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Abstract
To a simple normal crossings divisor (sncd) D, one associates its “dual

simplicial complex”, with a vertex for each component Di and face F for
each stratum ∩f∈FDf 6= ∅. For example, Escobar’s brick manifolds (which
among other things, provide resolutions of Richardson varieties) come
with an sncd whose dual complex is a subword complex. In good cases
(which includes brick manifolds) the dual complex is a sphere.

With no such geometrical input, Björner-Wachs showed that the order
complex of a Bruhat interval (u, v) is a sphere. I’ll define a space of
equivariant stable maps from P1 to the Richardson variety Xv

u, and prove
that this space is a smooth orbifold, which comes with a natural sncd
whose dual is the Björner-Wachs complex. There are no choices, e.g.
of reduced words. In the Grassmannian case this space is GKM, and I
describe its GKM graph in terms of rim-hook tableaux.
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Simple normal crossing divisors and their dual complexes.

Let D1, D2, . . . , Dm be a collection of smooth divisors in a (complex, say)
manifold M. They are simple normal crossings if

⋂
f∈FDf is smooth connected

of codimension |F| (when nonempty) for each F ⊆ [m], i.e. rather like a set of
coördinate hyperplanes in Cn. Their union D = D1∪. . .∪Dm is a simple normal
crossings divisor or sncd.

A good test case is M = TVP the projective toric variety associated to a polytope
P, and D the complement of the open T -orbit. Then ∩f∈FDF is always irreducible
(when nonempty), but will only have always the right codimension when M is
orbifold, i.e. when P is “simple”. Consider a pyramid for counterexamples.

Another nonexample is M = CP2 = {[x : y : z]}, D1 = {x = 0}, D2 = {y2 = xz}.
The intersection D1 ∩D2 is smooth and codim 2 but disconnected.

Yet another is the Schubert divisors in the 3-fold GL3/B, two smooth surfaces
whose intersection P1 ∪pt P

1 is not smooth.

When D is snc, define its dual complex ∆(D) ⊆ 2[m] to be the simplicial complex
with vertex set [m], where F ⊆ [m] to be a face iff

⋂
f∈FDf 6= ∅.

[Kollár ’14] showed that every simplicial complex arises as the dual of some
sncd – but states in [Kollár-Xu ’16] a “folklore conjecture”: if D is anticanonical
in M, then ∆(D) is homeomorphic to a sphere mod a finite group.
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Bott-Samelson manifolds and their boring sncds.

Fix a pinning (G,B, T,W) of a Lie (or Kac-Moody) group. Given a word Q in the
simple reflections of the Weyl group W, define the Bott-Samelson manifold

BSQ :=
{
(F0, . . . , F#Q) ∈ (G/B)1+#Q : F0 = B/B, ∀i (Fi, Fi+1) ∈ G∆ · (B/B, rqiB/B)

}

of tuples of (generalized) flags, starting at the base flag B/B and only changing
a little bit at each step. This is an iterated P1 bundle, hence smooth projective
irreducible, and possesses a B-action, with (BSQ)T isolated and ∼= 2Q.

The Bott-Samelson map BSQ → G/B takes (Fi) 7→ F#Q, with image some B-
orbit closure Xw := BwB/B. This w is the Demazure product of Q, the (unique)
maximum product of any subword of Q. (In the boring case for us w =

∏
Q,

though people like that BSQ ։ Xw is then a resolution of singularities.)

Whenever Fi−1 = Fi, we might as well skip letter i in Q, giving us an injection
BSQ\i →֒ BSQ. Intersecting these images we get a stratum ∼= BSR for each of the
2#Q many subwords R ⊆ Q. Every intersection is nonempty!

Hence if D =
⋃#Q

i=1 BS
Q minus letter i, it forms an sncd in BSQ whose ∆(D) is the

entire simplex, rather than some interesting subcomplex of that simplex.
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Brick manifolds and spherical subword complexes.

The brick manifold BrickQ ⊆ BSQ is the F#Q = wB/B fiber of BSQ ։ Xw

(w being the Demazure product). It is smooth (by Sard), T -invariant, and of
dimension #Q− ℓ(w) (so, boring when Q reduced).
Let D =

⋃
q∈Q(Brick

Q ∩ BSQ\q) ⊆ BrickQ; it is an sncd in BrickQ.

Theorem [Escobar ’16]. ∆(D) is the “subword complex” ∆(Q,w) whose facets
are the complements Q \ R of reduced subwords R ⊆ Q with product w. It is
therefore homeomorphic to a sphere [K-Miller ’05].

Since D is anticanonical in BrickQ, this is consonant with the folklore conjecture.

A Richardson variety Xv
u ⊂ G/B is the transverse intersection of a Schubert

variety Xu := B−uB/B and an opposite Schubert variety Xv := BvB/B.

We can resolve Xu = w0X
w0u using BSR := w0BS

R, where R is a reduced
word for w0u. Brion constructed a resolution of Xv

u using the fiber product
of BSQ ։ Xv and BSR ։ Xu. This fiber product is naturally identified with

the brick manifold BrickQ
←
R , where

←

R is R reversed, and the map to G/B takes
(F0, F1, . . . , F#Q, . . . , F#Q+#R) 7→ F#Q.

In the slides to come, we will give canonical resolutions of Richardson varieties
(and thus of projected Richardsons too), not dependent on choices of Q and R.
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Example: Brion’s “log resolutions” of

the Richardson stratification of GL3/B.

Let Q = R = 121, reduced words in S3, so Q
←

R = 121121. Then the dual complex
is a 2-sphere:

−−1−21
−21−2−

−2−12−

121−−−

12−1−−

12−−−1 1−−−21

−−−121

12−121

121−21

−2112112112− 1211−1 1−1121

The vertices are labeled with the complements of letters, the regions with
reduced subwords with product w0. R = 212 gives an isomorphic complex:

−−−212

1−−21−

−−121− −212−−

−21−−2

121−−−

−2−−12

12−−1−

−21212

12121−

1212−21−121212−212 121−12
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Moduli spaces of stable maps of rational curves.

Fix a 2-homology class β ∈ H2(M) and a number n of “marked points”. We
consider maps γ : Σ→M, where Σ is a tree of smooth P1s with simple normal
(i.e. nodal) crossings and n points (not at the nodes) marked 1 . . . n. Also we
require γ∗([Σ]) = β. (The 0 in “M0,n” below is for the only genus we consider.)

Call the map γ stable if Σ has only finitely many automorphisms compatible
with γ. Specifically, each component of Σ collapsed by γ to a point should have
at least three nodes + marked points.

There is a natural topology on this space M0,n(M,β) of maps, making it
compact (in limits, Σ can break). It is more naturally a stack than a scheme,
in that one should remember the finite automorphism groups.

Theorem [Fulton-Pandharipande ’95]. M0,n(G/P, β) is a smooth proper stack,
or in other language, a compact orbifold.

This space comes with an sncd, consisting of the reducible Σ.

Already the case M0,n(pt, 0) is interesting. Here D has one component for each
of the 2n−1−n−1 nontrivial divisions of the marked points. The classical cross-
ratio gives an isomorphism M0,4

∼= P1, where the sncd is the values 0, 1,∞.
In particular the sncd is not anticanonical.
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(Now the new stuff!) A moduli space of equivariant maps.

We define a locally closed substack M
′
. Assume Σ’s components come in a

chain ·OOO · · ·O·, not in a knottier tree. Put a Gm action on Σ, speed 1 on
each component, with opposed weights +1,−1 at the two tangent lines at each
node. The two Gm-fixed points in Σ at the ends, with respective tangent weights
+1,−1, we mark and call 0,∞ ∈ Σ (note in particular that n ≥ 2).

If a circle acts on M, together we get a T 2-action on M
′

0,n(M,β). The fixed points

M
′

0,n(M,β)Gm for the diagonal are the circle-equivariant stable maps.

Theorem. M
′

0,n≤3(G/P, β)Gm is a smooth stack (albeit disconnected).

Fix a regular dominant weight, say ρ̌, acting on G/P; by regularity
(G/P)ρ̌ ∼= W/WP with Białynicki-Birula decompositions the Bruhat and
opposite Bruhat decompositions.

Let β =
[
ρ̌ · x

]
∈ H2(G/P) where x ∈ Xv

u is general in the Richardson variety.

Theorem. Let X̃v
u(m) =

{
γ ∈ M

′

0,m+2(G/P, β)Gm : γ(0) = uP/P, γ(∞) = vP/P
}

.

Then X̃v
u(m) is smooth, connected, and for m ≤ 1 is proper. The map X̃v

u(1) →
Xv
u taking γ 7→ γ(the marked point 6= 0,∞) is a resolution of singularities.

Effectively, we’re not just specifying a class in homology H2(G/P), but in
equivariant homology HGm

2 (G/P).
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Main theorems: the sncd D ⊂ X̃v
u(0).

Theorem. 1. Let γ : Σ → Xv
u lie in our space X̃v

u(0), and enumerate Σ’s fixed
points p0 = 0, p1, . . . , pc = ∞ ∈ ΣGm so that pi−1, pi lie in the same component
of Σ for i = 1 . . . c. Then γ(p1) < . . . < γ(pc−1) in the open Bruhat interval (u, v).

2. The substack of X̃v
u(0) consisting of stable curves through w1 < . . . < wc−1 in

the open Bruhat interval (u, v) is isomorphic to
∏c

i=1 X̃
wi
wi−1

(0), and in particular
is smooth of codimension c− 1. (Here we take w0 = u, wc = v.)

3. Hence the substack D consisting of reducible stable curves is sncd,
and in the G/B case, is anticanonical.

4. X̃v
u

(
1
)
∼= X̃v

u × P1
(
0
)
. (This doesn’t quite work for higher n.)

#3 prompts us to consider D’s dual complex, which is exactly the order
complex of the Bruhat interval (u, v). This simplicial complex was proven in
[Björner-Wachs ’82] to be homeomorphic to a sphere, using “EL-shellability”.
Another case confirmed of the folklore conjecture!

By #4, the dual of the sncd for X̃v
u(1) is almost the suspension of the Björner-

Wachs sphere – first cross with an interval, triangulate, then cone the ends.

Note that one can define X̃v
u(n) using stable maps into Xv

u rather than into
G/B; we only used maps into G/B to more easily prove smoothness.
The singular variety Xv

u already contains the seeds of its resolution!
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Example: the dual complex ∆(D) to the sncd D in X̃321
123(1).

[132]312

*231

*132 *312

*213 213*
231*

[321][123]

312* 132*

[132]

132*312

In each component of D, Σ breaks into OO, with the marked point on one of the
two components. Each corresponding vertex of ∆(D) is labeled by γ(the node).

When the component with the marked point collapses, taking the node with
it, we [box] its image. Otherwise the ∗ specifies the component of the marked
point. A few of the bigger faces of ∆(D) are also labeled.

The link of the [u] (or [v]) vertex is a copy of the Björner-Wachs sphere. Deleting
those (gold) balls gives a (blue) triangulation of their sphere times an interval.
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GKM spaces and the Grassmannian case.

Call a torus action d-GKM (for Goresky-Kottwitz-MacPherson) if it fixes only
finitely many subvarieties of dimension ≤ d (necessarily toric). [GKM ’98] only
considered d = 1, which includes flag manifolds G/P. The fixed points and
curves in a 1-GKM space give the vertices and edges of a graph.

It is easy to see that if M is d-GKM, then each M0,n(M,β) is (d − 1)-GKM.

For example, the isolated fixed points in X̃v
u(0) consist of chains of covers of

T -fixed curves, each connecting some wi to wi+1 = wirδ.

[Guillemin-Zara ’01] observed that Grassmannians are 2-GKM, which they

called “3-independence” (of isotropy weights). Hence each X̃ν
µ(0) is 1-GKM.

To describe its GKM graph, we need recall the combinatorial notion of rim-hook
tableau of shape µ/ν. This is a chain µ = λ0 ⊂ λ1 ⊂ . . . ⊂ λm = ν of partitions,
where each λi/λi−1 is a rim-hook, i.e. connected and containing no 2×2 square.

Theorem. The T -fixed points on X̃ν
µ(0) correspond to rim-hook tableaux {τ}.

Most of the edges out of τ involve breaking a rim-hook into two or gluing two
together, making τ ′. If rim-hooks i and i + 1 of τ together contain a 2 × 2

square (so can’t be glued), or share no boundary (ditto), the resulting union
has a canonical alternate breaking, τ ′. These pairs (τ, τ ′) are the graph edges.
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Example: the GKM graph for X̃2+2
∅

(0).

To the jth rim-hook we associate a root βj := eℓ − er where ℓ, r ∈ [n] are the
diagonals of the ends of the rim-hook (e.g. r = ℓ + 1 for single squares). Draw
the GKM graph nicely by placing τ at position Φ(τ) :=

∑

i , j
sign(j− i) βj.

1 1
2 3

1 2
3 4

1 2
2 2

1 1
2 2

1 2
3 3

1 2
1 3

1 2
1 2

1 2

1 3
2 4

1 3
2 3

1 1

In this example the edges for gluing-or-cutting rim-hooks are red,
those for gluing-then-rebreaking-the-other-way edges are green.

WARNING: in larger examples this function Φ is not injective.
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Bonus: computing the isotropy weights on X̃ν
µ(0), up to scale.

Let T act on the 1-GKM space M, and ρ : Gm → T a regular coweight (Mρ = MT ).

A T -fixed curve δ in M0,n(M,β)Gm is a family (γt)t∈P1 of Gm-equivariant stable
maps γt : Σt →M, the union of whose images forms a toric T -invariant surface
S ⊆ M. The images γt(0) and γt(∞) are constant in t, and are the sink and
source of the Gm-action on S.

Let λ, µ be the isotropy weights on Tγt(0)S. Then the coweight lattice of StabT(δ)

is (λ⊥ ∩ µ⊥) + Zρ, whose perp is (Zλ+ Zµ) ∩ ρ⊥.

The isotropy weights of T on γ0, γ∞ ∈ δ lie in +Nλ − Nµ and −Nλ + Nµ

respectively, whose intersections with ρ⊥ are ∼= N. We have thus determined
those isotropy weights up to scale.

In the case M = Gr(k, n), the possible S boil down to (here a < b < c < d)
• Gr(1,Cabc), gluing two rim-hooks along a horizontal edge
• Gr(2,Cabc), gluing two rim-hooks along a vertical edge
• Gr(1,Cab)×Gr(1,Ccd), swapping nonoverlapping rim-hooks
• Gr(1,Cac)×Gr(1,Cbd) or Gr(1,Cad)×Gr(1,Cbc), gluing then rebreaking.

I computed each isotropy weight with the recipe above, then invented Φ,
which I set up so the isotropy weight would be a multiple of Φ(τ) −Φ(τ ′).

Q: ∃ an equivariant ample line bundle L on X̃ν
µ(0) with Φ(τ) = T -wt(L|τ)?
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