Stable map resolutions of Richardson varieties

Allen Knutson (Cornell)

Allensdottirs seminar, September 2020

Abstract

To a simple normal crossings divisor (sncd) D, one associates its “dual
simplicial complex”, with a vertex for each component D; and face F for
each stratum N¢crDy # (). For example, Escobar’s brick manifolds (which
among other things, provide resolutions of Richardson varieties) come
with an sncd whose dual complex is a subword complex. In good cases
(which includes brick manifolds) the dual complex is a sphere.

With no such geometrical input, Bjorner-Wachs showed that the order
complex of a Bruhat interval (u,v) is a sphere. I'll define a space of
equivariant stable maps from P' to the Richardson variety X!, and prove
that this space is a smooth orbifold, which comes with a natural sncd
whose dual is the Bjorner-Wachs complex. There are no choices, e.g.
of reduced words. In the Grassmannian case this space is GKM, and I
describe its GKM graph in terms of rim-hook tableaux.
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Simple normal crossing divisors and their dual complexes.

Let Dy,D;y,...,Dyy be a collection of smooth divisors in a (complex, say)
manifold M. They are simple normal crossings if (), ; Dy is smooth connected
of codimension [F| (when nonempty) for each F C [m], i.e. rather like a set of
coordinate hyperplanes in C". Their union D = D U...UDy, is a simple normal
crossings divisor or sncd.

A good test case is M = TVp the projective toric variety associated to a polytope
P, and D the complement of the open T-orbit. Then N¢crDrF is always irreducible
(when nonempty), but will only have always the right codimension when M is
orbifold, i.e. when P is “simple”. Consider a pyramid for counterexamples.

Another nonexample is M = CP! ={[x:y:zl}, D) ={x =0}, D, = {y? = xz}.
The intersection D1 N D3 is smooth and codim 2 but disconnected.

Yet another is the Schubert divisors in the 3-fold GL3;/B, two smooth surfaces
whose intersection P! U, P! is not smooth.

When D is snc, define its dual complex A(D) C 2™ to be the simplicial complex
with vertex set [m], where F C [m] to be a face iff (), D¢ # 0.

[Kollar "14] showed that every simplicial complex arises as the dual of some
sncd — but states in [Kollar-Xu "16] a “folklore conjecture”: if D is anticanonical
in M, then A(D) is homeomorphic to a sphere mod a finite group.
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Bott-Samelson manifolds and their boring sncds.

Fix a pinning (G, B, T, W) of a Lie (or Kac-Moody) group. Given a word Q in the
simple reflections of the Weyl group W, define the Bott-Samelson manifold

BSQ .— {(Fo, .., Fuo) € (G/B)"*#Q . Fy = B/B, Vi (Fy, Fiy1) € Ga - (B/B,rqu/B)}

of tuples of (generalized) flags, starting at the base flag B/B and only changing
a little bit at each step. This is an iterated P! bundle, hence smooth projective
irreducible, and possesses a B-action, with (BSQ)! isolated and = 2°.

The Bott-Samelson map BS® — G/B takes (F;) — F.q, with image some B-
orbit closure X" := BwB/B. This w is the Demazure product of Q, the (unique)
maximum product of any subword of Q. (In the boring case forusw =[] Q,
though people like that BS? — X" is then a resolution of singularities.)

Whenever F;,_; = F;, we might as well skip letter i in Q, giving us an injection
BSQ\t < BSC. Intersecting these images we get a stratum = BS® for each of the
27#Q many subwords R C Q. Every intersection is nonempty!

Hence if D = Ufi (12 BSQminusletteri ¢ forms an sned in BSQ whose A(D) is the
entire simplex, rather than some interesting subcomplex of that simplex.
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Brick manifolds and spherical subword complexes.

The brick manifold Brick® C BSQ is the F4+q = wB/B fiber of BSQR — XW
(w being the Demazure product). It is smooth (by Sard), T-invariant, and of
dimension #Q — £(w) (so, boring when Q reduced).

Let D = U,eq(Brick®N BSQ\9) C BrickQ; it is an sncd in Brick®.

Theorem [Escobar "16]. A(D) is the “subword complex” A(Q,w) whose facets
are the complements Q \ R of reduced subwords R C Q with product w. It is
therefore homeomorphic to a sphere [K-Miller "05].

Since D is anticanonical in Brick®, this is consonant with the folklore conjecture.

A Richardson variety X!, C G/B is the transverse intersection of a Schubert
variety X, := B_uB/B and an opposite Schubert variety X" := BvB/B.

We can resolve X, = woX"o" using BSg := woBSR, where R is a reduced
word for wou. Brion constructed a resolution of X}, using the fiber product
of BS? — XY and BSg — X,. This fiber product is naturally identified with
the brick manifold BTiCkQE, where E is R reversed, and the map to G/B takes
(Fo, F1, co oy F#Q, coey F#Q+#R) > F#Q.

In the slides to come, we will give canonical resolutions of Richardson varieties
(and thus of projected Richardsons too), not dependent on choices of Q and R.
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Example: Brion’s “log resolutions” of
the Richardson stratification of GL3/B.

.
Let Q = R =121, reduced words in S3,so QR = 121121. Then the dual complex

121-21

is a 2-sphere:

12-121
- J

The vertices are labeled with the complements of letters, the regions with
reduced subwords with product wy. R = 212 gives an isomorphic complex:

-2—-12
===7211p. —21—-2

12-212 121-12 | ____

; 1--21- —— ]
12—-1-
12121-
- J
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Moduli spaces of stable maps of rational curves.

Fix a 2-homology class 3 € Hy(M) and a number n of “marked points”. We
consider mapsy : £ — M, where X is a tree of smooth P's with simple normal
(i.e. nodal) crossings and n points (not at the nodes) marked 1...n. Also we
require v, ([X]) = 3. (The 0 in “ M,,,,” below is for the only genus we consider.)

Call the map vy stable if 2 has only finitely many automorphisms compatible
with y. Specifically, each component of X collapsed by vy to a point should have
at least three nodes + marked points.

There is a natural topology on this space My ,(M,B) of maps, making it
compact (in limits, £ can break). It is more naturally a stack than a scheme,
in that one should remember the finite automorphism groups.

Theorem [Fulton-Pandharipande "95]. M, ,(G/P, 3) is a smooth proper stack,
or in other language, a compact orbifold.

This space comes with an sncd, consisting of the reducible .

Already the case My ,,(pt,0) is interesting. Here D has one component for each
of the 2! —m — 1 nontrivial divisions of the marked points. The classical cross-
ratio gives an isomorphism My 4 = P!, where the sncd is the values 0, 1, co.
In particular the sncd is not anticanonical.
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(Now the new stufff) A moduli space of equivariant maps.

We define a locally closed substack M'. Assume I’s components come in a
chain OO0 --- 0O, not in a knottier tree. Put a G,, action on X, speed 1 on
each component, with opposed weights 41, —1 at the two tangent lines at each
node. The two G,-fixed points in X at the ends, with respective tangent weights
+1,—1, we mark and call 0, 0o € X (note in particular that n > 2).

If a circle acts on M, together we get a T>-action on /\/lo (M, B). The fixed points
/\/lo (M, R)®m for the diagonal are the circle-equivariant stable maps.
Theorem. MO,nég(G /P, B)¢m is a smooth stack (albeit disconnected).

Fix a regular dominant weight, say p, acting on G/P; by regularity
(G/P)P = W/W;p with Biatynicki-Birula decompositions the Bruhat and
opposite Bruhat decompositions.

Let p = | p- x| € Hy(G/P) where x € X, is general in the Richardson variety.

Theorem. Leti‘{i(m) — {y E ﬂé)erz(G/P, R)Cm : v(0) =uP/P, y(oc0) :vP/P}.
Then X!,(m) is smooth, connected, and for m < 1 is proper. The map X),(1) —

X! taking v — y(the marked point # 0, co) is a resolution of singularities.

Effectively, we're not just specifying a class in homology H;(G/P), but in
equivariant homology H3™(G/P).
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Main theorems: the sncd D C >A(/‘L’L(O).

Theorem. 1. Lety : £ — X} lie in our space Kﬂ(()), and enumerate X’s fixed
points py = 0,p1,...,pc = 0o € L™ so that p; 1, p; lie in the same component
of X fori=1...c. Theny(pi) < ... <7¥(pc—1) in the open Bruhat interval (u,v).

2. The substack of )A(/‘L’L(O) consisting of stable curves through wy < ... <w._1in
the open Bruhat interval (u,v) is isomorphic to [ [;_; X! ,(0), and in particular
is smooth of codimension ¢ — 1. (Here we take wy = u, w, = v.)

3. Hence the substack D consisting of reducible stable curves is sncd,
and in the G/B case, is anticanonical.

4. Xv(1) = Xy, x P'(0). (This doesn’t quite work for higher n.)

#3 prompts us to consider D’s dual complex, which is exactly the order
complex of the Bruhat interval (u,v). This simplicial complex was proven in
| Bjorner-Wachs '82] to be homeomorphic to a sphere, using “EL-shellability”.
Another case confirmed of the folklore conjecture!

By #4, the dual of the sncd for X" (1) is almost the suspension of the Bjorner-
Wachs sphere — first cross with an interval, triangulate, then cone the ends.

Note that one can define X),(n) using stable maps into X", rather than into
G/B; we only used maps into G/B to more easily prove smoothness.
The singular variety X}, already contains the seeds of its resolution!
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Example: the dual complex A(D) to the sned D in X32}(1).

In each component of D, X breaks into OO, with the marked point on one of the
two components. Each corresponding vertex of A(D) is labeled by y(the node).

When the component with the marked point collapses, taking the node with
it, we [box] its image. Otherwise the * specifies the component of the marked
point. A few of the bigger faces of A(D) are also labeled.

The link of the [u] (or [v]) vertex is a copy of the Bjorner-Wachs sphere. Deleting
those (gold) balls gives a (blue) triangulation of their sphere times an interval.
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GKM spaces and the Grassmannian case.

Call a torus action d-GKM (for Goresky-Kottwitz-MacPherson) if it fixes only
finitely many subvarieties of dimension < d (necessarily toric). [GKM "98] only
considered d = 1, which includes flag manifolds G/P. The fixed points and
curves in a 1-GKM space give the vertices and edges of a graph.

It is easy to see that if M is d-GKM, then each Mo (M, B) is (d — 1)-GKM.
For example, the isolated fixed points in X}, (0) consist of chains of covers of
T-fixed curves, each connecting some w; to wir1 = w;s.

[Guillemin-Zara ‘01] observed that Grassmannians are 2'§KM’ which they
called “3-independence” (of isotropy weights). Hence each X} (0) is 1-GKM.

To describe its GKM graph, we need recall the combinatorial notion of rim-hook
tableau of shape pn/v. Thisis a chain p = Ay C Ay C ... C A,y = v of partitions,
where each Ai/Ai_; is a rim-hook, i.e. connected and containing no 2 x 2 square.

Theorem. The T-fixed points on XK(O) correspond to rim-hook tableaux {t}.
Most of the edges out of T involve breaking a rim-hook into two or gluing two
together, making t’. If rim-hooks i and i + 1 of T together contain a 2 x 2
square (so can’t be glued), or share no boundary (ditto), the resulting union
has a canonical alternate breaking, t’. These pairs (t,7t’) are the graph edges.
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Example: the GKM graph for )A(%“(O).

To the jth rim-hook we associate a root 3; := e, — e; where {,r € [n] are the
diagonals of the ends of the rim-hook (e.g. v+ = { + 1 for single squares). Draw
the GKM graph nicely by placing T at position @ (t) := ) — r—sign(j —1i) B;.
il
1 11
12 2|3
22
12
34 NG II
12 112
1|3 33
13
2|4
12
12
13 2
2|3 22

In this example the edges for gluing-or-cutting rim-hooks are red,

those for gluing-then-rebreaking-the-other-way

edges are green.

WARNING: in larger examples this function @ is not injective.
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Bonus: computing the isotropy weights on XX(O), up to scale.

Let T act on the 1-GKM space M, and p : G,;, — T aregular coweight (M? = MT).

A T-fixed curve & in Mg, (M, B)®m is a family (Vt)1epr of G-equivariant stable
maps vi : 2+ — M, the union of whose images forms a toric T-invariant surface
S C M. The images v(0) and y(oco) are constant in t, and are the sink and
source of the G,,-action on S.

Let A, i be the isotropy weights on T, )S. Then the coweight lattice of Stab(d)
is (At N ut) + Zp, whose perp is (ZA + Zu) N p=.

The isotropy weights of T on v, Ve € & lie in +NA — Nu and —NA + Np
respectively, whose intersections with pt are =N. We have thus determined
those isotropy weights up to scale.

In the case M = Gr(k, n), the possible S boil down to (herea<b<c<d
e Gr(1,C°), gluing two rim-hooks along a horizontal edge

e Gr(2,C*), gluing two rim-hooks along a vertical edge

e Gr(1,C*) x Gr(1,C), swapping nonoverlapping rim-hooks

e Gr(1,C*) x Gr(1,C") or Gr(1,C*) x Gr(1,C"), gluing then rebreaking.

I computed each isotropy weight with the recipe above, then invented @,
which I set up so the isotropy weight would be a multiple of ®(t) — O (1’).

Q: 3 an equivariant ample line bundle £ on KVL(O) with @ (1) = T-wt(L|)?
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