Chebfun2: An extension of Chebfun to two dimensions

Alex Townsend
Supervised by Nick Trefethen

25th Biennial Numerical Analysis Conference in Strathclyde 27th of June 2013

What is the Chebfun2 project?

- Project: An attempt to generalise Chebfun to rectangles.
- Mathematical idea: A continuous analogue of low-rank matrices and iterative Gaussian elimination.
- **Software:** 12,000 lines of MATLAB code and 203 m-files.

The low rank approximation of a function

Key point 1: Numerically, many smooth functions are of low rank.

$$f(x,y) \approx \sum_{j=1}^{k} \sigma_j c_j(y) r_j(x).$$

Definition (Numerical low rank)

A function of numerical rank k and numerical degree (m, n) is of **low rank** if

$$k \cdot (m+n) < m \cdot n$$
.

We're interested in approximating functions by low rank functions expressed in a Chebyshev basis.

Alex Townsend Chebfun2 3/16

Introduction to Chebfun2

Key point 2: Gaussian elimination can be used for low rank function approximation. [T. & Trefethen, 2013a]

The standard point of view:

A different, equally simple point of view:

$$A \longleftarrow A - A(j,:)A(:,k)/A(j,k)$$
 (GE step for matrices)
 $f \longleftarrow f - f(x,:)f(:,y)/f(x,y)$ (GE step for functions)

Each step of GE is a rank-1 update.

Introduction to Chebfun2

 $f = chebfun2(@(x,y) cos(10*(x.^2+y))+sin(10*(x+y.^2)));$ contour(f,'.')

2D Chebyshev technology: vector calculus, global rootfinding, quadrature, phase portraits, surfaces, etc.

Alex Townsend

Related work by mugshots

Eugene Tyrtyshnikov

Bebendorf, Goreinov, Oseledets, Savostyanov, Zamarashkin.

Mario Bebendorf

Gesenhues, Griebel, Hackbusch, Rjasanow.

Keith Geddes

Carvajal, Chapman.

Key point 3: SVD is optimal, but Gaussian elimination can be better.

2D Runge function:

$$f(x,y) = \frac{1}{1 + \gamma(x^2 + y^2)}.$$

Wendland's CSRBFs:

$$f_k(x,y) = \phi_{3,k}(\|x-y\|_2) \in \mathcal{C}^{2k}.$$

Alex Townsend

Chebfun2

Exploiting 1D Chebfun

Key point 4: 2D computations can exploit 1D technology. [T. & Trefethen, 2013b]

$$f(x,y) \approx \sum_{j=1}^{k} \sigma_j c_j(y) r_j(x).$$

$$\int_{-1}^{1} \int_{-1}^{1} f(x,y) dx dy \approx \sum_{j=1}^{k} \sigma_{j} \int_{-1}^{1} c_{j}(y) dy \int_{-1}^{1} r_{j}(x) dx.$$

Integration takes $\mathcal{O}(n \log n + kn)$ operations using 1D Clenshaw-Curtis quadrature.

$$F = Q(x,y) \exp(-(x.^2 + y.^2 + \cos(4*x.*y)));$$

QUAD2D: I = 1.399888131932670 time = 0.0717 secs I = 1.399888131932670 time = 0.0097 secs SUM2:

> Chebfun2 8/16

Tensor product operators

Definition (Tensor product operators)

$$\mathcal{L} = \mathcal{L}_y \otimes \mathcal{L}_x, \qquad \mathcal{L}_x \text{ and } \mathcal{L}_y \text{ linear.}$$

Example of tensor product operators

Open Differentiation

$$\mathcal{L} = \frac{\partial}{\partial \mathbf{v}}, \qquad \mathcal{L} = \mathcal{D} \otimes \mathcal{I}, \qquad \mathcal{O}(\mathit{kn}) \; \mathsf{operations}.$$

Tensor product operators

Definition (Tensor product operators)

$$\mathcal{L} = \mathcal{L}_y \otimes \mathcal{L}_x, \qquad \mathcal{L}_x \text{ and } \mathcal{L}_y \text{ linear.}$$

Example of tensor product operators

Open Differentiation

$$\mathcal{L} = \frac{\partial}{\partial y}, \qquad \mathcal{L} = \mathcal{D} \otimes \mathcal{I}, \qquad \mathcal{O}(\mathit{kn}) \; \mathsf{operations}.$$

2 Evaluation

$$\mathcal{E}f = f(x,y), \qquad \mathcal{E} = \mathcal{E}_y \otimes \mathcal{E}_x, \qquad \mathcal{O}(kn^2)$$
 operations.

Others include (Can you guess what they do?): sum2(f), diff(f), f(x,y), sum(f), cumsum2(f), flipud(f), trace(f), gradient(f), chebpoly2(f), svd(f)

Global rootfinding

Key point 5: High degree global rootfinding can be done in 2D! [Nakatsukasa, Noferini, & T., 2013]

<u>Problem</u>: Find **all** (x, y) in $[-1, 1] \times [-1, 1]$ such that

$$\begin{pmatrix} f(x,y) \\ g(x,y) \end{pmatrix} = 0.$$

Uses Chebyshev basis, 2D subdivision, and Bézout resultants.

$$sin((x-1/10)y)cos(1/(x+(y-9/10)+5))$$
= (y-1/10)cos((x+(y+9/10)²/4)) = 0

14

11

11

11

13

Global rootfinding

Find the solutions to:

$$\begin{pmatrix} T_7(x)T_7(y)\cos(xy) \\ T_{10}(x)T_{10}(y)\cos(x^2y) \end{pmatrix} = 0.$$

All the solutions line up along coordinate directions, but that's OK.

Find the solutions to:

$$\begin{pmatrix} Ai(-13(x^2y+y^2)) \\ J_0(500x)y + xJ_1(500y) \end{pmatrix} = 0,$$

which has numerical degree of 580. There are 5932 solutions found in 501 seconds.

Global minimisation

Suppose $A \in \mathbb{R}^{n \times n}$ is a rank-k matrix,

$$A = \sum_{j=1}^k u_j v_j^T.$$

The minimum entry is the solution to the following problem:

$$\min_{p,q} A_{pq} = \min_{p,q} \sum_{i=1}^k u_{pi} v_{qj} = \min_{p,q} \underline{u}_p^T \underline{v}_q.$$

For
$$U = \{\underline{u}_1, \dots, \underline{u}_n\} \in \mathbb{R}^{k \times n}$$
 and $V = \{\underline{v}_1, \dots, \underline{v}_n\} \in \mathbb{R}^{k \times n}$:

$$\min_{p,q} \underline{u}_p^T \underline{v}_q = \min \left\{ \underline{u}^T \underline{v} : \underline{u} \in U, \underline{v} \in V \right\}
= \min \left\{ \underline{u}^T \underline{v} : \underline{u} \in \text{conv}(U), \underline{v} \in \text{conv}(V) \right\}.$$

Chebfun2 12/16

Global minimisation

- Find the minimum on a grid using convex hull.
- 2 Constrained Newton iteration.

$$f(x,y) = \left(\frac{x^2}{4} + e^{\sin(50x)} + \sin(70\sin(x))\right) + \left(\frac{y^2}{4} + \sin(60e^y) + \sin(\sin(80y))\right) - \cos(10x)\sin(10y) - \sin(10x)\cos(10y).$$

Chebfun2 calculates the global minimum in 0.72 seconds.

Alex Townsend Chebfun2

13/16

Lots of stuff we missed out

Alex Townsend

Chebfun2

Future work and many questions

- More about Chebfun2's bivariate rootfinding. Vanni Noferini's talk. You missed it.
- More about Chebfun2 and surfaces. See Rodrigo Platte's talk in San Diego.
- What about higher dimensions? Talk to Daniel Kressner.
- What about PDEs on rectangles? Talk to me in September.
- What about on arbitrary domains? Don't know. Help!
- What else can Chebfun2 do? Check out the website!

References

M. Bebendorf, Hierarchical Matrices, Springer, 2008.

O. A. Carvajal, F. W. Chapman, & K. O. Geddes, *Hybrid* symbolic-numeric integration in multiple dimensions via tensor-product series, ISSAC '05 Proceedings, (2005), pp. 84–91.

S. A. Goreinov, E. E. Tyrtyshnikov, & N. L. Zamarashkin, *A theory of pseudo-skeleton approximations*, Linear Algebra Appl., 261 (1997), pp. 1–21.

Y. Nakatsukasa, V. Noferini, & T., Computing the common zeros of two bivariate functions via Bézout resultants, submitted, 2013.

T. & L. N. Trefethen, Gaussian elimination as an iterative algorithm, SIAM News, March 2013.

T. & L. N. Trefethen, *An extension of Chebfun to two dimensions*, likely to appear in SIAM J. Sci. Comput., 2013.