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.. Gauss–Jacobi Quadrature

An n-point Gauss–Jacobi quadrature rule:∫ 1

−1
w(x)f (x)dx ≈

n∑
k=1

wk f (xk)

with w(x) = (1− x)α(1 + x)β, α, β > −1.

xk = simple roots of P
(α,β)
n .

wk =
Cn,α,β

(1− x2k )
[
P
(α,β)′
n (xk)

]2 , k = 1, . . . , n.

Many formulae for the weights: Swarztrauber (2002), Yakimiv
(1996).
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.. How many can you compute?
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.. Golub–Welsch method

A set of Jacobi polynomials satisfy a 3-term recurrence

AnPn(x) = (x − Bn)Pn−1(x)− CnPn−2(x).

The zeros of Pn(x) are the eigenvalues of the tridiagonal matrix

Bn Cn

An−1 Bn−1 Cn−1

An−2 Bn−2 Cn−2

. . .
. . .

. . .

A2 B2 C2

A1 B1


.

It is a comrade matrix and hence, a strong linearisation (Mackay et
al, 2007). It can be made symmetric tridiagonal.
Requires O(n2) operations for nodes and weights. Best not to
compute weights from eigenvectors.
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.. Glaser–Liu–Rokhlin method

A set of Jacobi polynomials satisfy a second-order differential
equation

(1− x2)P ′′
n (x) + an(x)P

′
n(x) + bn(x)Pn(x) = 0.

Predictor-corrector method:
Once at a root, step to the next by predicting with Runge–Kutta
and then correcting with local Taylor approximations and Newton.

 

 
Runge−Kutta
Local Taylor
Newton iterates

Requires O(n) operations for nodes and weights.
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.. Our method

Newton’s method in θ-space, x = cos(θ).

Newton’s method in θ−space

We will need:
...1 Fast and accurate Jacobi polynomial evaluation → asymptotic
approximations.

...2 Fast and accurate evaluation of derivative → recurrence
relations.

...3 Sufficiently good initial guesses → asymptotic approximations.
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.. What does a Legendre polynomial look like?

Interior Region: Trig−like

Boundary Region: Bessel−like

cos(5π/6) cos(π/6)

We use two asymptotic expansions: interior and boundary.
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.. Interior Asymptotic Formulae

Pn(cos θ) ∼ 2(−1)n
M−1∑
m=0

(
−1

2

m

)(
m − 1

2

n

)
cos(αn,m)

(2 sin θ)m+ 1
2

+ Rn,M

where αn,m =
(
n +m + 1

2

)
θ −

(
m + 1

2

)
π
2 and

|Rn,M | ≤ C

(2 sin θ)M+ 1
2 nM+ 1

2

.
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.. Boundary Asymptotic Formulae

Pn(cos θ) ∼

√
θ

sin(θ)

(
J0(ρθ)

M∑
m=0

Am(θ)

ρ2m
+ θJ1(ρθ)

M−1∑
m=0

Bm(θ)

ρ2m+1

)
,

where ρ = n + 1
2 . Only the first few terms are known explictly.

error =

θO
(
n−2M− 3

2

)
c
n ≤ θ ≤ π

2

θ3O
(
n−2M+ 1

2

)
0 ≤ θ ≤ c

n .
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.. Derivative Evaluation

A recurrence relation for the derivative of Pn is

(1− x2)P ′
n(x) = −nxPn(x) + nPn−1(x),

or in θ-space

sin(θ)
d

dθ
Pn(cos(θ)) = −n cos(θ)Pn(cos(θ)) + nPn−1(cos(θ)).

Many quantities can be reused for derivative evaluation.
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.. Initial Guesses

Sufficiently good = quadratically clustering near endpoints.
(Petras, 1998)
Initial guesses come from the asymptotic formulae. Analogously,
there are interior and boundary initial guesses. (Lether and
Wenston, 1995).
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.. Evaluating J0 (ρθ) near Legendre nodes

Inbuilt bessel evaluation only gets 15-digits of absolute accuracy,
we need one bit more.
Instead, we evaluate the asymptotic expansion:

J0(ρθ) ∼
(

2

πρθ

) 1
2

(
cosω

∞∑
k=0

(−1)k
a2k

(ρθ)2k
− sinω

∞∑
k=0

(−1)k
a2k+1

(ρθ)2k+1

)
(1)

where ω = ρθ − 1
4π and do the argument reduction by ourselves.

Relative error Absolute error

Inbuilt 2.54× 10−9 2.72× 10−15

Formula (1) 2.05× 10−10 4.30× 10−17
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.. Gauss–Legendre nodes and weights

Gauss–Legendre nodes and weights (α = 0, β = 0).
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.. Gauss–Jacobi nodes and weights

Gauss–Jacobi nodes and weights (α = 0.1, β = −0.3).
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.. Error as a quadrature rule

Gauss quadrature integrates polynomials exactly. Approximate the
error

error = max
j=0,...,10

∣∣∣∣∣
∫ 1

−1
w(x)x jdx −

n∑
k=1

wkx
j
k

∣∣∣∣∣ .
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.. Conclusions

...1 Golub–Welsch method can be accurate, but has O(n2)
complexity.

...2 GLR method is fast, but a little inaccurate for n > 500.

...3 The method described here is fast and accurate for n > 200,
but currently only implemented for Gauss–Jacobi nodes and
weights.

Alex Townsend 5th of June 2012


