithm:

(
f(x , y)

g(x , y)

)
= 0

(
p(x , y)

q(x , y)

)
= 0 Degree

≤ 16?

Bézoutian
resultant
method

Univariate
rootfinding

no, subdivide

yes

Collect together the solutions from the subdomains.

Keep solutions in [−1,1]2, throw away the rest. Perturb some if necessary.

Further questions:
1. Should we hide the x- or y-variable in the hidden-variable resultant method?
2. What is the operational cost of the algorithm?
3. Is the algorithm stable?

Alex Townsend @ Oxford

Think globally
Stability of the Bézout resultant method

Let p(x∗, y∗) = q(x∗, y∗) = 0 with ‖p‖∞ = ‖q‖∞ = 1. The Jacobian matrix is

J = J(x∗, y∗) =

∂p
∂x (x∗, y∗)

∂p
∂y (x∗, y∗)

∂q
∂x (x∗, y∗)

∂q
∂y (x∗, y∗)

 .
Absolute condition number of problem at (x∗, y∗): κ∗ = ‖J−1

‖2

Absolute condition number of y∗ for Bézout: κ(y∗,B) ≥ 1
2

κ2
∗

κ2(J) ≥
κ∗

‖adj(J)‖2
[1]

The Bézout resultant method is unstable: If entries of J are small then,

κ(y∗,B)� κ∗

This is BAD news!
[1] Nakatsukasa, Noferini, & T., 2013b.

Alex Townsend @ Oxford

Think globally
Local refinement

Key fact: Local refinement can improve stability

Redo Bézout resultant in Ω near (x∗, y∗).

Let Ω = [xmin, xmax] × [ymin, ymax]

|Ω| = xmax − xmin ≈ ymax − ymin

κΩ(y∗,B) ≈ |Ω|2κ(y∗,B)

Shrinking |Ω| improves stability (in a
think globally sense).
Get O(κ∗u) error from polynomialization.
Also do local refinement in detected
ill-conditioned regions.

−1 1
−1

1

Zoom in

−1 1
−1

1

Zoom in

Alex Townsend @ Oxford

Think globally
Bézout regularization

Key fact: Regularize the problem by projecting

The Bézout resultant is symmetric. Partition such that

B(py ,qy) =

[
B1(y) E(y)T

E(y) B0(y)

]
, B1(y) ∈ Rk×k , B0(y) ∈ R(N−k)×(N−k),

with
‖B0(y)‖2 = O(u), ‖E(y)‖2 = O(u1/2).

The eigenvalues of B1(y) and B(py ,qy) in [−1,1] are usually within O(u).

Effectively this step removes large eigenvalues.

Alex Townsend @ Oxford

More details
Many other approaches

Homotopy continuation method

Solve a problem, make it harder.

H(λ, z) + Q(z)(1 − λ) + P(z)λ,

λ ∈ (0,1).

Two-parameter eigenvalue
problem

Use EIG to solve x and y together.

A1v = xB1v + yC1v ,

A2w = xB2w + yC2w.

Contour algorithms

Solve two curve finding problems:

f(x , y) = 0, g(x , y) = 0.

Find intersection of curves.

Other resultant methods

Sylvester resultants
u-resultants
Inverse iteration, Newton-like

Alex Townsend @ Oxford

More details
Which variable should the resultant method hide?

Let p and q be of degree (np ,mp ,nq,mq).

If we solve for the y-variable first,

B(py ,qy) =

M∑
i=0

AiTi(y) ∈ RN×N, NM = max(np ,nq)(mp + mq)︸ ︷︷ ︸
Size of eigenvalue problem

.

If we solve for the x-variable first,

B(px ,qx) =

M∑
i=0

BiTi(x) ∈ RN×N, NM = max(mp ,mq)(np + nq)︸ ︷︷ ︸
Size of eigenvalue problem

.

Solve for y-variable first if max(np ,nq)(mp + mq) ≤ max(mp ,mq)(np + nq).
Important: It does not change stability issues.

Alex Townsend @ Oxford

More details
What is the observed computational cost?

Cost of rootfinding is function-dependent

Assume n = mp = mq = np = nq.

O(n6) vs. O(166n− log 4/ log τ)

τ = average degree reduction.

τ ≈ 0, |x ||y |

τ = 1
2 , sin(Mx)sin(My), M � 1

τ = 1
√

2
, sin(M(x − y)), M � 1

τ ≈ 1, | sin(M(x − y))|, M � 1

20 40 60 80
10

−1

10
0

10
1

10
2

Polynomial degree

E
xe

cu
tio

n
tim

e

with subdivision
without subdivision

Trend = O(n4)

Trend = O(n6)

(
sin(ω(x + y))
cos(ω(x − y))

)
= 0, 1 ≤ ω ≤ 50

Alex Townsend @ Oxford

Numerical examples
Coordinate alignment

Solve(
T7(x)T7(y) cos(xy)

T10(x)T10(y) cos(x2y)

)
= 0.

Degrees are very small,

(mp ,np ,mq,nq) = (20,20,24,30),

but solutions aligned with grid.

B(y) has semisimple eigenvalues with
multiplicity 7 or 10. Numerically fine.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Abs error = 8 × 10−16

Alex Townsend @ Oxford

Numerical examples
Very high degree example

Find the global minimum of

f(x , y) =

(
x2

4
+ esin(50x) + sin(70 sin(x))

)
+

(
y2

4
+ sin(60ey) + sin(sin(80y))

)
− cos(10x) sin(10y) − sin(10x) cos(10y).

This example is of high degree,

(mp ,np ,mq,nq) = (901,625,901,625).

There are 2720 local extrema.

τ ≈ 0.53 ⇒ O(n2.2)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Error = 1.1 × 10−15

Time = 257s.

Alex Townsend @ Oxford

Numerical examples
Very high degree example

Find the global minimum of

f(x , y) =

(
x2

4
+ esin(100x) + sin(140 sin(x))

)
+

(
y2

4
+ sin(120ey) + sin(sin(160y))

)
− cos(20x) sin(20y) − sin(20x) cos(20y).

This example as of high degree,

(1781,1204,1781,1204).

There are 9318 local extrema.

τ ≈ 0.5 ⇒ O(n2.1)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Time = 1300s.

Alex Townsend @ Oxford

Conclusion

For high degree rootfinding:
“Polynomialization”
“Act locally”: Subdivide!
“Think globally”: Stability.

For Bézout resultant:
Robustness from EIG
Local refinement
Regularization

(
Ai(−13(x2y + y2))))

J0(500x)y + xJ1(500y)

)
= 0

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(mp ,np ,mq,nq) = (171,120,569,568)

5932 solutions

time taken = 501s

Alex Townsend @ Oxford

Thank you

Special thanks to...

Nick Trefethen Nick Higham Françoise Tisseur

...and to you for listening.

Y. Nakatsukasa, V. Noferini, and A. Townsend, Computing the common zeros of two bivariate functions via
Bézout resultants, submitted, 2013.

A. Townsend, V. Noferini, and Y. Nakatsukasa, Vector spaces of linearizations for matrix polynomials: A
bivariate polynomial approach, submitted, 2013.

A. Townsend and L. N. Trefethen, An extension of Chebfun to two dimensions, to appear in SISC, 2013.

Alex Townsend @ Oxford

Extra slides
Algebraic Subtleties

Terminology: The eigenvalues of B(py ,qy) satisfy

det
(
B(py ,qy)

)
= 0.

If y∗ is an eigenvalue then p(x∗, y∗) = q(x∗, y∗) = 0 for some x∗.

Assuming simple, isolated common zeros:
Finite common zeros: p(x , y∗) , 0, q(x , y∗) , 0 with a common finite zero,
then y∗ is an eigenvalue of B(y) with eigenvector [T0(x∗), . . . ,TN−1(x∗)]T .
Common zero at infinity: p(x , y∗) , 0, q(x , y∗) , 0 with leading coefficient
0TN(x). y∗ eigenvalue with [0, . . . ,0,1]T .

If p(x , y∗) and q(x , y∗) have many common zeros⇒ B(y) has a semisimple
eigenvalue of high multiplicity.

Alex Townsend @ Oxford

Extra slides
Travelling waves

Solve(
sin(ωx − y/ω) + y
sin(x/ω − ωy) − x

)
= 0, ω = 30.

Degrees are small

(mp ,np ,mq,nq) = (7,63,62,6)

τ ≈ 0.72 ⇒ O(n4.2)

Subdivision in x and y independently.

Qu: Hide x- or y-variable first?

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Abs error = 1.3 × 10−13

Time = 10.8s

Alex Townsend @ Oxford

	Introduction
	Motivation

	Introduction
	Algorithmic overview

	Introduction
	NOT curve finding

	Introduction
	Talk overview

	Polynomialization
	1D Chebyshev interpolants
	Tensor-product approximation

	Act locally
	Subdivision
	Bézout resultant theorem
	Hidden-variable resultant method
	Matrix polynomial linearization
	Univariate rootfinding
	Reviewing the algorithm

	Think globally
	Stability of the Bézout resultant method
	Local refinement
	Bézout regularization

	More details
	Which variable should the resultant method hide?
	What is the observed computational cost?

	Numerical examples
	Coordinate alignment
	Very high degree example
	Very high degree example

	Conclusion
	Thank you
	Extra slides
	Algebraic Subtleties
	Many other methods
	Travelling waves

